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Abstract

We present the first measurement of the mass function of free-floating planets (FFPs), or very wide orbit planets
down to an Earth mass, from the MOA-II microlensing survey in 2006–2014. Six events are likely to be due to
planets with Einstein radius crossing times tE< 0.5 days, and the shortest has tE= 0.057± 0.016 days and an
angular Einstein radius of θE= 0.90± 0.14 μas. We measure the detection efficiency depending on both tE and θE
with image-level simulations for the first time. These short events are well modeled by a power-law mass function,
dN d M M Mlog 2.18 84 1.40

0.52 4= ´ a
-
+

Å
-( ) ( ) dex−1 star−1 with 0.964 0.27

0.47a = -
+ for M/Me< 0.02. This implies a

total of f 21 13
23= -

+ FFPs or very wide orbit planets of mass 0.33<M/M⊕< 6660 per star, with a total mass of
M80 47

73
-
+

Å star−1. The number of FFPs is 19 13
23

-
+ times the number of planets in wide orbits (beyond the snow line),

while the total masses are of the same order. This suggests that the FFPs have been ejected from bound planetary
systems that may have had an initial mass function with a power-law index of α∼ 0.9, which would imply a total
mass of M171 52

80
-
+

Å star−1. This model predicts that Roman Space Telescope will detect 988 566
1848

-
+ FFPs with masses

down to that of Mars (including 575 424
1733

-
+ with 0.1�M/M⊕� 1). The Sumi et al. large Jupiter-mass FFP

population is excluded.
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1. Introduction

Gravitational microlensing observations toward the Galactic
bulge enable exoplanet searches (Mao 1991; Gaudi et al. 2008;
Bennett et al. 2010; Suzuki et al. 2016; Koshimoto et al. 2021b)
and the measurement of the stellar and substellar mass
functions (MFs; Paczyński 1991; Sumi et al. 2011; Mróz
et al. 2017, 2019, 2020).

Sumi et al. (2011) first interpreted the detection of short
Einstein radius crossing time (0.5< tE/day< 2) microlensing
events as evidence for the existence of a population of free-
floating planets (FFPs) and/or wide-orbit planets. While that
analysis was limited by the small number of events found in a 2
yr subset of the survey by the Microlensing Observation in
Astrophysics (MOA) group (Sumi et al. 2003) in collaboration
with the Optical Gravitational Lensing Experiment (OGLE;

Udalski et al. 1994), it opened up the field of FFP studies using
microlensing.
Mróz et al. (2017) extended the work by using a larger

sample from 5 yr of the OGLE survey. They discovered six
events with timescales shorter (tE∼ 0.2 days) than those in the
previous work. These events are separated from the longer
events by a gap around tE∼ 0.5 days, which implies the
possibility of a population of several Earth-mass FFPs.
These studies are based on the distribution of tE, in which

tE is proportional to the square root of the lens mass M as
follows:
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Here κ= 4G/(c2au)= 8.144 mas Me
−1 and we expect tE∼ 0.1

days assuming the typical value of the lens−source relative
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the bulge lens and a typical value of the lens−source relative
proper motion in the direction of the Galactic center of μrel=
5 mas yr−1. The lens mass M, the distance Dl to the lens, and
the relative proper motion μrel are degenerate in the observable
tE. (Ds is the distance to the source star.) This means that the
MF of the lens population has to be determined statistically,
assuming a model of the star population density and velocities
in the galaxy.

Mróz et al. (2018) found the first short-timescale (tE=
0.32 days) event showing the finite-source (FS) effect, i.e., an
FS and a single point lens (FSPL), in which one can measure an
FS parameter ρ= θ*/θE. Here θ* is the angler source radius
that can be estimated from an empirical relation with the source
magnitude and color. θE is the angular Einstein radius, given by
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While the inclusion of the angular Einstein radius, θE, enables
tighter constraints on the lens masses, it adds a complication to
a statistical analysis of FFP properties because the microlensing
event detection efficiency depends on both tE and θE (or
equivalently tE and ρ).

So far, six short FSPL events have been discovered (Mróz
et al. 2018; Mróz et al. 2019, 2020, 2020; Kim et al. 2021; Ryu
et al. 2021). All of these have θE< 10 μas, implying that their
lenses are most likely of planetary mass. All of these sources
are red giants with the exception of the subgiant source for
OGLE-2016-BLG-1928 because their angular radii, i.e., cross
section, are significantly larger than those of main-sequence
(MS) stars.

Mróz et al. (2020) found the short FSPL event, OGLE-2016-
BLG-1928, with the smallest value of θE= 0.842± 0.064 μas
to date. Its lens is the first terrestrial-mass FFP candidate and
the first evidence of such a population.

Kim et al. (2021) began a new approach to probing the FFP
population by focusing on analyzing the θE distribution in
events with giant sources. Ryu et al. (2021) found a gap at
10< θE/μas< 30 in the cumulative θE distribution, which
suggests a separation between the planetary-mass population
and other known populations, like brown dwarfs (BDs).

Gould et al. (2022) completed the analysis of 29 FSPL giant
source events found in the 2016–2019 KMTNet survey. They
presented the θE distributions down to θE= 4.35 μas and
confirmed that there is a clear gap in the distribution of θE at
9< θE/μas< 26. They note that it is consistent with the gap in
the tE distribution shown by Mróz et al. (2017), indicating the
existence of the low-mass FFP population. They used what they
refer to as a “relative detection efficiency” that depends only on
θE, but not tE, to model the θE distribution with a
power-law MF for the FFP and found dN d MlogFFP =

M M0.4 0.2 38 p Å
-( )( ) dex−1 star−1, using a power law with

0.9 p 1.2. This range of the power, p, was estimated based on
consideration of possible formation mechanisms, rather than a
measurement. This would imply that the number of FFPs is at

least an order of magnitude larger than the number of known
bound planets.
We note that the Gould et al. (2022) result cannot be

considered a measurement for a the following reasons. First,
the true detection efficiency depends on both tE and θE, and it is
difficult to see how any selection criteria could remove the tE
dependence. As we discuss below in Section 4.1.1 and in
Koshimoto et al. (2023), one can integrate over the tE
dependence of the detection efficiency to obtain an integrated
detection efficiency. However, the integration over short tE
values depends on the FFP MF. However, Gould et al. (2022)
seem to avoid this difficulty by simply adopting an analytic
formula for the “relative detection efficiency” depending only
on θE. The Gould et al. (2022) paper gives no justification for
this analytic formula.
In this paper, we present the distributions of θE and tE values

for the microlensing events toward the Galactic bulge from 9 yr
of the MOA-II survey. We also present the first measurement
of MF of the planetary-mass objects using the tE distribution.
We describe the data in Section 2. We show the θE distribution
in Section 3. We present the tE distribution and the best-fit MF
in Section 4. The discussion and conclusions are given in
Section 5, and we compare the integrated detection efficiency
in the Appendix.

2. Data

We use the microlensing sample selected from the MOA-II
high-cadence photometric survey toward the Galactic bulge in
the 2006–2014 seasons (Koshimoto et al. 2023). MOA-II uses
the 1.8 m MOA-II telescope, which has a 2.18 deg2 field of
view and is located at the Mt. John University Observatory,
New Zealand.14

Koshimoto et al. (2023) used an analysis method similar to
what was used by Sumi et al. (2011, 2013), but including a
correction of systematic errors and taking into account the FS
effect. They applied a detrending code to all light curves to
remove the systematic errors that correlate with seeing and air
mass owing to differential refraction, differential extinction,
and relative proper motion of stars in the same way as in
Bennett et al. (2012) and Sumi et al. (2016). These corrections
are important, as they result in higher confidence in the light-
curve fitting parameters.
Koshimoto et al. (2023) selected light curves with a single

instantaneous brightening episode and a flat constant baseline,
which can be well fit with a point-source point-lens (PSPL)
microlensing model (Paczyński 1986). In addition to PSPL,
they modeled the events with an FSPL model (Bozza et al.
2018), which is especially important for short events. These are
the major improvements compared to the previous analysis in
Sumi et al. (2011, 2013), in addition to the extension of the
survey duration.
Although they identified 6111 microlensing candidates, they

selected only 3554 and 3535 objects as the statistical sample
using the two relatively strict criteria CR1 and CR2,
respectively. Here CR2 was defined as the stricter criteria
compared to their nominal criteria CR1 to check the effect of
the choice of the criteria on a statistical study. These strict
criteria ensure that tE is well constrained for each event and
reject any contamination.

14 https://www.massey.ac.nz/~iabond/moa/alerts/

2

The Astronomical Journal, 166:108 (13pp), 2023 September Sumi et al.

https://www.massey.ac.nz/~iabond/moa/alerts/


Sumi et al. (2011) reported 10 short events with tE< 2 days
in the 2006–2007 data set. Only five and four events survived
following the application of CR1 and CR2, respectively. This is
because the fitting results changed as a result of the re-
reduction of the data set. On the other hand, two events are
newly found, resulting in seven and six events following the
application of CR1 and CR2, respectively. As a result, the
excess at tE= 0.5–2 days in the tE distribution is not significant
anymore; however, an even shorter event, MOA-9y-6057
(tE= 0.22± 0.06 days), is added.

3. Angular Einstein Radius Distribution

There are 13 FSPL events with θE measurements in the
sample, including two FFP candidates, MOA-9y-5919 and
MOA-9y-770, that have terrestrial and Neptune masses,
respectively. See Koshimoto et al. (2023) for the light curves
and detailed parameters of the 13 events.

The red line in Figure 1 indicates the cumulative distribution
of θE from Table 7 of Koshimoto et al. (2023). The black line
indicates the distribution of 29 FFPs by Gould et al. (2022)
normalized to 13 events as a comparison. Although these
cannot be directly compared because these are not corrected for
detection efficiencies, the general trends seen in Figure 1 may
give us some insights.

The distributions are consistent for θE> 30 μas, where the
effects of the detection efficiencies are likely small. There is a
gap around 5< θE/μas< 70, which is roughly consistent with
the gap at 10< θE/μas< 30 found by Ryu et al. (2021) and
Gould et al. (2022). This gap confirmed the existence of the
planetary-mass population as distinct and separated from the
stellar/BD population as indicated by Gould et al. (2022).

The MOA cumulative distribution shows fewer events over
30< θE/μas< 70 compared to Gould et al. (2022). This may
be just due to the small number of statistics. But note that
Koshimoto et al. (2023) found a BD candidate MOA-9y-1944
with θE= 46.1± 10.5 μas, although this is not in the final
sample for statistical analysis because the source magnitude of
Is= 21.91 mag is fainter than the threshold of Is< 21.4 mag.

In our sample, there is one event with a very small value of θE
of 0.90± 0.14 μas. This confirms the existence of the terrestrial-

mass population, which gives rise to events such as OGLE-2016-
BLG-1928, which has θE= 0.842± 0.064 (Mróz et al. 2020).
These values are significantly smaller than the lower edge of
θE∼ 4.35 μas as reported in Gould et al. (2022). This is partly a
result of selection bias given that Gould et al. (2022) focused on
the sample with supergiant sources; see Figure 2.
We compare the parameters of these events to six known FFP

candidates with θE measurements in Table 1. The sources of all
known FFP candidates except OGLE-2016-BLG-1928are red
clump giants (RCGs) or red supergiants that have large θ*= 5.4,
7.1, 11.9, 15.1, 19.5, and 34.9μas. The magnification tends to be
suppressed by large θ* with small θE, i.e., large ρ as
A 1 4FS,max

2r= + (ρ> 1) (Maeder 1973; Agol 2003;
Riffeser et al. 2006). For example, in the case of the terrestrial-
mass lens with θE∼ 1 μas, the maximum magnification will be
only A 1.066, 1.039, 1.014, 1.009, 1.005FS, max = , and 1.002
for the above values of θ*, respectively. Note that the source of the
terrestrial FFP candidate event OGLE-2016-BLG-1928S is a
subgiant with θ*= 2.37 μas. It is important to search for short
FSPL with subgiants and dwarf sources to find low-mass FFPs.
There is no FSPL event with a red supergiant source in our sample
because these are saturated in MOA image data.

4. Likelihood Analysis of Mass Function

In the final sample of Koshimoto et al. (2023), there are 10
(12) short-timescale events with tE< 1 day after applying CR2

Figure 1. Observed cumulative distribution of θE for 13 FSPL events from
MOA (red line) and 29 FSPL events from KMTNet (black line; Gould
et al. 2022). The blue line indicates θE = 0.842 ± 0.064 for terrestrial-mass
FFP candidate OGLE-2016-BLG-1928 (Mróz et al. 2020).

Figure 2. Extinction-free color–magnitude diagram of gb3-7-6. The orange
curve is the isochrone matched to this subfield. The cyan square is the RCG
centroid. The red circles with error bars are sources of the 13 FSPL events in
this work. The blue filled circles indicate the two FFP candidates in this work.
The black open and filled circles are FSPL events and FFP events from Gould
et al. (2022), respectively. The purple triangle indicates the source of terrestrial
FFP OGLE-2016-BLG-1928S (Mróz et al. 2020).
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(CR1). Figure 3 shows the tE distribution of the CR2 sample.
The distribution is roughly symmetric in tlog E, with a tail at
tE< 0.5. This confirmed the existence of such short-timescale
events with tE< 0.5 days as reported by Mróz et al. (2017). In
this section, we perform a likelihood analysis on each of the
3554 (CR1) and 3535 (CR2) events using a Galactic model to
constrain the MF of lens objects.

We define the likelihood, , in Section 4.1. In Sections 4.2
and 4.3, we determine the MF without and with a planetary-
mass population, respectively, by minimizing 2 ln2c º - .
Although the absolute value of χ2 is not meaningful owing to
its dependence on an arbitrary normalization associated with
our likelihood calculation, the fitting procedure is still
statistically valid, as the relative likelihood between two
models, represented by Δχ2, is independent of the
normalization.

Note that results of the likelihood analysis for samples CR1
and CR2 are very similar. In the following sections, we show
only the results for CR2 as our final results except in the tables.

4.1. Likelihood

Although our sample contains more than 3500 events, the
MF of planetary-mass objects is largely determined by the
events with tE< 1 day, which account for about 0.3% of these
events. We define two likelihoods: short for short-timescale
events with the best-fit tE< 1 day, and long for events with the
best-fit tE� 1 day. In our likelihood analysis, we use the
combined likelihood   short long= .

For long, we simply use the best-fit tE values provided by
Koshimoto et al. (2023), which is similar to the approach by
previous studies (Sumi et al. 2011; Mróz et al. 2017). This is
because of (i) the relatively small uncertainties in tE, (ii) the fact
that the effect of individual tE uncertainties is statistically
marginalized by the large number of events, (iii) the limited
sensitivity to θE, and (iv) the minimal impact on our primary
goal of measuring the MF of planetary-mass objects.

On the other hand, the situation is the opposite for the short
events, short. That is, (i) the tE uncertainties are relatively large
owing to their shorter magnification period, but they must be
smaller than the event selection threshold listed in Table 2 of
Koshimoto et al. (2023); (ii) the number of events is very
limited (12 for CR1 and 10 for CR2) and the tE< 1 day range is
only sparsely covered in Figure 3, and thus the number of
tE< 1 day events may not be sufficient to statistically

marginalize the effect of tE uncertainties of individual events
in the likelihood analysis; (iii) because the ρ= θ*/θE values are
generally much larger than those of longer-timescale events,
one may get beneficial constraints on θE even when the θE
values are not well determined; and (iv) they play a crucial role
in determining the MF of planetary-mass objects. Therefore,
we must use the joint probability distribution of (tE, θE) for
each event derived by Koshimoto et al. (2023) using the
Markov Chain Monte Carlo (MCMC) method for short.
However, the (tE, θE) probability distributions for each event
depend on the FFP MF that we are trying to measure, while the
event detection efficiency also depends on both tE and θE.
Hence, the probability distribution for the tE and θE values for
each event depends on both the light-curve data and the FFP
MF. Rather than running our light-curve model MCMC
calculations for the short events separately for every MF
model we consider, we simplify our calculations by using the
“importance sampling” method of Monte Carlo integration
(Press et al. 1992). This means that we run the MCMC light-
curve models with weighting of the tlog E and log Eq
distributions given by an uninformative (and incorrect) “prior”

Table 1
Comparison of Parameters of Short FS Events with Known FFP Candidates

field-chip-sub-ID tE ρ Is,0 θ* θE Reference
(days) (mag) (μas) (μas)

MOA-9y-5919 0.057 ± 0.016 1.40 ± 0.46 17.23 1.26 ± 0.48 0.90 ± 0.14 Koshimoto et al. (2023)
MOA-9y-770 0.315 ± 0.017 1.08 ± 0.07 14.71 5.13 ± 0.86 4.73 ± 0.75 Koshimoto et al. (2023)
OGLE-2016-BLG-1928 0.0288 0.0016

0.0024
-
+ 3.39 0.11

0.10
-
+ 15.78 2.85 ± 0.20 0.842 ± 0.064 Mróz et al. 2020

KMT-2019-BLG-2073 0.272 ± 0.007 1.138 ± 0.012 14.45 5.43 ± 0.17 4.77 ± 0.19 Kim et al. (2021)
KMT-2017-BLG-2820 0.288 ± 0.015 1.096 ± 0.079 14.31 7.05 ± 0.44 5.94 ± 0.37 Ryu et al. (2021)
OGLE-2012-BLG-1323 0.155 ± 0.005 5.03 ± 0.07 14.09 11.9 ± 0.5 2.37 ± 0.10 Mróz et al. (2019)
OGLE-2016-BLG-1540 0.320 ± 0.003 1.65 ± 0.01 13.51 15.1 ± 0.8 9.2 ± 0.5 Mróz et al. (2018)
OGLE-2019-BLG-0551 0.381 ± 0.017 4.49 ± 0.15 12.61 19.5 ± 1.6 4.35 ± 0.34 Mróz et al. (2020)
MOA-9y-1944a 1.594 ± 0.136 0.00928 ± 0.00032 20.14 0.43 ± 0.10 46.1 ± 10.5 Koshimoto et al. (2023)
OGLE-2017-BLG-0560a 0.905 ± 0.005 0.901 ± 0.005 12.47 34.9 ± 1.5 38.7 ± 1.6 Mróz et al. (2019)

Notes.
a Likely BD lens.

Figure 3. The observed timescale tE distribution passing criteria CR2 from the
9 yr MOA-II survey. The 1σ error bars and upper limits are based on the
Poisson distribution. The red line indicates the best-fit single-lens model for all
populations. The blue dotted line represents the known populations of stars,
BDs, and stellar remnants, and the green dashed line represents the planetary-
mass population.
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p tlog , log0 E Eq( ) that is uniform in both tlog E and log Eq . A
function like p tlog , log0 E Eq( ) is sometimes called an “interim
prior” (Foreman-Mackey et al. 2014), but we have not used it
as a Bayesian prior. Instead, we replace p tlog , log0 E Eq( ) with
the correct distribution over tlog E and log Eq for each MF
model in our FFP MF likelihood calculation. The only
Bayesian prior assumptions assumed in this analysis are the
Galactic model assumptions discussed in Section 4.2 and the
MF model priors discussed in Section 4.3.

We describe the simpler likelihood function for the long-
duration events, long, in Section 4.1.1, and then we describe
short in Section 4.1.2.

4.1.1. Likelihood for Events with tE � 1 day

We define the likelihood for events with tE� 1 day by

  t ; , 4
i

N

ilong
1

E,

long

µ G
=

( ) ( )

where i runs over all the Nlong events that have the best-fit
tE� 1 day in our sample (Nlong= 3542 for CR1 and
Nlong= 3525 for CR2), and tE,i is the best-fit tE value for the
ith event given by Koshimoto et al. (2023).

The function  t ;E G( ) is the model’s detectable event rate as
a function of tE with given model event rate Γ, combined for
the 20 survey fields, given by

 t w g t; ; . 5
j

j j jE EåG = G( ) ( ) ( )

Here j takes field index values gb1 to gb21, except for gb6. See
Table 1 of Koshimoto et al. (2023) for the location and
properties of each field. The weight wj for the jth field is given
by

w n f , 6j
k j

k kRC,
2

LF,å=
Î

( )

where k indicates a 1024 pixel ×1024 pixel subframe in the jth
field (k= 1, 2,..., 80), nRC,k is the number density of RCGs in the
kth subfield, fLF,k is the fraction of stars with magnitude I<
21.4 mag in the kth subfield, and wj is thus proportional to the
expected event rate in the jth field. To calculate fLF,k, we used a
combined luminosity function that uses the OGLE-III photometry
map (Szymański et al. 2011) for bright stars and the Hubble Space
Telescope data by Holtzman et al. (1998) for faint stars.

The function gj is the model’s detectable event rate as a
function of tE for field j as given by

g t t t; ; , 7j j j j jE E EG = G G( ) ˜ ( ) ( ) ( )

where  t ;E G˜ ( ) is the integrated detection efficiency of the
survey as a function of tE. Koshimoto et al. (2023)
demonstrated that when FS effects are important, the detection
efficiency, ò(tE, θE), is a function of two variables, tE and θE.
Therefore, we must integrate over θE to obtain the integrated
detection efficiency,  t ;E G˜ ( ), which now depends on the event
rate and the MF of the lens objects. This gives

 t t t d; , , 8j j jE E E E E E
E

ò q q qG = G
q

˜ ( ) ( ) ( ∣ ) ( )

where òj(tE, θE) is the detection efficiency for events with tE and
θE for the ith field. We use the detection efficiency òj(tE, θE)

estimated by the image-level simulations in Koshimoto et al.
(2023) for the 20 fields of the MOA-II 9 yr survey.
We consider the model event rate as a function of tE and (tE,

θE), denoted by Γ(tE) and Γ(tE, θE), respectively. These are
normalized functions so that their integrations give 1, i.e., these
are probability density functions of tE and (tE, θE), respectively.
Γ(θE|tE)= Γ(tE, θE)/Γ(tE) is the probability density of events
with θE given tE. Thus, the calculation of  t ;E G˜ ( ) in
Equation (8) has to be done for every proposed MF during
the fitting procedure because Γ(θE|tE) depends on the MF.
The function Γj(tE, θE) for jth field can be separated from the

MF (Han & Gould 1996),

t t M M M M dM, , , 9j jE E E
1 2

E
1 2òq g qG = F- -( ) ( ) ( ) ( )

where γj(tE, θE) is the event rate for lenses with mass 1M☉ and
Φ(M) is the present-day MF (expressed as dN/dM). Although
substituting Equations (8) and (9) makes the calculation of
gj(tE; Γj) in Equation (7) a double integral over M and θE,
Koshimoto et al. (2023) showed that the integration over θE is
largely avoidable during a fitting procedure by switching the
order of the integrals and calculating the integral over θE before
the fitting.
We calculate γj(tE, θE) for each field using the density and

velocity distribution of stars from the latest parametric Galactic
model toward the Galactic bulge based on Gaia and
microlensing data (Koshimoto et al. 2021a).
Figure 4 shows the integrated detection efficiencies  t ;E G˜ ( )

for the event rate calculated with the best-fit MF model with the
criteria CR2. The curve for CR1 is similar. This detection
efficiency is about a factor two lower than that of Mróz et al.
(2017) at the low end around tE= 0.1 days even for the similar
cadence of the survey. The main reason is likely that Mróz
et al. (2017) did not include the FS effect in their simulation.
Koshimoto et al. (2023) confirmed that this difference is about
a factor two at tE= 0.1 days by the simulation in their Figure 7.
Note that detection efficiencies at short tE with ρ> 1 may be

improved in a future analysis. For events with ρ> 1, the
magnification can be significant with the minimum impact
parameter up to u0 ρ. This is likely to be more important for
bright giant sources because these have higher signal-to-noise

Figure 4. Integrated detection efficiencies,  t ;E G˜ ( ), as a function of the
timescale tE down to the source magnitude of Is < 21.4 mag for the criteria
CR2. Red, black, green, and blue lines indicate the efficiencies of fields with
the highest, high, medium, and low cadence, respectively.

5

The Astronomical Journal, 166:108 (13pp), 2023 September Sumi et al.



ratio even at low magnification (see also the Appendix).
However, such events are rejected by the criterion u0� 1 in
Koshimoto et al. (2023). This criterion is applied because it is
useful to robustly remove the various artifacts and keep the
sample as clean as possible. This may be improved in a future
analysis with a more careful investigation.

4.1.2. Likelihood for Short-timescale (tE < 1 day) Events

We follow the importance sampling method used by Hogg
et al. (2010) to convert the uninformative “interim prior”
p tlog , log0 E Eq( ) used for the light-curve MCMC for each
event to a probability distribution for event i,
 tlog , log ;i iE, E,q G( ), that depends on the event rate for each
MF model, Γ. However, while Hogg et al. (2010) characterized
their calculation as a modification of the assumed prior, based
on the data, this is not the case for our analysis. Instead, we are
replacing p0 with the probability distribution implied by our
MF model, using the importance sampling Monte Carlo
integration method (Press et al. 1992). We use the probability
distribution for each event from its MCMC analysis to calculate
the likelihood for the short-timescale events, short. Given the
output MCMC samples of posterior distributions for individual
events by Koshimoto et al. (2023), the likelihood is given by


 t

p t

log , log ;

log , log
, 10

i

N

k

K
ik ik

ik ik
short

1 1

E, E,

0 E, E,

ishort

 å
q
q

µ
G

= =

( )
( )

( )

where i runs over all the Nshort events that have the best-fit
tE< 1 day (Nshort= 12 for CR1 and Nshort= 10 for CR2), k
runs over all the Ki samples in the MCMC sample of the
probability distribution for the ith event, and p tlog , log0 E Eq( )
is the uninformative prior distribution used for these MCMC
calculations. The model’s detectable event rate as a function of

tlog , logE Eq( ) is given by

 t w g tlog , log ; log , log ; 11
j

j j jE E E Eåq qG = G( ) ( ) ( )

with

g t t tlog , log ; log , log log , log ,

12
j j j jE E E E E Eq q qG = G( ) ( ) ( )

( )

where we represented it as a function of tlog , logE Eq( ) rather
than (tE, θE) because the MCMC calculations of Koshimoto
et al. (2023) provide the probability distributions based
on the uninformative uniform prior in tlog , logE Eq( ), i.e.,
p tlog , log const.0 E Eq =( ) .
Equation (10) calculates the likelihood by summing the ratio

of  tlog , log ;E Eq G( ) to p tlog , log0 E Eq( ) to replace the
uniform prior (i.e., p0), used for the MCMC calculations with
the new probability distribution (i.e., ) that depends on our
MF model. This method, which uses all the MCMC samples,
allows short to account for the uncertainty of the parameters,
unlike long given in Equation (4).

Despite the significant computational cost of Equation (10)
associated with performing a summation over Ki (typically
∼5× 105) samples for each proposed MF during the fitting
process, we addressed this by implementing a binning strategy
for the MCMC sample using grids of tlog , logE Eq( ) with a size
of (0.05 dex × 0.05 dex), which significantly increased the
computational efficiency.

4.2. Mass Function of Known Population

First, we perform the likelihood analysis without the short
events with tE< 1 day using the Galactic model with the MF of
known populations, i.e., stellar remnants (black holes (BHs),
neutron stars (NSs), and white dwarfs (WDs)), MS stars, and
BDs. We use a broken power-law MF given by

dN

d M

M M M M

M M M M

M M M
log

120
0.08

3 10 0.08 .

13
1

1

4

1

2

3

⎧

⎨
⎩

µ
< <
< <

´ < <

a

a

a

-

-

- -

( )
( )
( )

( )
☉

☉

☉

We adopt the values of parameters α1= 1.32, α2= 0.13,
α3=−0.82, and M1=0.86 from the E+ EX model of
Koshimoto et al. (2021a) by default unless specified as fitting
parameters in the following three models. The minimum mass
3× 10−4M☉ is taken to be smaller than the theoretical
minimum mass of the gas cloud, ∼Jupiter mass, that collapses
to form a BD (Boss et al. 2003). During our fitting procedure, a
proposed initial mass function (IMF) is converted into a
present-day MF following the procedure used by Koshimoto
et al. (2021a) that combines their stellar age distribution and the
initial−final mass relation by Lam et al. (2020) to evolve stars
into stellar remnants.
We consider three models here: BD1, BD2, and BD3. In

BD1, we fit only α3 as a fitting parameter, while fixing α1, α2,
and M1. Similarly, in BD2, we fit α3 and α2, and in BD3, we fit
α1, α2, α3, and M1. To perform the fitting, we use the MCMC
method (Metropolis et al. 1953) and assign uniform distribu-
tions as priors for all the parameters.
The best-fit models BD1, BD2, and BD3 are almost

indistinguishable from the blue dotted line in Figure 3. One
can see that the models fit the data with tE> 1 day very well.
The best-fit parameters and χ2 values are listed in Table 2.
There is no significant difference in the resultant parameters
between different selection criteria or among the BD1, BD2,
and BD3 models.
All of the parameters are consistent with those of Koshimoto

et al. (2021a) within 1σ. This indicates that our data set
confirmed the Galactic model and MF of known objects by
Koshimoto et al. (2021a). This also indicates that our data set is
consistent with the OGLE-IV tE distribution for tE> 1 day
(Mróz et al. 2017, 2019) that is fitted by Koshimoto et al.
(2021a).
In the following analysis, we fit only α3 and fix all other

parameters for the known populations. Note that, in Koshimoto
et al. (2021a), the Galactic model and MF are constrained to
satisfy the microlensing tE distribution, stellar number counts,
and the Galactic bulge mass from other observations
simultaneously. In principle, the MF should not be changed
alone because it is related to other parameters of the Galactic
model. However, the contribution of objects with
M/M☉< 0.08 is negligible in stellar number counts and as a
fraction of the Galactic bulge mass. Thus, we assume that a
model with a different slope at lower masses with
M/M☉< 0.08 is still valid.

4.3. Mass Function of Planetary-mass Population

If the candidates with tE< 0.5 days are really due to
microlensing, they cannot be explained by known populations,
i.e., stellar remnants, MS stars, or BDs. To explain the tail for
short values of tE, we defined a new model “PL” that introduces
a planetary-mass population by the following power law in
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addition to known populations (Equation (13)):

dN

d M
Z

M

M
M M M

log
, 0.02 . 144

norm
min

4

⎜ ⎟
⎛
⎝

⎞
⎠

= < <
a-

( ) ( )☉

Here Z is a normalization factor and Mnorm is a reference mass
whose inclusion allows Z to have a unit of (dex)−1. Although
Mnorm can be an arbitrary zero-point, we found that the
uncertainty in Z is minimized when we adopt Mnorm= 8M⊕,
which is recognized as a pivot point.

In the model PL, we use α3, α4, and Z as fitting parameters and
fix parameters α1= 1.32, α2= 0.13, and M1 = 0.86 (Koshimoto
et al. 2021a). We assign uniform distributions as priors for α3, α4,
and Zlog in our MCMC run. We found that the fitting result does
not depend on Mmin at all when M M3 10min

7< ´ -
☉, which

indicates that our data sensitivity is down to ∼3× 10−7 M☉. Thus,
we decided to use M 10min

7= - .
The red solid line in Figure 3 represents the best-fit model

for all populations with the CR2 sample. This figure indicates
that the model represents the observed tE distribution well.
Note that although the observed tE distribution shown in black
in Figure 3 does not include error bars along the tE axis, the
best-fit line is derived from our likelihood analysis that takes
into account the tE errors, as well as the θE constraints for the
short events with tE< 1 day. Figure 5 shows the posterior
distributions of the parameters of PL model. The best-fit
parameters and χ2 are listed in Table 3.

The best-fit power-law index for BD is 0.583 0.16
0.12a = - -

+ ,
which is consistent with the model without the planetary-mass
population.

The best-fit MF of the planetary-mass populations with the
normalization Z relative to stars (MS+BD+WD) (integrated
IMF over 3× 10−4<M/M☉< 8) can be expressed as

dN

d M

M

Mlog

2.18

dex star 8
, 154 1.40

0.52 4

⎜ ⎟
⎛
⎝

⎞
⎠

=
´

a
-
+

Å

-

( )

where 0.964 0.27
0.47a = -

+ . Figure 6 shows the IMF of the best-fit
PL model. This α4 is consistent with the corresponding power-
law index of 0.9 p 1.2 suggested by Gould et al. (2022).

This can be translated to the normalization per stellar mass of
stars, Z M☉, as

dN

d M M

M

Mlog

5.48

dex 8
. 164 3.50

1.18 4

⎜ ⎟
⎛
⎝

⎞
⎠

=
´

a
-
+

Å

-

( )
☉

This implies that the number of FFPs per star is f =
21 13

23
-
+ star−1 over the mass range 10−6<M/M☉< 0.02

(0.33<M/M⊕< 6660). Note that this value varies depending
on the minimum mass. The total mass of FFPs per star is
m M M80 0.2547

73
0.15
0.23

J= -
+

Å -
+( ) star−1. This is less dependent on

the minimum mass. The total mass of FFPs per M☉ is
m 202M

114
166= -

+☉ M M M0.64 0.11
0.19

J
1

Å -
+ -( ) ☉ . This is a more robust

value that is less dependent on uncertainty in the abundances of
the low-mass objects for both FFP and BD.
The normalization, number, and total mass of FFPs

relative to MS+BD (3× 10−4<M/M☉< 1.1) are also shown
in Table 3. These normalizations can be translated to
Z 0.53MS BD 0.40

0.19=+ -
+ dex−1 star−1 and Z 2.44M

MS BD 1.82
0.71=+ -

+☉

dex−1 M 1-
☉ with Mnorm= 38 M⊕. These are almost the same as

ZMS+BD= 0.39±
0.18 dex−1 star−1 and ZMS+BD= 1.96± 0.98 dex−1 M 1-

☉ with
Mnorm= 38 M⊕ by Gould et al. (2022).
Note that the lenses for these short events could be either

FFPs or planets with very wide separations of more than about
10 au from their host stars, for which we cannot detect the host
star in the light curves.

4.4. Broken Power-law Mass Function for the Planetary-mass
Population

In order to demonstrate the FFP MF uncertainty at low
masses, we have also modeled the planetary-mass population

Table 2
Best-fit Parameters of the Mass Function for Known Populations

Model BD1 BD2 BD3 Koshimoto et al. (2021a)a

CR1 CR2 CR1 CR2 CR1 CR2

M1 (0.86) (0.86) (0.86) (0.86) 0.97 0.34
0.04

-
- 0.99 0.37

0.06
-
- 0.86 0.10

0.09
-
+

α1 (1.32) (1.32) (1.32) (1.32) 1.33 0.17
0.21

-
+ 1.34 0.18

0.18
-
+ 1.32 0.10

0.14
-
+

α2 (0.13) (0.13) 0.20 0.05
0.07

-
+ 0.20 0.05

0.07
-
+ 0.23 0.19

0.04
-
+ 0.24 0.21

0.04
-
+ 0.13 0.12

0.11
-
+

α3 0.60 0.13
0.08- -

+ 0.62 0.14
0.09- -

+ 0.74 0.30
0.13- -

+ 0.76 0.30
0.14- -

+ 0.76 0.26
0.19- -

+ 0.79 0.25
0.22- -

+ 0.82 0.51
0.24- -

+

χ2 35,919.4 35,722.6 35,918.2 35,721.5 35,918.0 35,721.3

Notes. Some of the upper errors of M1 are negative because the best-fit value is outside of the 68% range. This is because M1 is restricted to be less than 1 M☉.
a Results of fitting to various bulge data, including the OGLE-IV tE distribution of tE > 1 day (Mróz et al. 2017, 2019). The representative values are shifted to the
ones for the E + EX model from their original ones for the G + GX model.

Figure 5. Posterior distributions of the parameters of the PL model for sample
CR2. The vertical red dotted lines indicate the median and ±1σ. The vertical
orange line indicates the best fit.
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with a broken power-law MF given by

dN

d M

Z
M

M
M M M

M M M M M
log

, 0.02

, .

174
norm

br

min br

4

5

⎜ ⎟
⎧

⎨
⎩

⎛
⎝

⎞
⎠µ

< <

< <

a

a

-

-

( )

( )
( )☉

☉

Here Mbr is a break mass and α5 is a power below Mbr.
M M10min

7= -
☉ is the same as in the previous section.

In Figure 6, we show the 1σ range of the broken power-law PL
model along with the best-fit single power-law MF given in the
previous section for comparison. The median and 1σ range of the
parameters and χ2 are listed in Table 4. The resultant broken
power-law MF is consistent with the single power-law model,
while the uncertainty is larger. Although the MF is relatively well
constrained down to an Earth mass, the uncertainty is much larger
below an Earth mass. This is as expected because of our low
sensitivity below to planets of less than an Earth mass.
This model implies that the number of FFPs per star is

f 17 12
39= -

+ star−1 over the mass range 10−6<M/M☉< 0.02
(0.33<M/M⊕< 6660). The total mass of FFPs per star is
m 69 36

107= -
+ M M0.22 0.11

0.33
JÅ -

+( ) star−1. The total mass of FFPs
per M☉ is m 175M

89
246= -

+☉ M M M0.55 0.28
0.77

J
1

Å -
+ -( ) ☉ . These

numbers are also consistent with those for the single power-
law model but have larger uncertainties. This result is useful to
see the conservative uncertainty of the MF. In the following
discussion, although we use only the results for the single
power-law model, the discussion is qualitatively the same for
the broken power law.

Table 3
Best-fit Parameters of the Mass Function for the Planetary-mass Population

CR1 CR2 Gould et al. (2022)
(Mnorm) (8 M⊕) (8 M⊕) (38M⊕) (38 M⊕)

M1 (0.86) (0.86)
α1 (1.32) (1.32)
α2 (0.13) (0.13)
α3 0.55 0.17

0.13- -
+ 0.58 0.16

0.12- -
+

α4 0.90 0.27
0.48

-
+ 0.96 0.27

0.47
-
+ Fixed at 0.9 or 1.2

Z 2.08 1.33
0.54

-
+ 2.18 1.40

0.52
-
+ 0.49 0.37

0.17
-
+

ZMS+BD 2.27 1.46
0.60

-
+ 2.38 1.53

0.58
-
+ 0.53 0.40

0.19
-
+ 0.39 ± 0.20 ± ?

Z M☉ 5.33 3.40
1.26

-
+ 5.48 3.50

1.18
-
+ 1.22 0.91

0.35
-
+

Z M
MS BD+

☉ 10.63 6.78
2.52

-
+ 10.95 6.97

2.36
-
+ 2.44 1.82

0.71
-
+ 1.96 ± 0.98 ± ?

fa 17 11
20

-
+ 21 13

23
-
+

fMS+BD
a 19 12

22
-
+ 23 15

25
-
+

f M☉a 45 30
54

-
+ 53 34

59
-
+

f M
MS BD+

☉ a 89 59
107

-
+ 106 68

117
-
+

mb M89 56
96

-
+

Å M80 47
73

-
+

Å

mMS+BD
b M98 61

107
-
+

Å M88 51
81

-
+

Å

mM☉b M229 140
219

-
+

Å M202 114
166

-
+

Å

m M
MS BD+

☉ b M457 279
439

-
+

Å M404 228
333

-
+

Å

χ2 36,273.0 36,024.1

Notes. We adopt the model for CR2 as the final result.
a Number of planetary-mass objects per BD+MS+WD ( f ), per MS+BD
( fMS+BD), per solar mass of BD+MS+WD ( f M☉), or per solar mass of MS

+BD ( f M
MS BD+

☉ ) when MFs down to 10−6 M☉ are integrated. These vary
depending on the minimum mass.
b Total mass of planetary-mass objects per BD+MS+WD (m), per MS+BD
(mMS+BD), per solar mass of BD+MS+WD (mM☉), or per solar mass of MS

+BD (m M
MS BD+

☉ ) when MFs down to 10−6 M☉ are integrated.

Figure 6. IMF of the best-fit PL model for CR2. The red line indicates the best
fit for all populations. The blue dotted line and green dashed line show the
IMFs for the stellar and BD population and for the planetary-mass population,
respectively. The shaded areas indicate 1σ error. The gray dashed line and the
shaded area indicate the best fit and 1σ range of the bound planet MF by Suzuki
et al. (2016) via microlens. The pink shaded area indicates 1σ uncertainty for
the broken power-law FFP model.

Table 4
Median and Uncertainty of Parameters of the Broken Power-law Mass

Function for the Planetary-mass Population

CR1 CR2
(Mnorm) (8 M⊕) (8 M⊕)

α3 0.54 0.17
0.12- -

+ 0.58 0.19
0.12- -

+

α4 1.07 0.49
0.93

-
+ 1.14 0.54

0.97
-
+

α5 0.13 3.07
1.33

-
+ 0.13 3.10

1.32
-
+

Mlog br 5.35 1.02
1.35- -

+ 5.27 1.05
1.28- -

+

Z 1.79 1.08
2.91

-
+ 1.85 1.17

3.14
-
+

ZMS+BD 1.96 1.18
3.19

-
+ 2.03 1.28

3.43
-
+

Z M☉ 4.57 2.77
7.54

-
+ 4.62 2.91

7.92
-
+

Z M
MS BD+

☉ 9.12 5.52
15.05

-
+ 9.22 5.82

15.79
-
+

fa 15 11
36

-
+ 17 12

39
-
+

fMS+BD
a 17 12

40
-
+ 18 13

42
-
+

f M☉a 39 28
96

-
+ 42 30

98
-
+

f M
MS BD+

☉ a 79 57
191

-
+ 85 61

196
-
+

m 73 40
119

-
+ 69 36

107
-
+

mMS+BD
b 80 44

131
-
+ 75 39

118
-
+

mM☉b 192 103
275

-
+ 175 89

246
-
+

m M
MS BD+

☉ b 384 206
551

-
+ 349 178

493
-
+

χ2 36,271.6 36,022.9

Notes. The median and 1σ ranges are shown for understanding the uncertainty.
a Same as Table 3.
b Same as Table 3.
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4.5. Comparison to Sumi et al. (2011)

As discussed in Koshimoto et al. (2023), the data reduction
for the MOA-II 9 yr analysis was done using an improved data
reduction method, with the primary improvement being the
introduction of a photometry detrending method introduced by
Bennett et al. (2012) and used by Sumi et al. (2016). This
method is able to largely remove systematic errors due to color-
dependent atmospheric refraction that can shift the position of
neighbor stars of different colors toward or away from the
target star as the star rises and sets, as discussed in Section 2.
This systematic error due to atmospheric refraction could cause
light-curve variations on a daily timescale, and these were the
likely cause of the feature at tE∼ 1 day in the MOA-II 2 yr
analysis that was attributed by Sumi et al. (2011, hereafter S11)
to a large number of FFPs with masses similar to Jupiter’s
mass. This was based on 10 events with 0.5< tE/day< 2.

Our new analysis of the 9 yr data set has found fewer 2006
and 2007 events with 0.5< tE/day< 2 than the 10 events
found by S11. We find five such events for selection criteria
CR2, with one additional event passing selection criteria CR1.
Two of these 0.5< tE/day< 2 events had their best-fit source
magnitudes decrease to fainter than our limit of Is� 21.4, and
their best-fit tE values increase to >2 days. Two other events
had their tE error bars increase to above our threshold. Both of
these effects are likely to be due to the new photometry
detrending correction. Another of the 10 S11 events with
0.5< tE/day< 2 saw its best-fit u0 value increase from 0.91 to
1.01, so as to fail our u0� 1.0 cut, but another 0.5< tE/day< 2
event from the 2006−2007 time period, MOA-9y-3036, was
added to the sample. The full 9 yr data set contains 15 events
with 0.5< tE/day< 2, which is 3× less than the rate predicted
by the 2 yr S11 analysis. This is largely explained by our
detrending routine, which increased the tE values for some
short events and reduced the estimated tE measurement
precision for other short events.

An additional, shorter event with tE< 0.5 days, MOA-9y-
6057, from 2006, was also found in the 9 yr analysis, but this
event was not found in the S11 analysis. The full 9 yr sample
has six events with tE< 0.5 days, including two with FS effects
that were not considered in the S11 analysis. The lack of such
events in the S11 analysis is largely due to Poisson statistics,
since the two events that could have failed the S11 event
selection due to FS effects did not occur in the 2 yr of the S11
sample.

The number of events predicted to be found in the
0.5< tE/day< 2 range has also changed for reasons relating
to our light-curve analysis, but changes to our Galactic model
may have had a more significant effect. The systematic errors
that were largely corrected by our detrending method had the
most significant effect on events with tE∼ 1 day. This
systematic error inflated the number of events in the
0.5< tE/day< 2 range in S11 but also reduced the number
of events in the 2< tE/day< 4 range. This resulted in an
underestimation of the number of BDs by pushing the BD
power law to α3=−0.5, and this inflated the number of
Jupiter-mass FFPs needed to explain the events in the
0.5< tE/day< 2 range. The model found in the Mróz et al.
(2017) analysis, which was based on the higher-quality OGLE
light curves, predicted more BDs than S11 with a slope of
α3=−0.2, which greatly reduced the FFP contribution needed
to explain events in the 0.5< tE/day< 2 range.

Much of the change in the interpretation of events in the
0.5< tE/day< 2 range in our 9 yr analysis came from changes
in the Galactic model used. The 9 yr analysis uses the
Koshimoto et al. (2021a) Galactic model, which has been
specifically designed to match the Galactic properties, such as
proper-motion distributions that are the most important for the
interpretation of microlensing events. This new Galactic model
increases the width of the tE distribution for lenses of a fixed
mass by ∼24%, and this led to an increase in the number of MS
stars and BDs contributing to the number of 0.5< tE/day< 2
events. In addition, the S11 model cut off the BD mass
distribution at 0.01 M☉, whereas we have extended this cutoff
down to 3× 10−4 M☉ in this 9 yr analysis. These changes
increased the number of BDs, although the best-fit slope
α3=−0.58 of the BD MF is similar to the S11 value.
Our best-fit model for the 9 yr sample now includes the

following lens contributions to the events in the
0.5< tE/day< 2 range: 2.0 MS stars, 12.9 BDs (including
4.9 withM< 0.01M☉), and 3.6 FFPs, for a total of 18.5 events.
The favored model of S11, extended to a 9 yr survey, would
predict 0.9 MS stars, 4.4 BDs, and 39.7 FFPs, for a total of 45.0
events. Hence, the new model predicts 59% fewer events than
the S11 model in the 0.5< tE/day< 2 range, and only 19.5%
of these events are due to FFPs, compared to 88.2% in the S11
model.

5. Discussion and Conclusions

We derived the MF of lens objects from the 9 yr MOA-II
survey toward the Galactic bulge. The 3535 high-quality
single-lens light curves used in our statistical analysis include
10 very short (tE< 1 day) events and 13 events with strong FS
effects that allow the determination of the angular Einstein
radius, θE.
The cumulative θE histogram for these 13 events reveals an

“Einstein gap” at 5< θE/μas< 70, which is roughly consistent
with the gap at 10< θE/μas< 30 found by the KMTNet group
(Ryu et al. 2021; Gould et al. 2022). This gap indicates that
there is a distinct planetary-mass population separated from the
known populations of BDs, stars, and stellar remnants.
We constructed the tE distribution of all selected samples

including both PSPL and FSPL. We calculated the integrated
detection efficiency  t ;E G˜ ( ) of the survey by integrating the
two-dimensional detection efficiency, ò(tE, θE), measured from
image-level simulations that included the FS effect, and
convolving this with the event rate Γ(tE, θE) given by a
Galactic model and MF. We found that the tE distribution has
an excess at short tE values that cannot be explained by known
populations.
We then adopted the single power-law MF for the planetary-

mass population. We found that these short events can be well
modeled by dN d M M Mlog 2.18 84 1.40

0.52 4= ´ a
-
+

Å
-( ) ( ) dex−1

star−1 with 0.964 0.27
0.47a = -

+ at 10−7<M/Me< 0.02 (or 0.033<
M/M⊕< 6660).
This can also be expressed by the MF per stellar mass as

dN d M M Mlog 5.48 84 3.50
1.18 4= ´ a

-
+

Å
-( ) dex−1 M 1-

☉ . We
showed that the number of FFPs or distant planets is f =
21 13

23
-
+ star−1. Note that we found f 17 12

39= -
+ FFPs per star for

the broken power-law model, which is consistent with our
result for the single power-law model, with a larger uncertainty.
In the following discussion, we only use the results for the
single power-law model; the conclusions are qualitatively the
same for the broken power-law model.
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It is well known that planet–planet scattering during the
planet formation process is likely to produce a population of
unbound or wide-orbit planetary-mass objects (Rasio &
Ford 1996; Weidenschilling & Marzari 1996; Lin &
Ida 1997). The probability of planet scattering likely increases
with declining mass because planets usually require more
massive planets to scatter. Hence, we expect the power-law
index of the MF of bound planets αb to be smaller than that of
α4 for unbound or large-orbit planets, i.e., α4> αb.

One can compare our FFP result to the MF of known bound
planets. At present, microlensing surveys have only measured
the mass ratio function, rather than the MF, of the bound
planets. Currently, the most sensitive study of the bound planet
mass ratio function, Suzuki et al. (2016), found that the mass
ratio function can be well explained by the broken power
law with αb= 0.93± 0.13 for q> qbr= 1.7× 10−4 and

0.6b 0.5
0.4a = - -

+ for q< qbr= 1.7× 10−4. While the Suzuki
et al. (2016) data could establish the existence of the power-law
break with reasonably high confidence (a Bayes factor of 21),
there was a large, correlated uncertainty in the mass ratio of the
break and slope of the mass ratio function below the break.
Hence, we chose to fix the mass ratio of the break at
qbr= 1.7× 10−4 in order to estimate the power law below the
break.

More recently, several papers have attempted to improve on
this estimate by including a heterogeneous set of lower mass
ratio planets found by a number of groups without a
calculation of the detection efficiency. These efforts included
attempts to estimate the effect of a “publication bias” that
might cause planets deemed to be of greater interest to be
published much more quickly, leading to a biased, inhomo-
geneous sample of planets. This “publication bias” is caused
by the decision to publish some planet discoveries at a higher
priority than others. With such an analysis, Udalski et al.
(2018) reported 1.05b 0.78

0.68a = - -
+ with their sample and

0.73b 0.34
0.42a = - -

+ when combined with the Suzuki et al.
(2016) result for q< 1× 10−4< qbr. A similar analysis by
Jung et al. (2019) attempted a new measurement of the
location of the break and found αb=−4.5 for
q< qbr= 0.55× 10−4, which is consistent with the Suzuki
et al. (2016) result when qbr is not fixed. However, a more
recent paper (Zang et al. 2022) by many of the same authors
reported a number of planetary microlensing events that were
missed by the analyses described in Udalski et al. (2018) and
Jung et al. (2019). This casts some doubt on the validity of
some of the assumptions in these papers. This later paper also
suggests that planets with mass ratios of q< qbr= 1.7× 10−4

may be more common than previously thought, although a
more definitive claim awaits a detection efficiency calculation.
In addition, the Suzuki et al. (2016) analysis does not imply
that there is a peak in the mass ratio. Instead, it concludes that
the slope does not rise as steeply toward low mass ratios as it
does for q> 1.7× 10−4.

The broken power-law model of Suzuki et al. (2016) is
consistent with the hypothesis that these unbound or wide-orbit
planetary-mass objects are the result of scattering from bound
planetary systems. It is the lower-mass planets that are
preferentially removed by planet–planet scattering interactions,
so the initial planetary MF may have been closer to a single
power law with αb∼ 0.9, but planet–planet scattering has
likely depleted the numbers of low-mass planets at separations
beyond the snow line where microlensing is most sensitive.

Thus, planet–planet scattering may be responsible for the mass
ratio function “break” observed in the Suzuki et al. (2016)
sample.
This idea that planet–planet scattering is responsible for a FFP

MF slope that is steeper than the slope of the mass ratio function
for low-mass bound planets is also consistent with the single
power-law models that were found in smaller data sets
(Sumi et al. 2010). The best-fit single power-law model for the
Suzuki et al. (2016) sample gives dN d qlogbound =

q0.068 dex star 0.0010.014
0.016 2 1 b´ a

-
+ - - -( ) with αb= 0.58±

0.08 for 3× 10−6< q< 3× 10−2, but the broken power law
is a significantly better fit to the Suzuki et al. (2016) data. Note
that this single power-law model with αb= 0.58 satisfies
α4> αb, for our value of 0.964 0.27

0.47a = -
+ , implying that unbound

(or very wide orbit) planets increase more rapidly than bound
planets at low masses. Thus, our main conclusion discussed
below with the broken power-law model, in which the lower-
mass planets are increasingly scattered, is not specific to the
Suzuki et al. (2016) broken power-law model.
As a comparison, we transformed the bound planet’s mass

“ratio” function of Suzuki et al. (2016) to an MF by using the
estimated average mass of their hosts of ∼0.56 M☉ as shown15

in Figure 6. We estimate the abundance of the wide-orbit bound
planets to be f 1.1wide 0.3

0.6= -
+ planets star−1 in the mass range

10−6<M/M☉< 0.02 (0.33<M/M⊕< 6660) and separation
range 0.3< s< 5, which corresponds to a semimajor axis of
roughly 0.7< a/au< 12. This indicates that the abundance of
FFPs, f 21 13

23= -
+ planets star−1, is 19 13

23
-
+ times more than wide-

orbit bound planets in this mass range.
This is because the number of wide-orbit bound planets

decreases at lower masses than the break at Mbreak≈
1.0× 10−4 M☉, while the number of high-mass bound planets
is larger than that for FFPs. Again, this is consistent with the
hypothesis that the low-mass planets are more likely to be
scattered. Note that there is still large uncertainty in the MFs at
low masses for both bound and unbound planets. It is very
important to constrain these MFs at low masses.
We can also compare our number for the FFP abundance

with the abundance of the bound planets with short-period
orbits of P= 0.5–256 days and planetary radii of Rp= 0.5–
4 R⊕ found by Kepler. Hsu et al. (2019) find f 3.5FGK 0.6

0.7= -
+ for

FGK dwarfs, and Hsu et al. (2020) find f 4.2M 0.6
0.6= -

+ for M
dwarfs. Because the typical spectral types of their samples are
G2 (M= 1 M☉) and M2.5 (M= 0.4 M☉), their typical
semimajor axes are 0.012 a/au 0.79 and 0.009
a/au 0.58, respectively. The fractions of FGK and M dwarfs
relative to all populations except BHs and NSs are 0.157 and
0.465 in our best-fit MF. By weighting with these stellar type
fractions, the abundance of the known close-orbit bound
planets is about f 2.5close 0.3

0.3= -
+ star−1. (This ignores the

relatively small number of gas giant planets in short-period
orbits; Bryant et al. 2023.)
The total abundance of the wide-orbit and known close-orbit

bound planets is about f 3.6bound 0.4
0.7= -

+ star−1. This indicates
that the abundance of FFPs, f 21 13

23= -
+ planets star−1, is 5.8 3.8

6.4
-
+

times more than known bound planets in this mass range.
We found that the total mass of FFPs or distant planets

per star is m M M80 0.2547
73

0.15
0.23

J= -
+

Å -
+( ) star−1 in this

15 The 1σ range indicated by the gray shaded area in Figure 6 does not match
the one provided in Suzuki et al. (2016). This was due to an error in the Suzuki
et al. (2016) figure, but there is no error in the other results in that paper.
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10−6<M/M☉< 0.02 (0.33<M/M⊕< 6660) mass range.
This is comparable to the value of 91 22

33
-
+ M⊕ star−1 for wide-

orbit bound planets with separations of 0.3< s< 5 in the same
mass range. It is not straightforward to estimate the total mass
of inner planets found by Kepler because only a small, and
somewhat biased, sample of Kepler planets have mass
measurements. The total masses of FFPs and bound planets
are less dependent on the uncertainty of the number of low-
mass planets than the total numbers of FFPs and bound
planets are.

These comparisons indicate that 19 13
23

-
+ times more planets

than the ones currently in wide orbits have been ejected to
unbound or very wide orbits. These comparisons also suggest
that the total mass of scattered planets is of the same order as
those remaining bound in wide orbits (beyond the snow line) in
their planetary systems. The low-mass bound planets in wide
orbits are much less abundant than those orbiting closer to their
host stars. This may be explained by the fact that planets in
wide orbits are more easily ejected than those in close orbits.

The power-law index of the IMF of planets formed in wide
orbits in protoplanetary disks is likely to be α4∼ 0.9 with an
abundance of 22 13

23
-
+ planets star−1 or M M171 0.5452

80
0.16
0.25

J-
+

Å -
+( )

star−1.
Various formation mechanisms of FFPs from bound

planetary systems have been proposed. Planets can be ejected
from their hosts by dynamical interactions with other (mostly
giant) planets (Rasio & Ford 1996; Weidenschilling &
Marzari 1996; Lin & Ida 1997), by stellar flybys (Malmberg
et al. 2011), or by the post-MS evolution of their hosts (Adams
et al. 2013). Coleman et al. (2023) simulated the circumbinary
planetary systems for Kepler-16 and Kepler-34 and found that
such systems may eject 6.3 and 9.3 planets on average,
respectively, and most of these have masses smaller than
Neptune. However, there are very few or almost no studies on
the prediction for the number of the ejection of the Earth-to-
Neptune-mass planet population because the abundance of
such planets in less tightly bound wide orbits is not well
known. The results of our study may shed light on this area.

Another, rather speculative possibility is that most of the
low-mass objects found by microlensing are primordial BHs
(PBHs; Niikura et al. 2019, 2019). Hashino et al. (2022)
predicted PBHs generated at a first-order electroweak phase
transition have masses of about 10−5 M☉. They found that,
depending on parameters of the phase transition, a sufficient
number of PBHs can be produced to be observed by current
and future microlensing surveys. The mass of such PBHs is a
function of the time of their generation, i.e., the electroweak
phase transition, and is expected to be a delta-function
distribution. To differentiate PBHs from FFPs, we need to
measure the shape of the MF accurately. This can be done by
current (MOA, OGLE, KMTNet) surveys, a near-future
(PRIME) ground telescope, and the Roman Space Telescope.

For the first time, we have determined the detection
efficiency as a function of both the Einstein radius crossing
time and the angular Einstein radius, because FS effects have a
large influence on the detectability of microlensing events
owing to low-mass planets. This method is necessary for
reliable results for low-mass FFPs, and it should be very useful
for the analysis of these future surveys that will detect many
short events.

A precise measurement of the FFP MF will require a
microlensing survey that can obtain precise photometry of MS

stars with relatively low magnification because the small
angular Einstein radii, θE, of low-mass planetary lenses prevent
high magnification. The exoplanet microlensing survey of the
Roman Space Telescope is such a survey, and it should provide
the definitive measurement of the FFP MF. Johnson et al.
(2020) predicted ∼250 FFPs with masses down to that of Mars
(including ∼25 with masses of 0.1�M/M⊕� 1 and ∼48 with
0.316�M/M⊕� 3.16) assuming the fiducial MF of cold,
bound planets adapted from Cassan et al. (2012). Our FFP MF
results imply a large increase in the number of FFP events that
should be detected by Roman. We predict 988 566

1848
-
+ FFPs with

masses down to that of Mars (including 575 424
1733

-
+ with

0.1�M/M⊕� 1 and 391 259
344

-
+ with 0.316�M/M⊕� 3.16)

for our single power-law model. The broken power-law model
predicts 699 418

1424
-
+ FFPs down to that of Mars (including

303 271
1268

-
+ with 0.1�M/M⊕� 1 and 261 213

436
-
+ with 0.316�

M/M⊕� 3.16).
The Earth 2.0 (ET) mission is a proposed space telescope to

conduct the transit and microlensing exoplanet surveys. One of
seven 30 cm telescopes will be used for the microlensing
survey toward the GB. The ET is planning to measure the
masses of FFPs by the space parallax in collaboration with
ground-based telescopes. Ge et al. (2022) estimated that ET
will detect about 600 FFP events, of which about 150 will have
mass measurements. Our MF is about a factor of 1.4 higher
normalization than that assumed in Ge et al. (2022) with similar
slope. However, they assumed a flat MF for �1 M⊕, while we
continued the power-law slope down to the lower limit of
0.1 M⊕. This renormalization will update the expected yield of
∼840 FFPs with masses down to that of Mars (including ∼210
with masses �M⊕).
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Appendix
Comparison of Integrated Detection Efficiency to KMT

Formula

Koshimoto et al. (2023) calculated the integrated detection
efficiency for our FSPL event sample,  ;FS Eq G˜ ( ). This
integrated detection efficiency is similar to the integrated
detection efficiency,  t ;E G˜ ( ), discussed in Sections 4.1.1 and
4.1.2, except that it has been integrated over tE instead of θE for
events with a significant FS signal, i.e., a measurement of ρ.
The “relative detection efficiency” adopted for KMTNet by
Gould et al. (2022) is actually a relative integrated detection
efficiency in our nomenclature, which we think is more
accurate. Their relative detection efficiency seems to be a ratio
of the number of the events with the detection of the FS effect
relative to the number of events with u0< ρ, while our
 ;FS Eq G˜ ( ) in Koshimoto et al. (2023) is that relative to all
events with u0� 1. To compare these, we calculated the
integrated detection efficiency with the FS effect relative to the
events with u0< ρ, denoted as  ;FS E FSq¢ G˜ ( ) and shown in
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Figure 7. The integrated detection efficiency depends on the FFP
MF, so we have used our best-fit MF to calculate these curves.
This figure shows the MOA integrated detection efficiency as a
function of θE for all sources (orange) and for giant sources with
Is,0< 16 (blue). This is the same limit on Is,0 as used by
KMTNet (Gould et al. 2022), for their analysis of FSPL events.
The green curve shows KMTNet’s adopted relative integrated
detection efficiency. Both the MOA Is,0< 16 curve and the
KMTNet curves are normalized to match the MOA all-source
integrated detection efficiency at log 1.510 Eq = -( ) .

The MOA sensitivity for giant sources is less than that for all
sources at small θE because the large θ* values for giant
sources can significantly reduce the peak microlensing
magnification. However, the sensitivity curve for KMTNet is
very different from that of MOA, with a much sharper cutoff at
small θE. This is partly because they directly cut off their
integrated detection efficiency with a cut excluding events with
θE< 3 μas. Gould et al. (2022) describe this cut by saying, “we
complete this function linearly by imposing a threshold at
θE= 3 μas, which is supported by the fact that all four FFPs are
pressed up close to this limit.” It is difficult to understand why
they would need a cut like this given the sensitivity calculated
for our analysis. Similarly, two of the four FFP events with FS
effects found by OGLE (Mróz et al. 2018; Mróz et al.
2019, 2020, 2020) have θE< 3 μas (see Table 1) even though
they have source stars with Is,0< 16. Perhaps the rationale for
this cut that requires θE> 3 μas is to make their analysis
consistent with their power-law prior assumption of
0.9 p 1.2. However, if this is the reason for this cut, it
would raise the question as to why KMTNet has not been able
to find events with θE< 3 μas in contrast to MOA and OGLE,
which clearly have sensitivity well below this limit with bright
sources with Is,0< 16. It would be helpful to see a full analysis
for the KMTNet data set, including a complete detection
efficiency analysis that includes both the tE and θE dependence.

Note that our analysis does not use this integrated detection
efficiency that depends only on θE. This integrated detection
efficiency is included only for comparison with the Gould et al.
(2022) analysis.
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