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Abstract 

 
In this study, we introduce the "Power Chris-Jerry" distribution, conducting a comprehensive analysis of its 

fundamental mathematical characteristics and an extensive exploration of various crucial aspects. These 

encompass investigations into its mode, quantile function, moments, coefficient of skewness, kurtosis, 

moment generating function, stochastic ordering, distribution of order statistics, reliability analysis, and mean 

past lifetime. Furthermore, we provide an in-depth assessment of four distinct parameter estimation 

methodologies: maximum likelihood estimation (MLE), Least Squares (LS), maximum product spacing 

method (MPS), and the Method of Cram`er-von-Mises (CVM). Our investigation uncovers a consistent 

pattern wherein the MLE, LS, and CVM approaches consistently yield underestimated parameter values. 

Intriguingly, we observe a consistent trend of decreasing Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), and BIAS across all estimation techniques as sample sizes increase. Remarkably, our 

simulation results consistently favor the Maximum Product Spacing (MPS) method, highlighting its 
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superiority in generating estimates with smaller MSE values across a broad spectrum of parameter values and 

sample sizes. These findings emphasize the robustness and dependability of the MPS estimator, offering 

valuable insights and practical guidance for both practitioners and researchers engaged in probability 

distribution modeling. 

 
 

Keywords: Chris-jerry distribution; power chris-jerry distribution; maximum likelihood method; least squares 

estimation method; method of maximum product of spacing. 
 

1 Introduction 
 

Ezeilo et al. [1] introduced a new distribution known as “Power Chris-Jerry distribution (PCD)” with probability 

density function (pdf) and cumulative density function (cdf) defined as follows: 
 

f(x, α, θ) =
αθ2

θ+2
(1 + θx2α)xα−1e−θx

α
; x > 0, α > 0, θ > 0                                  (1) 

 

and the corresponding cumulative density function is 
 

F(x, α, θ) = 1 − (1 +
θxα(θxα+2)

θ+2
) e−θx

α
; x > 0, α > 0, θ > 0                                  (2) 

 

 
 

Fig. 1. PDF of power Chris-Jerry distribution 
 

Figs. 1 and 2 show the shape of the pdf and cdf of the Power Chris-Jerry distribution for different values of the 

parameters. The shape of the pdf is an indication that Power Chris-Jerry distribution is unimodal. 
 

The survival and hazard functions are respectively given by 
 

   
 2

, , , , 1 1 1
2

x
x x

R x S x e


 


 

   



  
      

  
  

                     (3)  

 

 
 

 

2
2 11

2, ,
2

1 1 1
2

x

x

x x e

h x
x x

e





  

 






 
 



 






  
    

  
  

                                   (4) 

 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

p
d

f

  2.1   2.3 
  1.5   1 
  1.2   1.2 
  1.7   1.5 
  0.5   0.8 



 

 
 

 

Ezeilo et al.; Asian J. Prob. Stat., vol. 25, no. 3, pp. 29-44, 2023; Article no.AJPAS.108727 
 

 

 
31 

 

 
 

Fig. 2. CDF of Power Chris-Jerry distribution 

 

The estimation of the survival and hazard function are significant for reliability measures in engineering.  

 

The new distribution is an extension of the Chris-Jerry distribution by Onyekwere and Obulezi [2]. The authors 

applied the developed distribution to CD4 count of patients suffering from HIV/AIDS. See Udofia et al. [3]. 

Aside from the Power Chris-Jerry distribution, other literature on the extensions of Chris-Jerry distribution. 

Check out the following articles Obulezi et al. [4], Innocent et al. [5], Obulezi et al. [6], Ahmad, P. B., & Wani, 

M. K [7], others. All these extensions are geared towards demonstrating the robustness, flexibility and field of 

applications of Chris-Jerry distribution. This article aims to provide the significant properties of Power Chris-

Jerry distribution and study and compare five famous estimation methods for the parameters.  

 

2 Statistical Properties of Power Chris-Jerry Distribution 
 

2.1 Mode of power Chris-Jerry distribution 
 

In a continuous distribution, the mode represents the value or values at which the probability density function 

(PDF) reaches its peak. Unlike discrete distributions, where specific values have probabilities associated with 

them, continuous distributions have an infinite number of possible values within a range. A continuous 

distribution can have multiple modes. In this article, we show that power Chris-Jerry distribution is unimodal 

 

The mode is derived from the first derivative of  , ,f x    in (1) as follows 
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Letting  m x   in (9), we have 
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where       2 31 3 1m m m m                  

 

Letting   0m  , and numerically solve the nonlinear equation, the positive root of the equation gives the 

mode of the Power Chris-Jerry distribution. To observe the asymptotic behaviour, the limit of  , ,f x    is 

evaluated at 0x  and x  respectively 
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The Power Chris-Jerry distribution is said to be unimodal since  '

0
lim ; , 0
x

f x  


 and  '
lim ; , 0

x
f x  


 . 

Fig. 1 below is used to show the shape of the mode of Power Chris-Jerry distribution. The shape of the mode 

equally indicates that the new distribution is unimodal. 

 

. 

 

Picture 1. Mode of power chris-jerry distribution 

 

2.2 Moment and related measures 
 

Some captivating properties of a distribution can be studied via the moments. For instance, measure of central 

tendency, dispersion, coefficient of skewness and coefficient of kurtosis. Consequently, it is essential to derive 

the moments for any new distribution proposed. 

 

Proposition 1: Given a random variable X from APCJ distribution, the rth  crude moment  rE X  is given 

by 
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Proof. By definition, the rth  moment about the origin is given by 

 

   
0

; ,
r r

APCJE X x f x dx 


             (7) 

 

Substituting (3) into (14) gives 
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By letting y x , and taking note of the fact that 
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simplifying (15) gives the rth  moment of PCJ distribution. Thus, 
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For 1, 2,3,and 4r  , we obtain the first four crude moments of the PCJ distribution as follows 

 

 
1

'

1

1 1
1 3

2 


 


 

   
      
   


, 

 
2

'

2

2 2
1 3

2 


 


 

   
      
   


,  

 

 
3

'

3

3 3
1 3

2 


 


 

   
      
   


and

 
4

'

4

4 4
1 3

2 


 


 

   
      
   


 

 

The first crude moment is the mean of the distribution. The central moments can be obtained by using the 

association between crude moments and central moments. The first central moment 1 is zero. The second, also 

the variance, third and fourth central moments are respectively given by; 
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The moments are helpful when estimating the coefficient of Kurtosis and Skewness of a distribution 

 

2.3 Moment generating function  
 

Proposition 2: Let X  be a non-negative random variable from PCJ distribution. Then, the moment generating 

function of X is given by: 
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Proof: The moment generating function of a random variable X  is given by 
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Substituting for  rE X , we obtain the moment generating function of PCJ distribution. Thus 
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2.4 Stochastic ordering 
 

Let X and Y be distributed according to (5). Let 𝑓𝑥(𝑥, 𝛼, 𝜃), 𝑓𝑦(𝑥, 𝛼, 𝜃), and  𝐹𝑋(𝑥, 𝛼, 𝜃), 𝐹𝑌(𝑥, 𝛼, 𝜃)denote the 

probability density function and distribution function of X and Y, respectively. The random variable X is said to 

be smaller than the random variable Y, if the following holds; 

 

a) Stochastic order (𝑋 ≤𝑠𝑡 𝑌)if 𝐹𝑋(𝑥) ≥ 𝐹𝑌(𝑥); ∀𝑥 

b) Hazard rate order  (𝑋 ≤ℎ𝑟 𝑌)if ℎ𝑋(𝑥) ≥ ℎ𝑌(𝑥); ∀𝑥 

c) Mean residual life order  (𝑋 ≤𝑚𝑟𝑙 𝑌)if 𝑚𝑋(𝑥) ≥ 𝑚𝑌(𝑥); ∀𝑥 

d) Likelihood ratio order (𝑋 ≤𝑙𝑟 𝑌) if 
𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
 decreases in 𝑥. 

 

These results were established by Shaked and Shanthikumar [8]. The order of the distributions is as follows 

 

lr hr mrl stX Y X Y X Y X Y        

 

The PCJ distribution is ordered based on the distribution with the strongest likelihood ratio, as showing in 

theorem 5 below    
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Proposition 3: Suppose  1 1~ ,X PCJ   and  2 2~ ,Y PCJ   . If 1 2  and 2 1  , then lrX Y . 

Hence, hrX Y , mrlX Y  and  stX Y  

 

Proof. The likelihood ratio is 
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Taking the natural logarithm of (25), one obtains 
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Taking the derivative with respect to x , the following is obtained 
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If 1 2 1 2and      or 1 2 1 2and      then, 
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 . Thus, lrX Y and 

consequently, hrX Y , mrlX Y and stX Y . Hence, it can be concluded that PCJ distribution follows the 

strongest likelihood ratio ordering. 
 

2.5 The quantile function and distribution of order statistics 
 

The quantile function is significant for random number generation. It can also be used in finding percentiles of a 

distribution. If  F x  is continuous and strictly increasing, the quantile function px is defined by 
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where p is distributed as uniform distribution,  ~ 0,1p , and  F p  is the CDF. 

 

Proposition 4 Let X be a random variable having the pdf of an PCJ distribution, then the quantile px  function 
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By solving the nonlinear equation in (16), for 
px , the solution gives the complete proof of the quantile function 

of PCJ distribution 

 

Proposition 5: Suppose there exist a system having two components, and are independent and identical. Each of 

these systems are assumed to follow Power Chris-Jerry distribution. Also, if the components are connected in 

series, the complete system will have a Power Chris-Jerry distribution. If the system has parallel connection, the 

system will also have alpha power Chris-Jerry distribution.  

 

 For a series with n components to work efficiently and not fail, all the components of the system work.  Also, 

for a system with n components and are connected in parallel to work efficiently and not fail, at least one of the 

components of the system works. Suppose 1 2, ,..., nX X X are random samples of size n  from the Power 

Chris-Jerry distribution with cumulative distribution function (cdf)
 
 ; ,XF x


   and probability density 

function
 
 ; ,Xf x


  .Then,

     1 2
, ,...,

n
X X X  denote corresponding order statistics, where 

     1 2
,...

n
X X X  ,    1 21

min , ,..., nX X X X  and    1 2max , ,..., nn
X X X X . The probability 

density function (pdf) of the th  order statistics defined by Hogg and Craig [9] is 
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Substituting for    andf x F x  gives 
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The pdf of the smallest order statistic 
 1

X  is given by 
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Also, the pdf of the nth  order statistics 
 n

X  can be obtained by setting n   .Thus, we have 
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The corresponding cdf of the th  order statistics denoted by 
 
 XF x


is given by 
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Where  ,G x  denote the cdf of the Power Chris-Jerry distribution. Substituting for  ,G x  , gives the cdf 

of the th  order statistics. Thus, we have 
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2.6 Mean Past Lifetime (MPL) 
 

In practical scenarios, systems are seldom under continuous surveillance, making it imperative to gain deeper 

insights into their operational history. This becomes especially crucial when individual components within the 

system experience failures. Let's suppose that a component with a lifetime of  X  has failed either at or before 

time t  , where 0t  . Now, consider the conditional random variable  t T T t  . This conditional random 

variable captures the elapsed time since the component's failure, given that its lifetime is less than or equal to t . 

Consequently, we define the Mean Past Lifetime (MPL) of the component as follows: 
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Where  ,f x  and  ,F t  respectively denote the pdf and cdf of Power Chris-Jerry distribution 
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Substituting   ,f x  and  ,F t  , in (23) and simplifying, we obtain the mean past life of the PCJ 

distribution. Hence, we have 
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3 Methods of Estimation  
 

In this section, four methods of estimation shall be adopted to derive the estimators  ˆˆ ,  for the parameters 

 ,  of Power Chris-Jerry distribution. The four methods to be adopted are the maximum likelihood 

estimation method, least squares method, the maximum product spacing method and Method of Cram`er-von-

Mises 

 

3.1 Maximum likelihood method 
 
The maximum likelihood method stands as the most commonly employed technique for parameter estimation. 

See Casella and Berger [10]. The triumph of this method, no doubt stems from its many desirable properties 

such as consistency, asymptotic efficiency, invariance and simply its intuitive appeal. Let 1 2, ,..., nx x x

constitute a random sample of size n  from PCJ  ,  distribution. Then, the likelihood function is defined as 
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Taking the natural logarithm of (26) gives the following 
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The maximum likelihood estimators of ˆˆ andMLE MLE  for the parameters and  can be obtained 

numerically by maximizing, with respect to and   the log-likelihood function. In this case, the log-

likelihood function is maximized by solving in and  , the non-linear equations are: 
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The solution of 
ln

0
L







and 

ln
0

L







, provides the maximum likelihood estimates of the parameters 

 ,   However, it is practically impossible to obtain the solution analytically dues to the complexity involved. 

The best approach that can be adopted is to solve it numerically using software like R. 

 

3.2 Least squares estimation method 
 

Let 1 2 3 4 5, , , , ,..., nx x x x x x  be the order statistics from the Power Chris-Jerry distribution. By minimizing the 

following equations, the least squares estimation of the parameters and  would be obtained. Thus, Swain et 

al. [11] defined the least square equation as 
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The estimates can be obtained by solving the non-linear equations: 
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Where 
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3.3 Maximum product of spacing method 
 

Cheng and Amin [12-13] introduced the maximum product of spacing method as an alternative approach to 

estimating parameters of continuous univariate distributions, distinct from the conventional maximum 

likelihood estimation. To set the stage, we begin by defining the uniform spacings of a random sample drawn 

from  ,PCJ    distribution as follows: 
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The maximum product of spacings estimators ˆˆ andMPS MPS   of the parameters and  are obtained by 

maximizing the geometric mean of the spacings with respect to and  . The function is defined by  
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In a similar manner, same result can be achieved by maximizing the function 
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The estimators  ˆˆ ˆ ,MPS MPS MPS   of the parameters  ,   can be obtained by solving the nonlinear 

equations 
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maximizing H as a method of parameter estimation is as efficient as MLE estimation and the MPS estimators 

are consistent under more general conditions than the MLE estimators. 

 

3.4 Method of Cram`er-von-Mises 
 

To inspire our choice of Cram ́er-von-Mise type minimum distance estimators, MacDonald [14] provided 

pragmatic evidence that the bias of the estimator is smaller than the other minimum distance estimators. Thus, 

the Cram ́er-von Mises estimates ˆ
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The estimators can be obtained by solving the following non-linear equations 
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Where    1 : 2 :, and ,i n i nx x     are given in equations (34) and (35) 
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4 Simulation study  
 

A simulation study was carried out to evaluate the performance of the parameter estimates obtained by MLE, 

LS, MPS and CVM. To do this, we generated 1000 random samples of sizes 

5,10,20,25,50,100,150,200,500and1000n    for different values of the parameters and took the 

values at 1.1 and 1.2   , 1.3 and 1.5   , and 1.7 and 1.8   . The result of the 

estimates are shown in Tables 1, 2, 3, 4 and 5, respectively.  
 

Table 1. Average estimated MSEs, RMSEs and BIASs of different estimation methods for PCJ 

distribution at different sample sizes n and different values of 1.1 and 1.2    
 

Methods   n = 5 n = 10 

    MSE RMSE BIAS MSE RMSE BIAS 

MLE α 0.65365 0.80848 0.39843 0.11487 0.33892 0.15157 

  ϴ 0.40681 0.63782 0.02076 0.13551 0.36812 0.024432 

          

LSE α 0.39202 0.62612 0.01516 0.12066 0.34736 0.01005 

  ϴ 0.29365 0.5419 0.09856 0.12663 0.35585 0.04963 

          

MPS α 0.26284 0.51268 0.04806 0.07152 0.26743 0.08697 

  ϴ 0.25852 0.50845 0.12181 0.11482 0.33886 0.08485 

          

CVM α 1.5642 1.25068 0.52698 0.2022 0.44967 0.16304 

  ϴ 9.68299 3.11175 0.16361 0.1547 0.39332 0.00816 
 

Table 2. Average estimated MSEs, RMSEs and BIASs of different estimation methods for PCJ 

distribution at different sample sizes n and different values of 1.1 and 1.2    
 

Methods   n = 20 n = 25 

    MSE RMSE BIAS MSE RMSE BIAS 

MLE α 0.03901 0.19751 0.06154 0.03596 0.18965 0.0576 

  ϴ 0.05696 0.23866 0.00639 0.05305 0.23034 0.00553 

          

LSE α 0.05054 0.22482 0.01148 0.04527 0.21278 0.00576 

  ϴ 0.06127 0.24752 0.02997 0.0553 0.23517 0.02662 

          

MPS α 0.03443 0.18555 0.07831 0.03098 0.17601 0.06159 

  ϴ 0.05469 0.2338 0.06586 0.05113 0.22614 0.05677 

          

CVM α 0.06463 0.25422 0.06921 0.05567 0.23595 0.05916 

  ϴ 0.06634 0.25758 0.0017 0.0587 0.24228 0.00111 
 

Table 3. Average estimated MSEs, RMSEs and BIASs for PCJ distribution at 1.3 and 1.5    
 

Methods   n = 50 n = 100 

    MSE RMSE BIAS MSE RMSE BIAS 

MLE α 0.0223 0.14934 0.03231 0.01017 0.10089 0.01749 

  ϴ 0.03258 0.1805 0.0041 0.01648 0.1284 0.00294 

          

LSE α 0.03027 0.17399 0.00379 0.01525 0.1235 0.00216 

  ϴ 0.03311 0.18198 0.01453 0.01733 0.13164 0.0044 

          

MPS α 0.02193 0.1481 0.05471 0.01036 0.10182 0.03357 

  ϴ 0.03079 0.17549 0.03226 0.01584 0.12587 0.01476 

          

CVM α 0.03355 0.18318 0.03474 0.01605 0.12671 0.01687 

  ϴ 0.03467 0.18621 0.0076 0.01774 0.13321 0.00076 
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Table 4. Average estimated MSEs, RMSEs and BIASs of estimation methods for PCJ distribution at  

1.3 and 1.5    

 

Methods   n = 150 n = 200 

    MSE RMSE BIAS MSE RMSE BIAS 

MLE α 0.00617 0.07857 0.00732 0.00484 0.06957 0.00921 

  ϴ 0.0094 0.09719 0.00186 0.00781 0.08839 0.0059 

          

LSE α 0.00896 0.09468 0.00485 0.00707 0.08413 0.00181 

  ϴ 0.01017 0.10087 0.00608 0.00834 0.09135 0.00371 

          

MPS α 0.00675 0.08219 0.02999 0.005 0.07073 0.02063 

  ϴ 0.00932 0.09655 0.01507 0.00757 0.08704 0.00496 

          

CVM α 0.00921 0.09598 0.00773 0.00732 0.08555 0.0113 

  ϴ 0.01032 0.10162 0.00363 0.00846 0.09203 0.00562 

 

Table 5. Average estimated MSEs, RMSEs and BIASs estimation methods for PCJ distribution at 

1.7 and 1.8    

 

Methods   n = 500 n = 1000 

    MSE RMSE BIAS MSE RMSE BIAS 

MLE α 0.00349 0.05915 0.00481 0.00158 0.03979 0.00012 

  ϴ 0.0039 0.06247 0.00211 0.00199 0.04471 0.00086 

          

LSE α 0.00527 0.07264 0.00022 0.00275 0.05245 0.00162 

  ϴ 0.00418 0.06471 0.00217 0.00202 0.04498 0.00067 

          

MPS α 0.00361 0.06012 0.01447 0.00167 0.04095 0.01076 

  ϴ 0.00384 0.06203 0.00501 0.00198 0.04456 0.00257 

          

CVM α 0.00533 0.07306 0.00485 0.00275 0.05253 0.00091 

  ϴ 0.00421 0.06492 0.00224 0.00202 0.04505 0.0007 

 

As can be seen from Tables 1, 2, 3, 4 and 5, the maximum likelihood method (MLE), least squares estimation 

method (LS), and Cram`er-von-Mises method (CVM) tend to underestimate the value of the parameters. The 

MSE, RMSE and BIAS decrease as n  increases for all the estimation methods studied in this research. From 

the simulation results, it must be emphasized that, in general, the performance of Maximum product spacing 

(MPS) was better than that of the other methods, because the MPS method produced estimates with smaller 

MSE for different values of the parameters and sample sizes. This also provided evidences on the consistency of 

the estimators. 

 

5 Conclusion 
 

This paper introduced a novel probability distribution called the "Power Chris-Jerry" distribution and 

comprehensively explored its mathematical properties, including mode, quantile function, moments, coefficient 

of skewness, kurtosis, moment generating function, stochastic ordering, distribution of order statistics, reliability 

analysis, and mean past lifetime. Additionally, the study presented four distinct parameter estimation 

techniques: maximum likelihood, Least Squares, maximum product spacing method, and Method of Cram`er-

von-Mises. 

 

Our findings, as illustrated in Tables 1, 2, 3, 4, and 5, indicated that the maximum likelihood method (MLE), 

least squares estimation method (LS), and Cram`er-von-Mises method (CVM) exhibited a tendency to 

underestimate parameter values. However, it was observed that the Mean Squared Error (MSE), Root Mean 
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Squared Error (RMSE), and BIAS decreased as the sample size increased for all the estimation methods 

investigated in this research. 

 
Notably, our simulation results emphasized the superior performance of the Maximum Product Spacing (MPS) 

method compared to the other techniques. The MPS method consistently produced estimates with smaller MSE 

across various parameter values and sample sizes. This outcome provides strong evidence for the reliability and 

consistency of the MPS estimator. 
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