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Abstract: The prediction of mechanical properties of cold-rolled steel is very important for the quality
control, process optimization, and cost control of cold-rolled steel, but it is still a challenging task
to predict accurately. For the existing graph structure of graph attention networks, it is difficult to
effectively establish the complex coupling relationship and nonlinear causal relationship between
variables. At the same time, it is considered that the process of cold-rolled steel has typical full-
flow process characteristics and the graph attention network makes it difficult to extract the path
information between the central node and its higher-order neighborhood. The neural Granger
causality algorithm is used to extract the latent relationship between variables, and the basic graph
structure of mechanical property prediction data is constructed. Secondly, the node embedding layer
is added before the graph attention network, which leverages the symmetry nature of Node2vec
method by incorporating both breadth-first and depth-first exploration strategies. This ensures a
balanced exploration of diverse paths in the graph, capturing not only local structures but also higher-
order relationships. The combined graph attention networks are then able to effectively capture the
symmetry path information between nodes and dependencies between variables. The accuracy and
superiority of this method are verified by experiments in real cold-rolled steel production cases.

Keywords: mechanical properties; graph attention networks; nonlinear causal relationship; neural
Granger causality; Node2vec

1. Introduction

Cold-rolled steel, known for its smooth surface and exceptional mechanical proper-
ties, finds extensive applications in various manufacturing sectors, including automobile,
shipbuilding, and electrical appliances [1,2]. Mechanical properties serve as pivotal indi-
cators reflecting the quality of cold-rolled steel during the rolling production process and
act as crucial control parameters. The assessment of these properties typically involves
destructive experiments, incurring significant time and resource costs [3]. Moreover, the
intricate relationships between mechanical properties, process parameters, and chemical
compositions make achieving accurate predictions a challenging endeavor. Hence, the de-
velopment of a mechanical property prediction model based on chemical composition and
process parameters holds paramount importance for reducing production costs, enhancing
efficiency, and elevating product quality.

At present, the model-based methods for predicting mechanical properties of rolled
steel mainly include the methods based on metallurgical mechanism model and the meth-
ods based on data drive. However, in the cold-rolling process, both austenitic phase and
ferritic phase undergo complex microstructure evolution, so it is difficult to establish an
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accurate mechanism model to explain the relationship between rolling process, chemical
composition, and mechanical properties [4,5]. Compared with the metallurgical mechanism
model, the data-driven method is based on the historical data of actual production, which
does not rely on the physical model or theoretical assumptions of the actual construction,
so it can be applied to different types of steel alloys and smelting processes, and is more
flexible in dealing with the diversity and complexity of the problem, and has become an ef-
fective method for predicting the mechanical properties of rolled steel. For example, based
on the multi-grain cascade forest architecture [6], the basic information of steel rolling and
the local information collected by multi-grain are integrated to complete the performance
prediction of steel rolling. Yan et al. [7] applied MSVR and particle swarm optimization
to establish a multi-output prediction model for mechanical properties of cold-rolled steel
and a multi-objective quality control method for cold-rolled products. In addition, with
the rapid development of deep learning in extracting nonlinear representations, it has also
been applied to the field of mechanical property prediction of rolled steel. Considering the
time series correlation in the steel production process, the two-stage time series model [8]
based on the two-stage attention mechanism extracts input features and time features by
introducing input attention and time attention adaptive, so as to accurately predict the
mechanical properties of rolled steel. The CNN-based method [9] realized the CNN-based
steel rolling property prediction method by converting the actual production data into
two-dimensional image data.

Although the above methods have been widely used in the prediction of steel rolling
properties, they cannot accurately model the whole industrial process of cold rolling, which
limits the practical application of the above methods in this field. Graph neural networks
(GNN) provide an excellent solution for modeling industrial data dependencies due to
their strong feature representation and permutation. Chen et al. [10] realized the long-term
prediction of sintering temperature by introducing the adaptive adjacency matrix algorithm
and the time-varying spatio-temporal correlation of process data accurately modeled by the
spatio-temporal graph attention module. Sun et al. [11] realized accurate online prediction
of key indicators of complex industrial processes through multi-modal clustering method
of Gaussian mixture model and dynamic attribution graph attention network.

Nevertheless, it is difficult for existing graph attention networks to model complex
nonlinear causality among variables. We introduce the neural Granger causality (NGC)
algorithm to capture complex nonlinear causality among variables, establishing a graph
structure for predicting the mechanical properties of cold-rolled steel. In order to further
improve the prediction accuracy of mechanical properties of cold rolling, a node embedding
layer is added in front of the graph attention network (GAT), which uses node embedding
method to integrate node path information into GAT. Based on the above methods, a neural
Granger causality and embedded graph attention network (NGC–EGAT) for predicting
mechanical properties of cold-rolled steel is proposed.

2. Theoretical Foundation
2.1. Granger Causality

Given an N-dimensional time series X = (X1, X2, . . . , XT) = (x1, x2, . . . , xN),
X ∈ RN×T , Granger causality (GC) is defined as follows: when i ̸= j and other sequences
are given, the historical value of xj is included in the current value of prediction xi, which
can improve the accuracy of prediction xi, and then it can be concluded that there is GC
between xj and xi. Model-based GC analysis usually uses a vector autoregressive (VAR)
model where, at time t, the time series at Xt is a linear combination of K historical values of
that series, then:

Xt =
K

∑
k=1

A(k)X(t − k) + εtS (1)

where A(k) is the coefficient matrix of N × N, k = 1, 2, . . . , K, and εt is 0 mean Gaus-
sian noise.



Symmetry 2024, 16, 188 3 of 13

In the VAR model, the sufficient condition for the different variables Xj of multivariate

time series X to have no GC on Xi is A(k)
ij = 0, that is, GC analysis can be determined in the

VAR model by examining which values in all lag coefficient matrix A(k) are 0.

2.2. Graph Attention Networks

GAT [12] is a novel network architecture that addresses the shortcomings of graph
convolutional networks (GCN) by using a masked force layer to assign different weights
to different nodes in the neighborhood. Assume that given a set of input node features,

h =

{→
h 1,

→
h 2, . . . ,

→
h N

}
,
→
h i ∈ RF, where N is the number of nodes and F is the number

of features of nodes. The input features are passed through a self-attention layer with
masking, employing the LeakyReLU activation function, and subsequently undergoing
softmax normalization, resulting in attention coefficients:

αij =

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i∥W

→
h j

]))
∑k∈Ni

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i∥W

→
h k

])) (2)

where W is a parameterized weight matrix of linear change for each node, ∥ represents the
joining operation of the vectors. After the attention coefficient αij is obtained, the weighted
summation of the feature vectors is performed as the final output feature of each node:

→
h′i = σ

(
∑

j∈Ni

αijW
→
h j

)
(3)

In order to improve the stability of attention mechanism learning, multi-head attention
is used to extend GAT, allowing the model to learn multiple different weight distributions,
which helps to better capture multiple dependencies in complex graph data. Figure 1 shows
the structure diagram of GAT with three attention heads.
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Figure 1. Schematic diagram of GAT structure. 

  

Figure 1. Schematic diagram of GAT structure.

3. NGC–EGAT Method
3.1. NGC–EGAT Overall Framework

As illustrated in Figure 2, NGC–EGAT primarily comprises two modules: the neural
Granger causal graph construction module and graph attention network integrated with
node embedding layer. Firstly, recognizing the limitations of existing methods in accurately
establishing complex relationships between variables, a novel graph construction method
based on the NGC algorithm is introduced. Secondly, a new embedding graph attention
network (EGAT) is proposed. EGAT captures node path information by incorporating a
node embedding layer before the GAT network. The extracted path information and node
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characteristics are then fed into the GAT network to update node representations. Finally, a
fully connected layer of two layers is used to obtain the final prediction result.
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3.2. Neural Granger Causal Graph Structure

The mechanical properties of cold-rolled steel are usually affected by a variety of
process parameters and chemical compositions, and there are intricate relationships among
them. Therefore, inspired by [13], this paper proposes NGC learning algorithm by combin-
ing long short-term memory (LSTM) with GC analysis, and uses LSTM for GC analysis to
extract complex nonlinear causality between variables. The group lasso is used to reduce
the introduction of redundant edges, and then the graph structure with efficient information
transfer and correct sparsity is constructed.

Specifically, each input component is modeled using a separate LSTM. For the variable
xti at time t, it has the following functional relationship:

xti = gi(x▷t1, . . . , x▷tn) + εti (4)

where gi is a nonlinear function that maps the past t − 1 historical values to xi, x▷ti is the
past t − 1 historical values of xi, and εt is 0 mean gaussian noise.

LSTM networks are often employed to model intricate temporal dependencies. They
incorporate gate mechanisms to regulate information flow, with the cell state ct facilitating
the transmission of long-term dependencies and the hidden state ht aiding in the transmis-
sion of short-term dependencies. The computational formula is expressed as follows:

ft = σ
(

W f xt + U f ht−1 + b f

)
(5)

it = σ(Wixt + Uiht−1 + bi) (6)

ot = σ(Woxt + Uoht−1 + bo) (7)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1) (8)

ht = ot ⊙ tanh(ct) (9)

ft, it, ot stand for forgetting gate, input gate, and output gate, respectively, which are used
to control the information update of ct and ht. Where the forgetting gate ft is used to
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determine what information should be forgotten from the cell state ct, the input gate it
determines what information should be added to the cell state ct, and the output gate ot
determines what information of the current input and cell state should be input to the
hidden state of the next time step. LSTM can effectively capture the nonlinear dependence
relationship between data. Finally, the sequence i at time t goes through the nonlinear
evolution of LSTM, and its output xti can be updated from Equation (4) as follows:

xti = gi(x▷t) + eti = Wiht + eti (10)

where Wi is the output weight matrix. For Wi, if we assume that all lag values k in column j
equal to 0 (i.e., W j

i = 0), then sequence j is not the Granger cause of sequence i, indicating
that x(t−k)j does not affect ht, and, thus, does not affect the output xti. As cold-rolled steel
data are high-dimensional data, in order to select the most relevant causal relationship in
Wi to ensure the sparsity of the graph, group lasso is used in each column of Wi to restrict
the sparsity of the whole group and select the sequence with the most GC with sequence i.
Group lasso is a method to deal with the selection of multiple groups of correlated variables.
Variables are divided into several groups. In feature selection, the sparsity constraint is
introduced to the whole variable group, and the whole feature group is selected or excluded
at the same time, instead of just a single feature, so that variable selection can be more
accurate in the case of intra-group correlation. This method can better balance variable
selection and model interpretation when dealing with high dimensional data. By using
group lasso on Equation (10), it is converted to solving the following optimization problem:

L = min
w

T

∑
t=1

(xti − Wiht)
2 + λ

k

∑
j=1

∥W j
i ∥ (11)

where W j
i is the j-th column of Wi, λ is the penalty function used to control the sparsity

between groups, and the variable xtj with GC for xti is selected through the inter-group
constraint term. GC analysis in the LSTM model can be transformed into a variable selection
problem, that is, whether the elements in the matrix W j

i are equal to 0. At the same time,
Wi is penalized by introducing regularization terms for group lasso, thus, ensuring sparsity
while ensuring correct correlation.

Given N variables, the GC between variables is calculated by the above LSTM model to
determine the connectivity between variables, so as to generate the causal graph structure.
The unweighted digraph G = (V, E, A) is used to describe the causal relationship between
the multivariate variables of cold-rolled steel data, where V ∈ RN is a set of multivariate
node sets, E is a set of edge sets, used to represent the causal relationship between vari-
ables, adjacency matrix A ∈ RN×N is used to describe the relationship between nodes,
and the elements of A are composed of 0 and 1, indicating whether there is a causal rela-
tionship between nodes. Firstly, given sequence (x1, x2, . . . , xN) ∈ RN×T , for sequence xi,
i = 1, . . . , N, the group lasso causal matrix with other associated sequences xj,

j = 1, 2, . . . , N can be obtained according to Equation (11). If the sub-vector W ′j
i ̸= 0,

then GC exists for xi and xj, and the corresponding element in the adjacency matrix A is
set to 1, otherwise it is set to 0, indicating that there is connectivity between the two nodes.
Finally, the above steps are repeated to obtain the adjacency matrix A, and the final graph
structure of the cold-rolled steel performance prediction data is obtained.

3.3. Embedding Graph Attention Network

The attention mechanism of GAT allows the model to dynamically adjust its attention
to node relationships in the face of different scenarios, which enables the model to better
adapt to the relationship changes in the data, thereby improving the robustness of the
model in the face of different input conditions. However, as a typical whole process, the
cold-rolling process requires that the directed path information from the central node to
other nodes of the graph can reflect the causal relationship of various influencing factors in
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the whole production process. However, GAT tends to only focus on first-order adjacent
nodes within the same layer, which is used to aggregate the topological information of
the graph and update the characteristics of the central node [14]. Therefore, in order to
comprehensively consider the information of nodes on the whole path, so as to learn
the continuous feature representation of nodes in the network, a node embedding layer
is added before GAT. The node embedding layer utilizes the Node2vec [15] algorithm,
which leverages the symmetry in its exploration of various neighborhood paths through
a random walk strategy. This process aims to learn the low-dimensional feature space
mapping of nodes. Thus, the high-order neighborhood information of nodes is preserved
to the greatest extent. At the same time, the path information learned by Node2vec
is used in the calculation of GAT’s attention score, so that GAT can consider the path
information and data characteristics of graph nodes in the process of attention score
calculation and information aggregation, so as to more effectively complete the task of
cold-rolling performance prediction.

Node embedding layer: For a given graph structure G = (V, E, A), Node2vec is used
for node embedding to learn the continuous feature representation of nodes and map nodes
to the low-dimensional feature space, so as to learn the path information of nodes in the
network topology. First, given the current node v ∈ V, the probability of visiting the next
node x is:

P(ci = x|ci−1 = v ) =
{πvx

Z i f (v, x) ∈ E
0 otherwise

(12)

where πvx is the non-normalized transition probability between nodes x and v in the causal
graph of the mechanical properties of cold-rolled steel, and Z is the normalized constant.
Subsequently, let the transition probability πvx = αpq(t, x) · wvx, wvx = 1 be the weight of
the edges of the unweighted directed graph, and αpq(t, x) be:

αpq(t, x) =


1
p , i f dtx = 0
1, i f dtx = 1
1
q , i f dtx = 2

(13)

where dtx represents the shortest path distance of nodes t and x, Node2vec guides the
random walk strategy to generate node sequence N by introducing two parameters p and
q, p and q are utilized to balance the symmetry between depth-first search and breadth-first
search, so as to balance the capture of local structure and global structure of the graph in
the learning process and learn the embedding of nodes more comprehensively.

Finally, the generated sequence of nodes is trained using a skip-gram model, which
aims to maximize the conditional probability of a context node given a central node. By
adjusting the node embedding vector, nodes appearing in the same context are closer in
the embedding space. After training, each node will have a corresponding embedding
vector, which represents the position of the node in the learning process. These embedding
vectors capture the structural relationships and similarities between nodes. For node vi,
there exists the following embedding vector:

ei =
(

e1
vi , e2

vi , . . . , ed
vi

)
(14)

where e represents the embedding vector of nodes, which is used to map nodes into the
low-dimensional feature space, and d is the embedding dimension.

GAT layer with path information: Considering that GAT only considers the first-
order neighborhood, it is difficult to characterize the whole process characteristics of cold-
rolled steel. Therefore, a GAT model with path information is proposed. Firstly, the path
information features learned from the embedded model Node2vec are used to calculate the
attention coefficient. The model can consider both the original features of nodes and the
path information of nodes in the network topology in the attention mechanism, and assign
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different weights to different nodes, so as to realize the whole-process representation of
cold-rolled steel. Formula (2) is updated as follows:

αij =

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i + We

→
e i∥W

→
h j + We

→
e j

]))
∑k∈Ni

exp
(

LeakyReLU
(
→
a

T
[

W
→
h i + We

→
e i∥W

→
h k + We

→
e k

])) (15)

Then, the calculated attention coefficient is used to update node features. In this step,
in order to make full use of node features and path information, multi-head attention is
used to update node features. Multi-head attention uses multiple attention calculations
to mine node information in different subspaces, thus, improving the model’s ability to
perceive features of different scales and levels. The calculation process is as follows:

→
h′i = σ

 1
H

H

∑
h=1

∑
j∈N(vi)

αh
ijW

h
→
h j

 (16)

where H represents the number of heads of attention and Wh is the weight matrix.
Finally, the updated node feature vector h′ is fed into a two-layer feedforward layer to

obtain the final predicted value:

h′ =
(→

h′1,
→
h′2, . . . ,

→
h′N

)
(17)

ŷ = ReLU
(
Wh′ + b

)
(18)

where W and b are weight matrix and offset.

4. Experiment and Analysis
4.1. Description of Experimental Data

In order to verify the validity of the NGC–EGAT model in predicting the properties
of cold-rolled steel, the data collected from SPCC steel production line of JISCO Carbon
Steel Sheet Factory were used for experimental verification. According to the smelting
mechanism of cold-rolled steel and the suggestions of field experts, 14 process variables
and chemical components were collected, including coaling temperature (FT1), final rolling
temperature (FT2), cold-rolled steel thickness (FT3), hot-rolled steel thickness (FT4), flat
elongation (FT5), ALS, C, Si, Mn, P, S, Cu, Ni, AL. Through the processing of missing and
abnormal data, 13,485 pieces of data were finally collected, of which the first 80% was used
for training and 20% was used for testing. The objective of this paper is to predict three
mechanical properties of cold-rolled steel, including yield strength (YS), tensile strength
(TS), and elongation (EL).

4.2. Model Performance Evaluation Index and Parameter Setting

In order to measure the effectiveness of the model, three different performance evalua-
tion indexes were selected in this paper, including root mean square error (RMSE), mean
absolute error (MAE), and R-squared (R2). The smaller the value of RMSE and MAE, the
better, and the closer the value of R2 to 1, the better, defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi) (19)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (20)
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R2 = 1 − ∑i(ŷi − yi)
2

∑i(yi − y)2 (21)

where yi is the target value, ŷi is the predicted value, and y is the average of the target value.
The hyperparameters of NGC–EGAT mainly include the hidden size (hid_dim) of

GAT, the number of heads (num_heads); Table 1 lists the node embedding dimensions
(emb_dim), random walk step (walk_len), context size (cont_size), and number of random
walks (walks_pn) of each node in the Node2vector section.

Table 1. NGC–EGAT hyperparameters.

Parameters Values Parameters Values

hid_dim 512 num_heads 14
emb_dim 128 walk_len 10
cont_size 10 walks_pn 10

4.3. Structural Analysis of Neural Causality Graph

In order to verify the feasibility of the proposed NGC graph structure, this paper
compares the structure of cold-rolled steel performance prediction graph constructed by
Pearson correlation analysis. Figure 3 shows the graph structure based on NGC and
Pearson correlation analysis. In Figure 3, the connections between nodes are determined
solely by measuring the strength of the linear relationship between the two variables
through a graph structure built based on Pearson correlation analysis. As a result, the
connections present in the graph structure are limited, covering only a few nodes. However,
the graph structure based on NGC analysis not only contains all the node connections in
the graph structure based on Pearson correlation analysis, but also contains many potential
node relationship connections. Through the analysis, it is found that these potential node
relationships are more consistent with the whole process of cold-rolled steel production
and the conclusions of previous studies. For example, ALS is an important parameter
in the pickling stage, FT5 is an important parameter in the finishing machine stage, and
the pickling stage and the finishing machine stage are usually adjacent processes. In
addition, the literature [16] pointed out that the content of P, S, C, and Mn show a positive
correlation trend with mechanical properties. The literature [17] proposes that simultaneous
adjustment of composition and heat treatment conditions is an effective way to optimize
mechanical properties, so there is a potential relationship between FT1, FT2, and most
chemical components. In addition, in order to quantitatively analyze the validity of the
NGC graph structure, this paper conducted experiments on the NGC–EGAT model using
two graph structures. Table 2 shows the experimental results of the two graph structures
on the NGC–EGAT model. It can be seen from Table 2 that the graph structure based on
neural Granger causality has the best prediction accuracy in different evaluation indicators.
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Table 2. Comparative experimental results of different graph structures.

Methods Target Variables RMSE R2 MAE

NGC
YS 2.926 0.930 1.859
TS 2.501 0.947 1.518
EL 0.596 0.970 0.356

Pearson
YS 2.947 0.926 1.842
TS 2.538 0.945 1.573
EL 0.692 0.960 0.481

4.4. Model Performance Comparison

In order to compare the performance of the NGC–EGAT model, this paper selects five
advanced methods for comparison. The detailed information of the comparison model is
as follows:

1. GATv2 [18] is an improvement of GAT model. The key hyperparameters of GATv2 are
set as the hidden size is 128, the number of heads is 7, and the learning rate is 0.01;

2. GCN [19] is a semi-supervised deep learning model designed for graph-structured
data. The key hyperparameters of GCN are set to the hidden size of 256 and the
learning rate of 0.01;

3. DeepGCNs [20], a variant of traditional GCN, defines a differentiable generalized
aggregation function to unify different message aggregation operations, adopts a
deeper structure, and solves the problem of information disappearance in graph-
structured data. The key hyperparameters of DeepGCNs are set as the size of hidden
is 128, the number of model layers is 4, and the learning rate is 0.01;

4. GraphUNet [21] is a U-Net model based on graph-structured data. It realizes the
feature learning of graph nodes and hierarchical representation of graph data through
the graph convolution operation of hierarchical structure. The key hyperparameters
for GraphUNet are set to a hidden size of 256, a U-Net depth of 4, and a learning rate
of 0.01;

5. CNN–LSTM [22] is a deep neural network that integrates CNN and LSTM models.
The hidden layer size of CNN–LSTM is 64, the time step is 2, the model has 2 layers,
and the learning rate is set to 0.01.

The graph structure constructed by NGC proposed in this paper is used for prediction
of GNN-based networks. Table 3 shows the experimental results of NGC–EGAT and five
comparison models on the test set. As can be seen in Table 3, the proposed NGC–EGAT
method is largely due to the existing advanced methods. In addition, GNN model showed
better performance than the CNN–LSTM model, which also verified that the graph structure
was more able to express the complex dependencies between variables in the cold-rolled
steel data set. Compared with other advanced GNN models, NGC–EGAT has achieved
the best results under different evaluation indexes. This is mainly because NGC–EGAT
not only uses GAT to self-adaptively weight the neighbors of nodes, but also integrates
the structural information of the network topology through Node2Vec. The model fully
considers the path information from the central node to other nodes, so that the model
learns the continuous feature representation of nodes.

In order to visually demonstrate the effectiveness of the NGC–EGAT model,
Figure 4a–c shows the fitting results between the predicted values and the real values
of the three mechanical properties indexes of NGC–EGAT. It can be seen from the figure
that the predicted value of NGC–EGAT fits most of the true value, which also shows the
effectiveness of NGC–EGAT.
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Table 3. Comparative experimental results of different models.

Target
Variables Metrics

Model

GATv2 GCN DeepGCNs GraphUNet CNN–LSTM NGC–EGAT

YS
RMSE 3.803 3.903 3.035 3.486 4.764 2.926

R2 0.878 0.871 0.922 0.897 0.831 0.930
MAE 2.704 2.674 1.921 2.407 2.920 1.859

TS
RMSE 3.135 3.086 2.658 3.122 4.673 2.501

R2 0.916 0.919 0.940 0.917 0.839 0.947
MAE 1.969 2.066 1.637 2.117 3.554 1.518

EL
RMSE 0.712 0.699 0.642 0.712 1.221 0.596

R2 0.957 0.959 0.965 0.957 0.884 0.970
MAE 0.482 0.480 0.432 0.497 0.930 0.356
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In addition, Figure 5 presents the error rates of different models within the range of
actual industrial production error requirements. The actual industrial production error
ranges of YS, TS, and EL are ±10 Mpa, ±10 Mpa, and ±3, respectively. By looking at
Figure 5, it is clear that the NGC–EGAT model has the lowest error rate in these areas. It is
further confirmed that NGC–EGAT is more suitable for actual industrial production needs.
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4.5. Ablation Experiment

To verify the effectiveness of each module in the proposed method for model perfor-
mance, ablation studies were performed on the test set. In the NGC–GCN method, GCN
is used to replace GAT, and the effectiveness of GAT is verified. In NGC–GAT method,
Node2vec node embedding is removed, and the NGC graph structure training test GAT is
used directly to verify the effectiveness of using Node2vec node embedding to integrate
structural information. The experimental results are shown in Table 4. It can be clearly
observed from Table 4 that compared with the GCN method, the GAT method shows signif-
icant improvement in different mechanical properties. After removing node embeddings,
the performance of the NGC–GAT model decreases significantly compared with NGC–
EGAT model, which also verifies the importance of integrating structural information, and
also proves that integrating structural information through Node2vec node embeddings is
more in line with the requirements of cold-rolled steel whole-process production process.

Table 4. Ablation experiment results.

Methods Target
Variables RMSE R2 MAE

NGC–GCN
YS 3.903 0.871 2.674
TS 3.086 0.919 2.066
EL 0.699 0.959 0.480

NGC–GAT
YS 3.827 0.876 2.466
TS 3.029 0.922 1.911
EL 0.685 0.960 0.430

NGC–EGAT
YS 2.926 0.930 1.859
TS 2.501 0.947 1.518
EL 0.596 0.970 0.356

5. Conclusions

In this paper, an NGC–EGAT model for predicting mechanical properties of cold-
rolled steel is presented. Firstly, the model employs the NGC algorithm to systematically
construct the graph structure for predicting mechanical properties based on data related to
cold-rolled steel. Subsequently, the Node2vec node embedding method utilizes a random
walk strategy to explore diverse neighborhood paths of nodes, extract the path information
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features of graph nodes, and fuse the path information features with the original data
features. After that, the GAT is used to learn the dependencies between multiple variables
and the path information of the graph nodes simultaneously. Finally, the validity and
robustness of the NGC–EGAT method are verified by experiments on real data sets, and
the feasibility and superiority of NGC–EGAT in predicting the properties of cold-rolled
steel are also proved.
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