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Abstract 
Accurate frequency estimation in a wideband digital receiver using the FFT 
algorithm encounters challenges, such as spectral leakage resulting from the 
FFT’s assumption of signal periodicity. High-resolution FFTs pose computa-
tional demands, and estimating non-integer multiples of frequency resolution 
proves exceptionally challenging. This paper introduces two novel methods 
for enhanced frequency precision: polynomial interpolation and array index-
ing, comparing their results with super-resolution and scalloping loss. Simu-
lation results demonstrate the effectiveness of the proposed methods in con-
temporary radar systems, with array indexing providing the best frequency 
estimation despite utilizing maximum hardware resources. The paper demon-
strates a trade-off between accurate frequency estimation and hardware re-
sources when comparing polynomial interpolation and array indexing. 
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1. Introduction 

The Fast Fourier Transform (FFT) is a fundamental signal processing tool for ef-
ficiently computing the frequency content of signals. As technology advances, 
the demand for more accurate frequency estimates becomes crucial to extract 
valuable information from FFT output data. Traditional techniques such as peak 
detection and interpolation have proven effective in many applications [1] [2] 
[3] [4]. However, in noisy environments and with closely spaced signals, imple-
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menting these methods for frequency determination becomes extremely chal-
lenging. While methods like Wavelet Transform [5] and Short-Time Fourier 
Transform (STFT) [6] show promise in identifying non-stationary signals, they 
are less effective in accurately estimating frequencies in real-world scenarios 
where signals fluctuate over time. Adaptive frequency estimation [7] dynamical-
ly adjusts parameters based on input signal characteristics. Several adaptive ap-
proaches have been developed over time to precisely estimate frequency [8] [9] 
[10]. While these techniques offer adaptability to address non-stationary signals 
with varying frequencies, they do have limitations. Many adaptive frequency es-
timation methods feature complex algorithms, leading to increased computational 
complexity, especially in hardware implementations. Iterative methods refine 
frequency estimates through successive iterations. After determining the main 
frequency, interpolation techniques are applied to fit a curve to the peak region 
in the FFT spectrum, enhancing the precision of the frequency estimate. 

This paper introduces two innovative methods for enhancing frequency esti-
mation precision, employing polynomial interpolation and array indexing. The 
organization of the paper is as follows: Section 2 discusses the wideband fre-
quency estimation flow via FFT, followed by spectrum analysis of scalloping loss. 
Section 3 provides a brief description of the super-resolution method in section. 
A detailed explanation of the proposed methods is provided in Section 4. Section 
5 presents the results, and the paper concludes in Section 6. 

2. Proposed Wideband Frequency Estimation Flow via FFT 

Digital receivers play a critical role in various applications such as warfare, radar, 
communication, and biomedical signal processing. Receiver-on-chip (ROC) de-
signs are becoming exceedingly robust due to recent hardware advancements 
[11] [12]. In Figure 1, we illustrate the design flow using the Xilinx RFSoC [13]. 
The Tektronix 5200 serves as the signal generator, producing the necessary sig-
nals for the experiments. A 12-bit analog-to-digital (ADC) within the RFSoC 
samples the signal at 2.56 GHz. The digitized data is collected and aligned for 
pipelined parallel processing. To introduce pseudo-periodicity, a window func-
tion is selected [14]. The ADC returns 12-bit digitized samples, and the Multiple 
Input Selections (MIS) scheme is employed to maintain 12-bit precision for the 
input to the 512-point decimation in frequency (DIF) FFT built using a dynamic 
kernel [15]. In the dynamic kernel, the unit circle is scaled by the powers of two, 
and the real and imaginary components of the twiddle factors are mapped to 
closed integer points to minimize approximation errors. Adders and shifters re-
place the multipliers in the butterfly blocks to achieve a higher throughput rate 
and minimize hardware computational complexity. Decimation in frequency 
(DIF) is utilized to realize the FFT, as the approximated kernel function has an 
advantage over decimation in time (DIT) during hardware implementation. The 
peak magnitude [ ]X m  and the bin number m are recorded, along with 

[ ]1X m ±  and its respective bin numbers for frequency detection. This paper  
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Figure 1. Proposed wideband frequency estimation flow via FFT. 
 

focuses on the accurate frequency estimation. 

3. Frequency Estimation via FFT 

The frequency spectrum of a signal represents the distribution of signal energy 
across different frequencies. This fundamental concept in signal processing is 
typically visualized through a graph or plot. The frequency spectrum offers val-
uable insights into the frequency content of a signal, facilitating the analysis and 
characterization of signals in diverse applications. The fast Fourier transform 
(FFT) is employed to compute the discrete frequency spectrum, yielding a set of 
discrete frequency components along with their corresponding amplitudes. 

Frequency estimation is the process of determining the frequency content of 
the signal. The primary function of the FFT is to transform the time-domain 
signal to frequency-domain, presenting the signal in terms of its frequency 
components. Detecting the frequency becomes straightforward when the signal 
frequency aligns with an integer multiple of the frequency resolution. Challenges 
arise when the input signal falls between frequency bins. The subsequent sec-
tions outline four methods for determining frequency when the input signal is 
not precisely on a frequency bin. 

3.1. Scalloping Loss 

The FFT method effectively analyzes a finite-duration segment of the input sig-
nal. To mitigate spectral leakage, caused by the finite duration, the input signal is 
often multiplied by a window function. This process tapers the edges of the fi-
nite-duration segment to zero, reducing the effects of discontinuity. Scalloping 
loss, characterized by a reduction in the peak signal’s amplitude during the win-
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dowing process, is a notable outcome to identify signals not integer multiples of 
the frequency resolution. 

In Figure 2, the plot depicts frequency on the x-axis and magnitude on the 
y-axis. A 512-point FFT analysis was conducted for frequencies ranging from 50 
MHz to 60 MHz in increments of 500 KHz. The signals were sampled at 2.56 
GHz, resulting in a frequency resolution of 5 MHz. Signals falling precisely on a 
frequency bin exhibit maximum magnitude, while those between bins have low-
er magnitudes. In this representation, 50 MHz, 55 MHz, 60 MHz, and 65 MHz 
fall precisely on frequency bins, resulting in higher magnitudes compared to 52.5 
MHz, 57 MHz, and 62 MHz. The FFT spectrum in Figure 2 exhibits a series of 
peaks and valleys, resembling a scalloping pattern. Maximum scalloping loss is 
observed when the frequency lies precisely halfway between two bins. 

Figure 3 shows the magnitude response of the frequencies between two fre-
quencies centered on the bins. The mathematical representation of the magni-
tude of the frequency component is given in Equation (1). The peak magnitude 

[ ]X m  of a sinusoidal wave can lie anywhere between: 

 [ ]0.637
2 2

A N A NX m∗ ∗ ∗
≤ ≤  (1) 

where A is the amplitude of the time-domain signal and N is the length of the 
FFT [16]. To determine the signal’s time-domain amplitude A from Equation 
(1) by measuring the FFT spectral peak magnitude [ ]X m  is given by Equa-
tion (2). 

 

 
Figure 2. Scalloping loss. 
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Figure 3. Normalized bin-to-bin magnitude response. 
 

 
[ ]2 X m

A
N

∗
=  (2) 

The amplitude calculated using Equation (2) results in an error of 36.3%, 
which is equivalent to 3.9 dB. This level of error, while significant, may be ac-
ceptable for certain applications. 

3.2. Reducing Scalloping Loss 

One possible method to mitigate the frequency-dependent observed amplitude un-
certainty inherent in FFT is to employ an N-sample flat-top window function on the 
original N time-domain samples. followed by executing a new FFT on the processed 
data. Flat-top window functions are designed to address the scalloping loss intro-
duced during windowing. By using a flat-top window, the reduction in accuracy as-
sociated with scalloping can be minimized, given the importance of accurate ampli-
tude representation. This involves multiplying the N-sample flat-top window func-
tion with the N-sampled time-domain data. It’s worth noting that multiplication in 
the time domain is equivalent to convolution in the frequency domain. To imple-
ment frequency domain convolution, we need to compute a single flat top windowed 

( )ftX m  spectral sample from ( )X m  spectral sample, using 

 
( ) ( ) ( ) ( )

( ) ( )

1.88494 1 1
2

0.88494 2 2
2

ftX m X m X m X m

X m X m

= − ∗ − + +  

+ ∗ − + +  

 (3) 
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where ( )X m  is the peak magnitude of the FFT samples and m is the FFT’s 
peak magnitude bin value. From Equation (1), ( )ftX m  is the peak magnitude 
of the FFT sample. Figure 4 presents a plot comparing scalloping loss (green) 
and without scalloping loss (red) for frequencies between 450 MHz and 455 
MHz. In this representation, scalloping loss has been minimized to below 0.2 dB.  
This aids in accurately determining the sine wave’s time-domain amplitude ac-

curately. The coefficients 0 1.0g = , 1
1.88494 0.94247

2
g −

= = −  and  

2
0.88494 0.44247

2
g = =  eliminate the amplitude gain loss without changing  

their scalloping loss performance. Additionally, these coefficients have the po-
tential to decrease computational complexity through the utilization of binary 
representation and the substitution of multipliers with arithmetic right-shifters. 
When applying Equation (3) to rectangular windowed ( )X m  FFT samples and 
compute the flat-top windowed maximum FFT spectral peak magnitude 

( )peak ftM X m= . In this scenario, the estimated value of A from Equation (2) 
will incur an error of no more than ±0.0003 dB. This minimal error is visually 
represented by the nearly ideal solid red curve in Figure 4. 

3.3. Super-Resolution for Frequency Estimation 

When the signal frequency is an integer multiple of frequency resolution, the  
 

 
Figure 4. Reduction in scalloping loss. 
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signal frequency is estimated at the peak bin m with peak magnitude 
[ ] ( ) 2X m A N= ∗ , where A is amplitude of the input sinusoid, and N is FFT 

length. Often, the signal frequency does not fall on the FFT frequency bin, the-
reby reducing the magnitude to [ ] ( ) 2X m A N< ∗ . The super-resolution me-
thod enables computing the true signal frequency with the help of the adjacent 
bins of the peak bin. The ratio of the peak magnitude [ ]X m  and the higher 
magnitude among the two adjacent bins is utilized to determine R. 

 
[ ]

[ ] [ ]( )max 1 , 1
X m

R
X m X m

=
− +

 (4) 

 1
1 R

α =
+

 (5) 

α is computed from Equation (5). If α is close to zero then the true frequency 
is close to the peak bin m whereas, if α is close to 1 corresponds to the true fre-
quency close to 1m ± . The value of α is quantized between the peak bin and the 
bin with a higher magnitude among the two adjacent bins to determine the ac-
tual bin value, which is used to estimate the actual frequency of the time domain 
signal [17]. 

3.4. Super-Resolution after Reducing Scalloping Loss for  
Frequency Estimation 

Super-resolution is embraced for its efficiency in utilizing minimal hardware 
and conducting fewer computations to estimate the actual frequency. However, 
potential challenges arise due to significant noise levels and the risk of scalloping 
loss associated with this method. The super-resolution technique described in 
section 4 is applied after compensating for scalloping loss. Figure 5 depicts the 
value of α and R with and without the scalloping loss technique implemented, 
respectively. As the super-resolution algorithm relies on linear approximation 
for frequency estimation, incorporating it after the scalloping loss technique 
yields a slight improvement. The heightened peak magnitude assists in more 
accurately isolating the signal frequency. 

4. Polynomial Interpolation and Array Indexing 
4.1. Polynomial Interpolation 

The super-resolution technique employs eight quantization points to estimate a 
new bin value when the actual frequency does not align with an integer multiple 
of the frequency resolution. Enhancing the number of quantization points is an-
ticipated to yield improved frequency estimation. To achieve this, we fit a poly-
nomial to the frequency spectrum affected by scalloping loss, effectively increas-
ing the quantization points. Given the symmetry of the frequency spectrum 
around the midpoint between two bins, MATLAB’s linear interpolation using 
the fit function is chosen as the fitting type. Figure 6 illustrates the magnitude 
response with 50 quantization points. 
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Figure 5. Variations in α and R. 

 

 
Figure 6. Curve fitting. 
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The ratio of the peak magnitude of the FFT spectrum to the peak magnitude 
after reducing scalloping loss yields a point mb close to the quantization points 
derived from the interpolation. Utilizing the magnitudes of the adjacent bins 
from the peak bin, the quantized point is added or subtracted from the peak bin 
to generate a more accurate bin number corresponding to the input frequency. 
Suppose [ ] [ ]1 1X m X m+ > − , mb is added to the peak bin m or else subtracted 
from m to obtain the true bin value. The actual bin value is utilized to get the 
input frequency. 

4.2. Array Indexing 

At low Signal-to-Noise Ratio (SNR) values, the methods discussed in section 3 
continue to face challenges in accurately estimating the frequency. To address 
the limitations posed by negative SNRs, a new approach named array indexing 
employing Goertzel’s algorithm [18] is presented. After detecting the bin value 
for the peak magnitude using the general FFT formula, the array indexing spe-
cifically designed for non-integer multiples of the frequency resolution. 

Goertzel’s algorithm is a computational technique designed for efficiently 
calculating individual terms of the Discrete Fourier Transform (DFT). It proves 
beneficial for identifying the presence of specific frequency components in a 
signal. When a particular frequency is chosen for signal analysis, Goertzel’s algo-
rithm iterates efficiently through each sample in the signal, computing coeffi-
cients based on the selected frequency and the signal’s length. The algorithm 
provides real and imaginary parts of the frequency components, close to the reg-
ular DFT or FFT. Magnitude and phase components can then be calculated from 
the obtained real/imaginary pair. An optimized version of the Goertzel algo-
rithm, while faster and more straightforward than the basic Goertzel algorithm, 
lacks the provision of real and imaginary frequency components. Instead, it pro-
vides the relative magnitude squared [18]. 

 [ ]0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 0valueBin =  (6) 

The optimized Goertzel’s algorithm is particularly well-suited for our prob-
lem, given our focus on the magnitude spectrum. The peak magnitude for the 
frequencies at bin 1m − , i.e., 450 MHz, to bin 1m + , i.e., 460 MHz, is com-
puted with increments of 1 MHz. For example, when an input signal of 453 MHz 
is sampled at 2.56 GHz using 512-point FFT, the peak magnitude [ ]X m  and its 
adjacent bin magnitudes [ ]1X m ±  are plotted. In Figure 7, the bin number is 
plotted on the x-axis, and its corresponding magnitude is plotted on the y-axis. 
The peak magnitude falls on bin number 91, and the frequency is estimated as 
91*5 MHz = 455 MHz, but the input frequency is 453 MHz, and the estimated 
frequency is 454.65 MHz obtained using a super-resolution algorithm. Figure 7 
illustrates the effectiness of Goertzel’s algorithm when the target frequency is 
swept from 450 MHz to 460 MHz with increments of 1 MHz. The magnitude 
values are stored in a magG  array. The max index value ( magG ) is computed to 
determine a new bin value, which can estimate the frequency with higher  
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Figure 7. Goertzel Algorithm vs Ideal FFT. 
 

accuracy. The magG  array has eleven values, and the valueBin  array comprises 
precomputed quantized bin values, as shown in Equation (6). 

The first 0 indicates the bin 1m −  and the second 0 indicates the bin m and the 
third 0 corresponds to the bin 1m + . From Figure 7, the peak magnitude value 
will be stored in the fourth position in magG  array. The value stored at the fourth 
position in valueBin  array is 0.4 which is utilized to determine the actual frequency. 
If the index value is less than 6, then the values from valueBin  array are subtracted 
from m else it is added to m. Here, the value 0.4 obtained from valueBin  array cor-
responding to the 4th index value, we subtract the quantized bin value with m to 
obtain the true bin value. The new bin value is used to determine the frequency. For 
example, 91m =  and 0.4valueBin =  since 4magG = , subtract valueBin  from m 
to get the actual bin value 91 0.4 90.6B = − = . Multiplying B with the frequency 
resolution fδ  presents us with the actual frequency (90.6*5 MHz = 453 MHz). 

5. Experimental Results 

The proposed algorithms have been implemented and tested using MATLAB. A 
512-point Decimation in Frequency (DIF) FFT is employed, with a sampling 
frequency of 2.56 GHz, resulting in a frequency resolution of 5 MHzfδ =  The 
input signal-to-noise ratio varies from −10 dB to 10 dB for each frequency. The 
input frequency is swept from 40 MHz to 1240 MHz in incremental steps of 3 
MHz, with the addition of white Gaussian noise. The average frequency error 
and maximum frequency for all the methods are recorded. A total of (400 fre-
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quency values) × (4 methods) × (10 different SNRs) = 16,000 signal test cases are 
performed for the case study. The frequency error value for each signal (i.e., 400 
frequency values) is calculated, and the average and maximum frequency errors 
are plotted in Figure 8 and Figure 9 respectively. 

We observe a marginal improvement between super-resolution algorithms 
with scalloping loss and after reducing the scalloping loss. However, the poly-
nomial interpolation method demonstrates substantial enhancement, particu-
larly as we transition to positive SNR values. It’s noteworthy that this method 
exhibits insignificance when SNR values are more negative [19]. Among all the 
techniques, the array indexing method outperforms, showcasing significant im-
provement in both average and maximum frequency errors for both positive and 
negative SNRs. 

The 512-point DIF FFT utilizing the Dynamic kernel incorporates adders and 
shifters to replace multipliers, enhancing the throughput and performance of the 
FFT. Table 1 outlines the hardware estimates for the four design methodologies. 
The polynomial interpolation method uses 50 registers to store pre-calculated 
quantized bin values and the hardware presented in Table 1. Array indexing uti-
lizes the maximum hardware resources but yields the best results among the four 
methods. Goertzel’s algorithm can be implemented using an IIR filter but may 
be slower for designs requiring high-performance throughput. Nevertheless, this 
method proves highly efficient for design purposes and does not demand tight 
timing constraints. 

 

 
Figure 8. Average frequency error. 
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Figure 9. Maximum frequency error. 
 

Table 1. Hardware estimation. 

Methods Multipliers Adders Registers Adders and Shifters 

Super-Resolution Algorithm 3 12 n/a 27 

Super-Resolution 
without Scalloping Loss 

5 16 n/a 41 

Polynomial Interpolation 1 3 50 8 

Array Indexing 110 1536 11 2086 

6. Conclusion 

Accurately estimating frequencies in a wideband digital receiver using the FFT 
algorithm poses challenges, notably spectral leakage resulting from the FFT’s 
assumption of signal periodicity. This paper introduces two innovative methods 
for precise frequency precision: polynomial interpolation and array indexing, 
comparing their performance against super-resolution and scalloping loss. The 
experimental configuration involves a signal-to-noise ratio ranging from −8 dB 
to 10 dB and a signal frequency sweeping from 40 MHz to 1240 MHz, incorpo-
rating white Gaussian noise. Maximum frequency precision errors for four me-
thods’ super resolution with scalloping loss, super resolution after reducing 
scalloping loss, polynomial interpolation, and array indexing’ are reported. Su-
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per resolution with scalloping loss exhibits a maximum frequency error ranging 
from 5.5 to 3.7 MHz, while super resolution after reducing scalloping loss shows 
a maximum frequency error ranging from 5.5 to 3.5 MHz. Polynomial interpola-
tion has a maximum frequency error ranging from 5.5 to 1.4 MHz, and array 
indexing ranges from 0.8 to −0.2 MHz. Among the four hardware implementa-
tions, array indexing, while utilizing maximum hardware resources, yields the 
most accurate frequency estimation. The paper goes deeper into exploring the 
balance between getting accurate frequency measurements and using computer 
resources wisely. It takes a closer look at finding the right mix between two me-
thods’ polynomial interpolation and array indexing. The goal is to understand 
how to achieve precise frequency results while making the best use of the hard-
ware resources. This analysis provides insights that can be easily applied in 
real-world scenarios, helping design systems that are both accurate and efficient. 
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