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ABSTRACT 
 

Aims: Flow in annular regions encounters in many fields such as bio-medical, petroleum, 
aerospace and chemical industries and among them, the flow between two coaxial pipes has rather 
become interesting due to its asymmetry nature.  
Study Design: Theoretical solution and numerical approximation and analysis. 
Place and Duration of Study: Department of mathematics, Faculty of Science, University of 
Peradeniya, Sri Lanka, between August 2017 and January 2018. 
Methodology: Yet it is particularly challenging to obtain theoretical solutions. In this paper, we 
carried out a comprehensive analysis for unsteady, unidirectional and incompressible Couette flow 
between annulus, when inner and outer pipes were brought to abrupt stop from constant velocities.  
The velocity of the field is derived by applying the Laplace transformation method. The analytical 
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work is supported by the numerical approximation using Finite Difference Method for the same 
fluid, which was implemented in MATLAB programming. We illustrate results varying radii of the 
outer and inner pipe captured by ratio ( � = 0.1, 0.3, 0.5	���	0.7 ) and for different boundary 
conditions. Flow field was visualized using FDM approximation for selected parameter regime when 
the flow was suddenly stopped. 
Results: Asymmetry of the velocity profile was affected by different radius ratios 
(� = 0.1, 0.3, 0.5	���	0.7). Unsteadiness in the flow field was happened due to sudden changes in 
flow parameters. 
Conclusion: The results depicted that radii ratio and boundary condition has a strong impact on 
the role on changing the flow characteristics and flow parameters. 
 

 
Keywords: Couette flow; asymmetry velocity; navier-stokes equations; radii ratios. 

 
1. INTRODUCTION  
 
The study of flow through an annulus bounded 
by two coaxial pipes has attracted the attention 
of researches due to its peculiarity nature and 
the flow geometry is one which has found 
considerable practical application in the process 
industries. The concentric annulus also presents 
a flow system which is still amenable to analysis. 
Nevertheless, in this seemingly simple flow field 
some rather strange and puzzling phenomena 
occur. The most interesting of these are 
associated with the transition from laminar to 
non-laminar [1]. 
 
The unsteady laminar Couette flow in concentric 
annulus, where the geometry is shown in Fig. 1, 
is investigated to predict the surge or swab 
pressure encountered when running or pulling 
pipes in a liquid-filled borehole. The motion 
equations were analytically solved in [2] for 
power-law fluids by the perturbation method. 
During the drilling operation of oil and gas wells, 
the velocity field varies along the well length and 
the resulting flow model is three-dimensional. 
Lubrication theory has been used to simplify the 
governing equations into a two dimensional 
differential equation that describes the pressure 
field and velocity in each cross section was 
analysed for different cases in [3]. In [4], stability 
and transition to turbulence of wall-bounded 
unsteady velocity profiles with reverse flow was 
investigated. Experiment and theoretical 
investigations of instability and evolution of 
reverse flow that occurred in a decelerating flow 
has been performed where the flow is generated 
by the controlled piston motion. The procedure to 
obtain analytical solution for unsteady laminar 
flow in an infinitely long pipe with circular cross 
section and in an infinitely long two dimensional 
channel, created by an arbitrary but                         
given volume flow rate with time was presented 
in [5].  

Some properties of the time dependent Navier-
Stokes equation for impulsively started from rest 
by sudden application of a constant pressure 
gradient or by the impulsive motion of a 
boundary was discussed in [6] and a satellite 
reaction control subsystem was explained in [7]. 
A flow channel network numerical scheme is 
used to determine the blow down pressure profile 
and the steady state pressure drops in the 
propellant lines. This study gives the idea about 
damage  to the propulsion components or lines 
due to the sudden closure of fuel valves.  
 

 
 

Fig. 1. Schematic description of annular 
space bounded by concentric pipes (radius of 
the inner pipe: �� and radius of the outer pipe: 

��) 
 
Finite difference method was applied for fully 
developed flat plate flow, circular pipe flow and 
square duct flow [8]. Pressure drop 
characteristics of turbulent flow through 90 
degree pipe bends were numerically investigated 
and pressure distribution for various Reynolds 
number and curvature ratio was analyzed [9].  
 
Moreover, an analytical solution to the flow 
through the pipe and the annular space between 
two concentric pipes has been obtained for the 
case of one-dimensional unsteady flow in [10]. 
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However, the solution obtained were only when 
the volume flow rate is provided. Analytical 
solution of the unsteady laminar bi-directional 
flow between concentric pipes with known 
volume flow rate has been derived for various 
cases in [11]. A new analytical solution for 
unsteady bi-directional flow through an annulus 
between two concentric pipes with a prescribed 
time dependent volume flow rate has also been 
obtained in [12]. Analytically obtained velocity 
profiles of fluid flows are compared with 
experimental data and also numerical results [13] 
and they are used for determining the linear 
stability characteristics of such flows. Yet, the 
analysis when annular boundaries have abrupt 
changes is still scarce.  
 

In the present work, we carry out an analysis of 
suddenly stopped Couette flow. Initially the flow 
was considered as independent of time and 
subsequently, the pipes were brought to abrupt 
rest and the flow then depends on time. This 
sudden change in boundaries encounters in 
many industrial processes. Asymmetry, radii ratio 
and unsteadiness of the annular flow have 
significant but different role in flow instability and 
transition.  
 

The paper is organized as follows. In section 2, 
the unsteady and incompressible flow in a 
concentric annulus for abruptly stopped axial 
Couette flow is investigated. Exact analytical 
solution methodology for incompressible, 
unidirectional and unsteady flow is presented. In 
section 3, Finite Difference Method is discussed 
to approximate the flow characteristics in the 
annular region and the approximate values for 
axial Couette flow for various cases are 
presented. In section 5, the present work and the 
scope for future work were summarized. 
 

2. METHODOLOGY  
 

2.1 Theoretical Implementation 
 

An annular region between a long inner pipe of 
radius, ��

∗ and a coaxial outer pipe of radius, ��
∗ is 

considered in the study. The flow is taken to be 
at steady state in the annular region, before 
making the abrupt changes to the boundary. 
Cylindrical co-ordinates system ( �∗, �, �∗ ) is 
employed due and, �∗ , � , and �∗  indicates the 
radial, azimuthal and axial directional co-
ordinates respectively. Corresponding velocity 
components in axial, radial and azimuthal 
directions are defined as ��

∗ , ��
∗  and ��

∗ 
respectively. The superscript “*” is used to 
denote dimensional quantities. The simplified 

Navier-Stokes equation was written as when the 
flow was assumed to be axisymmetric, 
incompressible, unidirectional, fully developed, 
entirely depend on the wall movement (no-slip 
boundary condition) and has no body force. 
Hence, simplified Navier-Stokes equations for 
steady and unsteady flow are as below in 
equations (1) and (2) respectively. 
 

�

�∗

�

��∗
��∗

���
∗

��∗
� = 0																																																				(1) 

 

��
���

∗

��∗
� = �� 

�

�∗
�

��∗
��∗

���
∗

��∗
��																																(2) 

 

Dimensionless parameters introduced with 
special co-ordinates are normalized by �� 
(Reynolds number), while velocity and time are 

made dimensionless by �� and 
��

��
, respectively; 

where, �� and �� were characteristic length and 
velocity respectively. Thus, the non-dimensional 
variables and parameters are written as, 
 

�� = 	
�∗

�

��
;			� =

�∗

��
;			� =

�∗��

��
;			�� =

�����

�
            (3) 

 

2.1.1 Steady state solution 
 

��(�, 0)= �� + �� ln(�)                               (4) 
 
��(��	, �)= ��;				��(��	, �)= ��                      (5) 

 
Equations (4) and (5) were dimensionless initial 
and inner and outer boundary conditions 
respectively for steady governing equation. 
Where, initial condition was obtained from the 
literature study in [14] and boundary conditions 
were assumed as constant velocities. 
 
Hence, the solution for the steady state equation 
can be written as, 
 

��(�	, �)=
�����

�
+

�����

���(�)
[2��(�)− ��(����)]    6) 

Let, 
 

�� =
�����

�
;			�� =

�����

���(�)
	��(����);			�� =

�����

��(�)
      (7) 

 
And, ��� = �� − �� . Thus, the simplified steady 
state solution is written as, 
 

�� = ��� + ��	��(�)                                     (8) 
 
2.1.2 Unsteady solution 
 

��(�, 0)= ��� + ��	��(�)                             (9) 
 
��(��	, �)= ��;			��(��	, �)= ��                    (10) 
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The equations (9) and (10) are dimensionless 
initial and inner and outer boundary                      
conditions respectively for unsteady governing 

equation. Initial condition for the unsteady 
equation is the solution of the steady state 
equation. 

 
Laplace transforms of dimensionless unsteady equation and boundary conditions are, 
 

�����(�,�)

���
+

�

�

����(�,�)

��
− ��	�	�̅�(�, �)= 	−��	��(�, 0)                                                                    (11) 

 
�̅�(��	, �)= ���;			 �̅�(��	, �)= ���                                                                                                 (12) 

 
Here, the over bar quantities were transformed variables. Hence, ��(�, 0)= ��� + ��	��(�) is due to 
the choice of initial condition. The equation (11) is a second order, non-homogeneous and ordinary 
differential equation. Since the governing equation and boundary conditions are known, the problem 
was well posed. 
 
 ���̅�(�, �)

���
+
1

�

��̅�(�, �)

��
− ��	�	�̅�(�, �)= 	−��	[��� + ��	��(�)] 

(13) 

 
Here, ��	� = �� . In the equation (13), the homogeneous part is the modified Bessel equation of 
highest order [15,16]. Homogeneous and non-homogeneous solutions are, 
 
 �̅������������

= ��I�(��)+ ��K�(��) (14) 
 

 �̅����������������
= −[��� + ��	��(�)] (15) 

 
Thus, the complete solution is, 
 
 �̅� = ��I�(��)+ ��K�(��)− [��� + ��	��(�)] (16) 
 
Here, I� and K� are highest order modified Bessel functions of first and second kind respectively. �� 
and �� were the arbitrary constants, determined by using boundary conditions (10) in equation (16). 
 
To find the non-homogeneous solution, Wronskian [17] is given as, 
 

 
�[I�(��), K�(��)	] = �

I�(��) K�(��)

I�
′ (��) K�

′ (��)
� = −

1

�
 

 

(17) 

   
 �̅�����������������

= −I�(��)�

�
K�(��)

[−��	��	��(�)]
�

−
1
�

��

+ K�(��)�

�
I�(��)

[−��	��	��(�)]
�

−
1
�

�� 

 
 
 
 

(18) 

   

 

�̅�����������������
= −I�(��)�

�
K�(��)

[−��	���	]
�

−
1
�

�� + K�(��)�

�
I�(��)

[−��	���]
�

−
1
�

�� 

 
 

(19) 

 

Thus, the non-homogeneous solution is written as, 
 
 �̅����������������

= �̅�����������������
+ �̅�����������������

  
(20) 
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From equation (16), the solution in transformed domain is written as, 
 
 

�̅� = ��I�(��)+ ��K�(��)+
���

�
+
��	��(�)

�
 

(21) 

 

Applying the boundary conditions (12) in the equation (21), we can find the arbitrary constants �� and 
	��. Then the equation (21) was written as, 

 

 

�̅� =

⎩
⎪⎪
⎨

⎪⎪
⎧
�

���� −
���

�
−
��

�
��(��)�[I�(���)K�(��)− K�(���)I�(��)]

+ ���� −
���

� −
��

� ��(��)�[K�(���)I�(��)− I�(���)K�(��)]
�

K�(���)I�(���)− I�(���)K�(���)

⎭
⎪⎪
⎬

⎪⎪
⎫

+ �
��� + ��	��(�)

�
� 

 

 

 

(22) 

 

If the boundary conditions are constants, then ��� =
��

�
  and  ��� =

��

�
. 

 

 ��� = ��√��√� = �√�;   ��� = ��√��√� = �√�;   �� = �√��√� = �√� (23) 

 

Here	�  = ��√�� ; � = ��√�� and � = �√��. 

 

The flow velocity is, 

 

 

�̅� =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

⎩
⎪
⎨

⎪
⎧ ���� −

���

� −
��

� ��(��)�

�I���√��K���√�� − K���√��I���√���

+ ���� −
���

�
−
��

�
��(��)�

�K���√��I���√�� − I���√��K���√���⎭
⎪
⎬

⎪
⎫

�	�K���√��I���√�� − I���√��K���√���

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

+ �
��� + ��	��(�)

�
� 

(24) 

 

Moreover, the solution in time domain ��(�, �) was obtain by taking the inverse Laplace transform 
of		���(�	, �). The inverse transform of equation (24) can be obtained using the convolution theorem. 
Applying convolution theorem to equation (24), we can obtain, 

 

��(�	, �)=
�

���
∫ �̅�(�	, �)	���	(�, �)
���∞

���∞
��                                                                                 (25) 

 

We can write the integrand in the form of  
�Γ���

�Γ�
, where, Γ is the radius of the Bromwich contour taken; 

such that all the poles lie in the left of the contour. The integrand diverges as Γ → ∞, preventing the 
application of the convolution theorem, Hence, we take the inverse Laplace transform [18] of equation 
(24) and obtain the solution in time domain. 
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��(�	, �)= ��

�������	��	�����	��	
[�̅�(�	, �)���	(�, �)]

� 
(26) 

 

Thus, the complete final solution was written as, 
 
 

��� =

⎩
⎪⎪
⎨

⎪⎪
⎧
���

���[�� − ��� − ����(��)] �
Y�(��)J� �

�
� ���

−J�(��)Y� �
�
�
���

� ��� �−
��
��

�����
�

2��
� �

��
���	�����

�

��.

⎭
⎪⎪
⎬

⎪⎪
⎫

 

+
��

�
��

��
�
�

���� −
���

�
−
��

�
��(��)� 

 

 
 

(27) 
 

 

��� 	=

⎩
⎪⎪
⎨

⎪⎪
⎧
���

���[�� − ��� − ����(��)] �
J� �

�
�
���Y� �

�
�
���

−Y� �
�
� ���J� �

�
� ���

� ��� �−
��
��

��
���

�

2��� �
��
��

�
	���

��
�

��.

⎭
⎪⎪
⎬

⎪⎪
⎫

 

 
 
 

(28) 

And 
 
 ��� = ��� + ��	��(�)  (29) 

 
Thus, the velocity in time domain: 
 

��(�	, �)= ��� + ��� + ���                                                                                                      (30) 

 
When ��  and ��  are assumed to be zero in the 
equation (30), the exact analytical solution is 
obtained for the abruptly stopped axial Couette 
flow. Note that, since the flow was entirely 
depend on the wall movement, the pressure 
difference throughout the annulus in axial 
direction was not considered.  A numerical 
implementation was carried out  to visualize the 
flow field for different  ratios. 
 

2.2 Numerical Implementation 
 
The numerical implementation, starts with the 
non-dimensional form of equation (2), where the 
dependent variable, �� (velocity in axial direction) 
and the independent variables, � (radius between 
inner and outer pipes) and �  (time). To 
approximate the solution of the unsteady 
equation using Finite Difference method, solution 
of the steady state equation was taken as initial 
condition (9). 
 
Using central space difference approximation the 
second order partial derivative with respect to 

radius and the first order partial derivative with 
respect to radius of the equations are 
approximated as, 
 

��
′′(�)≃	�

�
�(� − ∆�)− 2	�(�)

+ 	�(� + ∆�)
�

(∆�)�
�

+ 	�(∆�)� 

 
(31) 

   

��
′(�)≃ 	 �

�(� + ∆�)− 	�(� − ∆�)

2∆�
�

+ 	�(∆�)� 

 
(32) 

 
Using the forward time difference approximation 
the first order partial derivative with respect to 
time is approximated as, 
 
 

��
′(�)≃ 	 �

�(� + ∆�)− 	�(�)

∆�
� + 	�(∆�)� 

 
(33) 

 
Thus, the discretized equation with ∆� = � 
and		∆� = ℎ is as, 
 



 

���,��� −	���,�

�
=

1

��

⎩
⎪⎪
⎨

⎪⎪
⎧

⎣
⎢
⎢
⎢
⎡�
����

+

+
1

�
�
��

Here, � = 0,1,2,3, … . ,�	 and � = 0,1,
 

Fig. 2. Specifying initial and boundary conditions

Fig. 2 shows the discretization of the 
annular and the known initial boundary values of 
grid points. Using boundary conditions values are 
obtained at the grids of the inner wall and outer 
wall and the initial condition values are used for 
� = 0 . Hence, subsequent values are 
approximated. 
 

3. RESULTS AND DISCUSSION
 
Finite difference method was programmed in 
MATLAB to visualize the suddenly stopped axial 
Couette flow for various cases between the inner 
pipe and outer pipe in the central symmetry 
plane (annular space). 
 

3.1 Case I 
 
In this case the outer pipe was fixe
inner pipe was moving at a constant velocity in 
axial direction and the inner pipe was suddenly 
stopped. 
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⎡ ��,�
− 2	���,�

+ 	�����,�
�

ℎ�

⎦
⎥
⎥
⎥
⎤

����,�
− 	�����,�

2ℎ
�⎭
⎪⎪
⎬

⎪⎪
⎫

 

,2,3, … . , � 

 
. Specifying initial and boundary conditions 

 
2 shows the discretization of the                           

n initial boundary values of 
grid points. Using boundary conditions values are 
obtained at the grids of the inner wall and outer 
wall and the initial condition values are used for 

. Hence, subsequent values are 

SSION 

Finite difference method was programmed in 
MATLAB to visualize the suddenly stopped axial 
Couette flow for various cases between the inner 
pipe and outer pipe in the central symmetry 

In this case the outer pipe was fixed and the 
inner pipe was moving at a constant velocity in 
axial direction and the inner pipe was suddenly 

Fig. (3) shows the streamlines at different radii 
ratios	(�), 0.1, 0.3, 0.5 and 0.7 when initially the 
inner pipe was moving and suddenly the inner 
pipe was brought to rest. With respect to the 
radius ratios there is a significant change in 
streamlines of the flow field. 

 
Fig. 4 shows the points of discrete valu
velocity profile at different time steps. Due to the 
viscosity of the fluid, near to inner boundary 
velocity was maximum and at the outer boundary 
the velocity was zero. Initially inner pipe was 
moving at a constant velocity and outer pipe was 
at rest. Then, the inner pipe was brought to rest 
suddenly. There was a decay in velocity profile 
was observed with respect to time.

 
3.2 Case II 
 
When inner pipe and outer pipe were moving at a 
constant velocity and both pipes were suddenly 
stopped. 

 
 
 
 

; Article no.PSIJ.40076 
 
 

 
 
 

(34) 

 

(3) shows the streamlines at different radii 
), 0.1, 0.3, 0.5 and 0.7 when initially the 

inner pipe was moving and suddenly the inner 
pipe was brought to rest. With respect to the 
radius ratios there is a significant change in 

Fig. 4 shows the points of discrete values of 
velocity profile at different time steps. Due to the 
viscosity of the fluid, near to inner boundary 
velocity was maximum and at the outer boundary 
the velocity was zero. Initially inner pipe was 
moving at a constant velocity and outer pipe was 

t. Then, the inner pipe was brought to rest 
suddenly. There was a decay in velocity profile 
was observed with respect to time. 

When inner pipe and outer pipe were moving at a 
constant velocity and both pipes were suddenly 
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For the different radius ratios	(�), 0.1, 0.3, 0.5 
and 0.7, streamlines of the suddenly stopped 
Couette flow is obtained when initially inner pipe 
and outer pipe is moving at a constant velocity. 
Fig. (5) shows the flow field at different radius 
ratios. With respect to the radius ratios notable 
difference in the streamlines of the flow field is 
noticed. 

Fig. (6) represents the points of                                
discrete values of velocity profile at different                       
time steps. In this case inner and outer 
boundaries are moving at a constant velocity. 
Boundaries are moving with the same velocity 
and asymmetry in the velocity profiles are 
observed. 
 

 

 
 

Fig. 3. Schematic description of annular space in axial direction. 
 

 
 

Fig. 4. Streamline for suddenly stopped axial Couette flow at different radius ratios for Case I 
when inner pipe moving at a constant velocity and outer pipe at rest (Time and annular space 

are non-dimensional) 
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Fig. 5. Velocity profiles at different times for Case I when initially inner pipe moving at a 
constant velocity and outer pipe at rest at � = �. ��� (Velocity and annular space are non-

dimensional) 
 

 
 

Fig. 6. Streamline for suddenly stopped axial Couette flow at different radius ratios for Case II 
when initially inner and outer pipes moving at same constant velocity (Time and annular space 

are non-dimensional) 
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Fig. 7. Velocity profiles at different times for Case II when initially inner and outer pipes 
moving at same constant velocity at � = �. ��� (Velocity and annular space are non-

dimensional) 

 
3.3 Case III 
 

When inner pipe and outer pipe initially moving at 
different velocities (�� and	��) and both pipes are 
stopped suddenly. 
 
Fig. (7) denotes the streamlines of the abruptly 
stopped axial Couette flow when inner boundary 
and outer boundary have different constant 
velocities. In the flow field the change in 
streamlines are significant. 
 

Fig. 8 shows the points of discrete values of 
velocity profile at different time steps when 
initially inner boundary moving faster than     
outer boundary and both are brought to rest 
suddenly. 
 
Fig. 9 represents the points of discrete                        
values of velocity profile at different time                     
steps when initially outer boundary moving faster 
than inner boundary and both are suddenly 
stopped. 
 

 
 

Fig. 8. Streamline of suddenly stopped axial Couette flow for Case III when inner and outer 
pipes in different constant velocities (Time and annular space are non-dimensional) 
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Fig. 9. Velocity profiles for abruptly stopped pipes at different times for Case III when	�� > �� 
at	� = �. ��� (Velocity and annular space are non-dimensional) 

 

 
 

Fig. 10. Velocity profiles for abruptly stopped pipes at different times for Case III when �� > �� 
at	� = �. ��� (Velocity and annular space are non-dimensional) 

 

4. CONCLUSION 
 

In the work presented, the second order non-
homogeneous partial differential equation was 
solved to obtain the solution for Couette flow. 
The numerical approximation for the unsteady 
abruptly stopped axial Couette flow was 
modelled using FDM. Three different cases were 
analysed in MATLAB programming, to visualize 
the flow field and streamline and velocity profiles 
at different time steps were obtained. 
 

In case I, initially the inner boundary was moving 
at a constant velocity and it was suddenly 
stopped. Streamlines for various radius ratios 
(�), 0.1, 0.3, 0.5 and 0.7 were obtained in Figure 
(3). In case II, initially inner and outer boundaries 
were moving at same constant velocity and both 
boundaries were suddenly stopped. Streamlines 

for various radius ratios (�), 0.1, 0.3, 0.5 and 0.7 
were obtained in figure (5). In both cases 
significant differences in streamlines of the flow 
field were visualized. In case III, initially inner 
boundary and outer boundary had                       
different velocities. Streamlines were visualized 
in Fig. (7). 
 

Different cases play different role in the flow 
characteristics of the annular flow. Flow 
characteristics were changed due to the 
asymmetry of velocity profiles and unsteadiness 
of flow field. The asymmetry of the velocity profile 
was affected by different radius ratios. 
Unsteadiness in the flow field was happened due 
to sudden changes in flow parameters. So, these 
sudden changes in the flow parameter and 
different radius ratios play important roles in the 
stability of the flow. 
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This work presents the analytical and                    
numerical solution and the approach for                       
the solution for abruptly stopped axial                    
Couette flow. The stability analysis can be 
carried out to analyse the stability of the                   
flow when a small disturbance is introduced to 
the flow. Which may help to understand and 
predict the instability. The non-linear stability 
analysis could help in understanding the 
transition to turbulent process which is not 
addressed in this work. We plan to use 
MATCONT continuation software to perform a 
non-linear stability analysis [19]. Non-concentric 
annulus with bidirectional flow may give the 
solution for the real world applications with 
minimizing assumptions.  
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