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Abstract

In this paper, we investigate the existence of normalized solutions to the coupl-
ing of the nonlinear Schrédinger-Maxwell equations. In the mass-subcritical
case, we by weak lower semmicontinuity of norm prove that the equations sa-
tisfying normalization condition exist a normalized ground state solution.
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1. Introduction

In this paper, we study the existence of normalized ground state solution of the

following Schrédinger-Maxwell equations
—Au+u+gu+Au=f(u)inR", w1
-Agp=u® inR",

where ¢:R" >R and 2<N <6, the parameter 1 cR appears as a Lagrange

multiplier. The unknowns of the equations are the field u associated to the par-

ticle and the electric potential ¢, and satisfying the normalization condition

-[RN |uf dx =a, (1.2)
we prescribe a> 0. Hence, we have
—Au+u+gu+Au=f(u)inR",
-Ag=u’ inR", (1.3)
[Lluf dx=a.
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where ubelongs to the Hilbert space
H={ueH! (R"): [ [Vuf* +udx <o),
and
H: () = u e o (R"):u() =u()}
The space H is endowed with the norm
Julf, = [ (Ivuf + 0o
Let D'2=D"(R")= {u el? (R"):Vue?(R" )} with respect to the norm

Julsz = Jo [Vl 0.

Forany 2<s< 2, U (RN ) is endowed with the norm
Juf; = [ uf .

Obviously, the embedding H & L° (RN ) is compact (see [1]).
By the variational nature, the weak solutions of (1.1) are critical points of the
functional J:HxD" - R defined by

J(u,9) :%J'RN (|Vu|2 +V (x)uz)dx—% o Vo dx+%j}RN ¢5u2dx—J‘]RN F (u)dx,

where F(t)= L; f(s)ds is a rather general nonlinearity. Then, it is clear that
the function /is C* on HxD" and has the strong indefiniteness. We can
know that the weak solutions of (1.1) (u, ¢) e HxD are critical points of the
functional /. By standard arguments, the function /is C' on HxD"*.

In recent years, normalized solutions of Schrédinger equations have been
widely studied. When searching for the existence of normalized solutions of

Schrédinger equations in R" , appears a new mass-critical exponent
4
l=2+—.
N

Now, let us review the involved works. In the mass-subcritical case, Zuo Yang
and Shijie Qi [2] proved that for all a >0, the following Schrédinger equations

with potentials and non-autonomous nonlinearities
—Au+V (x)u+Au= f(x,u) in RY,
2 _ 1 N
IRN|U| dx=a,ueH (R )
have a normalized solutions. Nicola Soave [3] in the mass-subcritical proved the

nonlinear Schrédinger equation with combined power nonlinearities mass- crit-

ical and mass-supercritical cases studied of:
—Au=Au +y|u|p*2 u +|u|2*’2 ,uinRY N >3,
[ Juf dx=a,ue HY(RY).

have several stability/instability and existence/non-existence results of normalized

ground state solutions. For ¢ (u) is a superlinear, subcritical, Thomas Bartsch [4]
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studied the existence of infinitely many normalized solutions for the problem
~Au-g(u)=Auue Hl(RN )

By establishing the compactness of the minimizing sequences, Tianxiang Gou
and Louis Jeanjean [5] in the mass-subcritical studied the existence of multiple
positive solutions to the nonlinear Schrodinger systems:

—Au= AU+ |Ui|pr2 U +13r1|u|r172 U fu,[*,

—AU= LU+, |u2|p272 u, + A, |uf* |u2|r272 U,.

In the mass-subcritical case, Masataka Shibata [6] studied for the nonlinear

Schrédinger equations with the minimizing problem:
. 1
E, =inf {I (u)= EJ.R” Vuf dx —jRN F(|ju[)dx|ueH* (RN )'I]RN |uf* dx = a}

where F(t)zﬁ f(s)ds is a general nonlinear term. They proved E, is at-
tained. That is to say, the Schrodinger equations have normalized solutions.

Moreover, for the |(u)= %jRN |Vu|2 +V (X)|u|2 dx—{ F (lu])dx  case, Norihisa

Ikoma and Yasuhito Miyamoto [7] showed the existence of the minimizer of the
minimization problem E,, where V(x)—>0 as |X| — o . They also obtained
the conclusions that the normalized solutions of Schrédinger equations exist. In
the mass-subcritical condition, Zhen Chen and Wenming Zou [8] basing on the
refined energy estimates proved the existence of normalized solutions to the
Schrédinger equations.

Other related normalized solutions problems of Schrédinger can be seen in
[9] [10] [11] [12] [13]. Thus, the main purpose of this paper is to study the solu-
tion of Schrodinger-Maxwell equations satisfying normalization condition by
using above results. In particular, the situation we consider will involve the
presence of potential ¢. In addition, the nonlinear term f (u) is mass-sub-
critical and satisfies the following appropriate assumptions. In this case, the
functional 7is bounded from below and coercive on S(a), which will be proved
in Lemma 2.5.

We assume the following conditions throughout the paper:

(A) f:R"Y >R is continuous.

4

f
(R) |imﬂ:0 and lim f(,i)zo with |=2+—.
s>0 S [s]>+o0 |S| N

Moreover, cand C; are positive constants which may change from line to line.
Our main result is the following theorem:
Theorem 1.1 Suppose (1) and (£2) hold. Then, for any a >0, problem (1.3)
has a normalized ground state solution.

2. Proof of Main Results

Since the functional /exhibits a strong indefiniteness. To avoid the difficulty we

use the reduction method. Thus, we shall introduce the method.
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Forany Ue™,usconsider the linear operator T (u):D"* - R defined as

T (u) =], uPvdx. (2.1)

Then, there exists a positive constant ¢, such that

2N
LN+2

\

[ uPvx < ||u2

7 < M <ol Moo
LN+2

because the following embeddings are continuous:
HoL(R"), Vse[2,27] and D(R")oL? (R").
We set
9(p,v)=[ V- Vvdx, p,ve D™
Obviously, g(¢,v) islinearin ¢ and vrespectively.

Moreover, there exists a positive constant ¢, and C; such that for any
o,V e D2,

o (pv)f= el Ve (2.2)

g(ov) 2ol - (2.3)

Combining (2.2) and (2.3) we know that g(go,v) is bounded and coercive.
Hence, by the Lax-Milgram theorem we have that for every ue’™, for any

v e D', there exists a unique ¢, € D"* such that
T(u)v=g(4,.Vv).
Then, forany ve D'? , we obtain

JLouPvdx = [ Vi, - Vv, (2.4)

and using integration by parts, we have
-[]RN Vg, -Vvdx = —JRN VA@,dX.
Therefore,
Ag, =u? (2.5)
in a weak sense, and ¢, has the following integral expression:

_1p vy
AR x—y|

A (2.6)

The functions ¢, possess the following properties:
Lemma 2.1 Forany ueH, we have

1) ||¢u ||D1,2 <c, ||u||2ﬂ , where ¢, >0 Is independent of u. As a consequence
LN+2
there exists C; >0 such that
[ v dudx<culf;

2) ¢,20.
Proof. 1) For any UeH, using (2.5) we have
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lulore = [ VAL dx==[ . gAagdx =, gudx

<l o7l = celllose ol an
LN+2

2

where ¢, is a positive constant. Hence, we obtain that

2
#2522 < €4 ull o
LN+2

therefore there exists a positive constant ¢, such that

Jo 70 o [ < GE ol e <l @)
LN+2 LN+2

because we know for any Se [2, 2*1 , Hol (RN )
2) Obviously, by the expression (2.6) the conclusion holds. U
Now let us consider the functional |:H — RN,

[(u)=J(ug,).

Then Zis C.

By the definition of J, we have

1 2 1 2 1
I(u)= EJRN (|Vu| +V (x)uz)dx “ 7l |V, dx +EJRN #,u’dx —IRN F (u)dx.
Multiplying both members of (2.5) by ¢, and integrating by parts, we obtain
IRN |V¢u |2 dx = .[RN ¢UU2dX.

Therefore, the functional /may be written as

I (u) :%IRN (|Vu|2 +V (x)uz)dx+%_fRN gzﬁuuzdx—j]RN F (u)dx. (2.8)

The following lemma is Proposition 2.3 in [5].

Lemma 2.2 The following statements are equivalent.

1) (u¢)eHxD™ (RN ) is a critical point of J.

2) u is a critical point of I and ¢=¢, .

Hence u is a solution to (1.3) if and only if u is the critical point of the func-
tional (2.8). The critical point can be obtained as the minimizer under the con-

straint of L®-sphere

S(a)Z{UEHZIRN uzdx:a}. (2.9)
We shall study the constraint problem as follows:
E, = inf I(u). 2.10
a ues(a) ( ) ( )

The solution of (13) u=0 is called a normalized ground state solution satisfy-

ing problem (3) if it has minimal energy among all solutions:
dlf,, (@) =0and 1 (a@) = inf {1 (u):dl],,, (0)=0,d S (a)}.

In this paper, we will be especially interested in the existence of normalized
ground state solutions.
Lemma 2.3 We define ®:H — D}?, ®(u)=d,, which is also the solution
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of the Equation (2.5) in D*?. Let {u,}=S(a) be a minimizing sequence of I
with satisfying u, —u in ‘H. Then, ®(u,)—> ®(u) in D*? and we obtain

[ow @ (u)uidx — [ @ (u)u’dx as n— . (2.11)

Proof. By (2.1), the following expressions hold
T (uy)v= [y uzvdx, T (u)v =, u?vdx

Since UeH and the embedding H}© L° is compact for any 56(2,2*) ,

clearly we have
u? e Ll(RN )m L (RN ) (2.12)
then, by interpolation we have
N
uwel? (RY).
Using again (2.12), we get

2N

uzeLﬁ(RN).

Moreover, {u,} beaminimizing sequence and u, —u in ', we obtain

2N
u? —u’ in LN+2, (2.13)

Therefore, we get

[T (u,)v=T (u)v|= UJRN urvdx— [ uzvdx‘ <Juy —u?| 2 v6|L2* ,
which implies that T (u,) converges stronglyto T (u).
Hence, we obtain
®(u,)—> ®(u) in D*?,
®(u,) > ®(u) inL?. (2.14)
By (2.13) and (2.14), we know that conclusion (2.11) holds. O

Lemma 2.4 (Gagliardo-Nirenberg inequality). For all UeH , we have
o < (W)Ul * 2<p<2

N(p-2
where C(N) Is a positive constant depending on N and p'= % .
p
Lemma 2.5 Suppose (1) and (£2) hold, than for any a >0, the functional I is
bounded from below and coercive on S(a).
Proof. Assumptions (A1) and (£22) imply that for any &> 0, there exist C, >0
such that

F(s)<C,|s[ +¢ls| ,WseR.
Hence, according to Lemma 2.4 with p=1=2+ % , we obtain that

ull; + & |

[ Fu)as|<c,

4
<C, Jul; +<C(N)[ul; July
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2
Choose ¢ suchthat ¢C(N)aN = % , than

1 1
I (u) :EJ.RN (|Vu|2 +u2)dx+ZjRN gzﬁuuzdx—jIRN F (u)dx
1 1
ZE"VUHE +EIRN udx— |, F(u)dx
1
> Z"VU"Z —Ca> -

Therefore, 7is bounded from below and coercive on S(a). O
The following lemma is Lemma 2.2 in [6].
Lemma 2.6 Suppose (A1) and () hold and {urI }nEN is a bounded sequence in
‘H. If lim |un|§ =0 holds, then it is true that
n—oo
lim [, F(u,)dx=0.

Next, we collect a variant of Lemma 2.2 in [14]. The proof is similar, so we
omit it.

Lemma 2.7 Suppose (1) and (2) hold and {u,}
H , then we have u, —u in H, thus

!mIRN[F(Un)—F(U)—F(Un—U)de=0-

Proof of Theorem 1.1. Let {u,}<=S(a) be a minimizing sequence of 7 with

is a bounded sequence in
neN

concerning E, . Then, by (9) we obtain
1 1
H(u,)=3 oo (1vu, +u§)dx+Z [, uldx— [, F (u,)dx.

According to Lemma 2.5, the sequence {u,} is bounded in H . Letting u, be
in 'H. Moreover, we know that the embedding H < LS(]RN) is compact.
Hence, we conclude

u, —Uu, inH, (2.15)
u, = U, in L° (RN),2<5<2*, (2.16)
u, —> U, a.e.in R".
We also have
1(uy) = %I}RN (|Vu0|2 + u§)dx+%jmn Bousadx— [\ F (g )dx.
Since (19) holds, we have lm“n - UOE =0. Then, by Lesmma 2.6 we obtain

lim [ F (u, —u)dx =0.

Moreover, by Lemma 2.7 we have
lim [ [F (u,)~F (u,)Jdx =0.
which implies

[ F(uy)dx— [ F(up)dx as n—co. (2.17)
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Hence, combining weak lower semicontinuity of the norm ||||H » Lemma 2.3
and (2.17), we have

E, <I(up)<liminf1(u,)=E,,

a

which implies 1(uy)=E,.Then, u, satisfies
—AU, +Uy +@uy + AUy = f (uy) inRY,
-Ag=u; inR",
and .[]RN |u0|2 dx =a. Therefore, problem (1.3) has a normalized ground state

solution. O
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