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For a wide class of solutions to multiplicatively advanced differential equations (MADEs), a comprehensive set of relations is
established between their Fourier transforms and Jacobi theta functions. In demonstrating this set of relations, the current
study forges a systematic connection between the theory of MADEs and that of special functions. In a large subset of the
general case, we introduce a new family of Schwartz wavelet MADE solutions 7", (t) for ¢ and A rational with A > 0. These
W' ,(t) have all moments vanishing and have a Fourier transform related to theta functions. For low parameter values derived
from A, the connection of the 7/, ,(t) to the theory of wavelet frames is begun. For a second set of low parameter values
derived from A, the notion of a canonical extension is introduced. A number of examples are discussed. The study of
convergence of the MADE solution to the solution of its analogous ODE is begun via an in depth analysis of a normalized
example #5153 (t)/W _y3,,5(0). A useful set of generalized g-Wallis formulas are developed that play a key role in this study
of convergence.

argument ¢t is an advancing of the parameter t by g" > 1,
as q is taken to be greater than 1 and y € N.

This paper expands the study of a class of solutions of mul-
tiplicatively advanced differential equations (MADEs) by
determining the relationship of their Fourier transforms to
Jacobi theta functions. The class of solutions under consider-
ation consists of the Dirichlet-like [1] series:

00 e—q"'t

fu®= X V" 1)

fort >0, wherey e Q, A€ Q" andg> 1.
Each of the f,,,(¢) in (1) satisfies the MADE.

FO ) = (12 R f (g7, 2)

where A/2 = p/8 with y/6 in a reduced form and y, § € IN; see
[2]. Note that (2) is multiplicatively advanced in that the

In general, as is shown in [2], there are nonunique ways
to extend the f,,(t) from 0<f<oco to the negative reals,
obtaining F,,, (t) on —co <t < co with F,(t) also satisfying
the MADE (2). To overcome this issue of nonuniqueness, we
first extend f,, () (perhaps discontinuously) to the negative

reals by defining _)NCM(t) to be.

N R >0,
Fonlt)= {f wlt 1 3)

0, t<0.

Then, we utilize only fw(t) to obtain a new function
W ,(t) in €°(R) which is naturally generated by f, (),

and we further observe that for low parameters (namely, 1
<86<3 and §=0mod ff) 7,,(t) is indeed an extension

of f,,(t) satisfying (2). Here, B is obtained as (u+1)/2=«a
/B with a/p in a reduced form.
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In attempting to compute the Fourier transform

Frno)w= =] e awd @

of fH)A(t), we are led, instead, into discovering a relation

between a weighted average of the Z[f,,(#)](x) of form

{z (@] F[ Fn ()] (W) (5)

where M, p,, p, depend on g, A and w is an M™ root of unity
to a similar weighted average of 23'/6(Q; zM).
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where M, D, y, p, are determined by g, A and @ is a (Dy)™
root of unity, while 0 is the Jacobi theta function given by
(10) below, z; is a scaled (Dy)™ root of ix, and Q=g**.
See equations (98) and (99) of Theorem 13 for further
details.

One then applies the inverse Fourier transform to (5) to
obtain the new functions

V)= 5 [MZ @)% Fun(0)] (W)] 0, )

£=0

which are central to this study. These new %, (t) compre-
hensively generalize each of the main examples we have pre-
viously studied, including K (g, ¢) in [3] and ,Cos(t), ,Sin(t)
in [4, 2]. For certain low values of &, we show that the
W', (t) give unique, canonical extensions of the associated
fua(t) which satisfy the MADE (2). In general, for higher
values of 8, the 7,,,(t) are not extensions of f,,(¢); how-

ever, they are all Schwartz wavelets with connections not
only to wavelet theory but also to special function theory
in that F[7',,(t)](x) is expressed in terms of (6) and thus
in terms of the Jacobi theta function. See (98) and (99) of
Theorem 13 for specifics.

We next determine a simple criteria for the %,,,(t) to
not identically vanish, whereby the relationship of their Fou-
rier transforms to the theta function remains substantive, as
described in Theorem 23. This relationship is seen to greatly
extend and generalize each of the special cases of Fourier
transform computations that have been computed in all of
our previous collected work, including [2-6]. Furthermore,
even in those cases where 7, (t) vanishes identically, we
are still able to provide a (more technical) relation between
the Fourier transform of fﬂ, 5 (t) and the Jacobi theta function
in Theorem 28. We then begin applying the above discover-
ies to wavelet theory, producing numerous examples of new
Schwartz wavelets generating frames for #*(R).
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Furthermore, considering the MADE (2) to be a pertur-
bation of the classical ODE

O =(0f(e), (8)

with g > 1 in (2) considered to be the perturbation parameter
as g — 17, we then initiate a study of convergence of the
normalized solution of (2) to the classical solution of (8).
In particular, we prove convergence for the normalized
W _43.15(t) to the classical solution of (8) with convergence
being uniform on any compact set of R; see Figure 1. We
also exhibit graphical evidence for such convergence of other
normalized 7, (t).

The convergence seen in Figure 1 mirrors earlier conver-
gence results [4] we have been previously able to obtain in
the canonical extensions for the special cases: (1) u=0;21
=1 which normalizes to ,Cos(t) discussed in Section 5;
and (2) p=1;1=1 which normalizes to ,Sin(t), also dis-
cussed in Section 5. The convergence of ,Cos(t) to cos (t)
and the convergence of ,Sin(t) to sin (¢) are illustrated in
Figure 2.

We conclude the paper with a set of generalizations of
Wallis’ formula for 71/2 that we call generalized g-Wallis for-
mulas, and we demonstrate their utility in the study of con-
vergence of normalized solutions of MADEs to their classical
analogue ODEs.

We mention that the current work falls in the area of
functional differential equations of multiplicatively advanced
type. Studies in functional differential equations include for
instance [7-9]. More precisely, the current work falls under
the area of g-difference differential equations, where the
multiplicative advancement y(¢) — y(qt) is seen as a dila-
tion that is denoted o, [y|(t) = y(qt). There is a robust study
within the area of g-difference differential equations with
dilations involving g > 1. This is highlighted by works of L.
Di Vizio [10-12]; C. Hardouin [11]; T. Dreyfus [13, 14]; A.
Lastra [14], [15-20], [21-23]; S. Malek [14], [15-20],
[21-23], [24-27]; J. Sanz [21-23]; H. Tahara [28]; and C.
Zhang [12, 29], along with further references by these
researchers and others. Also, for good background refer-
ences to the current work, consult [2-6, 30-34] (especially
[2, 4]). These last references also exhibit a number of various
applications of global solutions of MADEs.

L.1. Preliminaries and Salient Properties of the Jacobi Theta
Function. We shall need to extend the definition of £, (t)
to the case that the argument is complex and lying in the
right half plane.

Definition 1. Let q> 1,4, A € Q, with A >0. Then for >0
and the function f,, () given by (1), one defines for %(z)

>0 (that is, for the real part of z € C nonnegative)

m e—q"‘z
(_1) q’”(’”‘“)m’ (9)

18

fp.,/\(z) =

m

—00

which is analytic for #(z) > 0.
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FiGURE 1: Plot of y=cos (t) (blue dots) approached by y=%"_,;,,5(t)/W _4;3,(0) for: g=1.3 (red dashed), g=1.1 (solid black).
Convergence is uniform on compact subsets of R as ¢ — 1*.

FIGURE 2: (a) y = cos (x) (solid black) approached by y = ;Cos(t) for g = 1.35 (dotted-dash blue), g = 1.15 (dashed red). (b) y = sin (x) (solid
black) approached by y = qSin(t) for g =1.35 (dotted-dash blue), g =1.15 (dashed red).

Next, recall that for g>1 the Jacobi theta function is Two properties of the Jacobi theta function of interest
given by are that
00 n 0 forallpe Z 0(q;q u) =g’ ?"V2uP0(q; u),
0(qsu) = Z ul/zzﬂqH<1+£)(1+ 1+1>’ uf)( 'u(_l)—e) su) o (12)
e qn(n— ) 4 q ugq" q; = (q sU)s

(10) which are proven in [5] and [6], respectively. From the prod-
uct formula in (10), one sees that

where
0(q;u) =0 u=-q forsomep € Z. (13)
i 1
My = H (1 - W) . (11) As indicated earlier, the Jacobi theta function plays a major
n=0 1 role in this study in the computation of Fourier transforms.



2. Proof of the Relation of Fourier
Transforms to Jacobi Theta Functions

We proceed immediately to the computation of Fourier
transforms. For y, A € R with A >0 and given f,,(f) is as

in (1), we define

fua(t) = fur®)= Y (~1)fe gt fore =,
wA = =—00
0, fort <0.

(14)

We now restrict y, A € Q to be rational with A >0, and
let x € R. One then has the following computation of the

Fourier transform ,97[]‘”’)‘(1‘)](36) offw(t):

- 1 (® .-
] 0= =] e
L[ O k el
= N L e kz (-1) PR dt
1L L1 JOO ookt
- UL
van 2, g,
1 & 1 —ixt—gkt |
- Y Ve
27Tk:—oo q( ) —ix—q
_L§ (-)f 1
= _qk(k—y)//\ (ix n qk)
1 i -(—l)k qk(;u-l)//\
= _qk(k+1)/)t (ix " qk)
1 00 I (—l)k (qZIA)k(Iﬁ'l)/Z

2m = (qz//\)k(kn)/z (ix+ (qzm)k}t/z)

1 oo [ (_1)k Qk(ﬂ+l)/2
— P k;()o _Qk(k+1>/2 (ix + Qk/\/Z)
(15)
IR I Ve
= o k; QT2 ( . [ y/6)) (16)

where in (15) and (16) Q= qm and for conciseness in mov-
ing from (15) to (16), one has (¢ +1)/2 = a/ff and A/2 = y/6,
where a/f8 and /8 in Q are taken to be in a reduced form
with a € Z and B,y,6 € N. We extend F|f,,(#)](x) to the

complex plane by setting

1 i (_l)k [Qk] (a/B)
21,2 Qk(k+1 )2 ( (, [Qk] (y19) )
(17)

F|fur(0](©) =
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for { € C\ S where S={iQ"® | ke Z} denotes the set of {
where the denominator in (17) vanishes. Note that 97[]7M
(1)](€) is defined at { = 0 by virtue of the quadratic exponent
k(k +1)/2 of Q in the denominator counteracting any growth
of the linear exponent k[a/f3 — y/d] of Q in the numerator of
(17). Also for C* = C\ {0}, note that, if U is any open region
with compact closure U ¢ C* \ S, one has that for { € U the
distance d; from { to S is positive, as the only cluster point
of Sis 0. Furthermore, the distance d(U, S) from U to Sis also
positive. Hence, we have

s T
2 o | Qe (C [Qk] %) )

3 1 i 1 [Qk] (a/P) (18)
- \/Z_nk:—oo Qk k+1 ¢

. &) 1 [Qk] (/)
- \/“ Z [Qk k+1)/2 d(U S)

< 00.

Hence, the truncated sums

)k [Qk] (a/B)

\/— Z Qk (k+1)/2 (( [Qk] y/5) ? (19)

which are analytic on U, approach & []‘M)A(t)](c ) uniformly

on U as N — co. Thus, 9[]7”/\(1‘)](0 is analytic on U [35]
and therefore analytic on C*\S.

We have seen in [2] that the “alternating Q-combina-
toric” (—1)k/Qk<k+l)/2 in (16) can be given by the residue of
1/[u6(Q; u)] at a simple pole u = —QF under a computation
of an appropriate contour integral about a region containing
u=-Q". Here, 0(Q;u) is the Jacobi theta function given by
(10). Observe that the term [Qk](a/ﬁ) /(ix + [QY] /%) ) in (16)
would then be obtained from evaluation of [-u]“/?/(ix +

[~u]""®) at u = —QF. Therefore, as a starting point, we would
be interested in integrating the expression

! 4™ (20)
uf(Q;u) (Z+ [—u]w&)

around an appropriate closed contour I' in the complex
u-plane, where we set z = ix later. However, since there is in
general a multivalued issue with expression (20) if a/f3 or y/d
are not integers, we set u=v" in (20), where M >0 is the
least integer such that Ma/f and My/d are both integers,
and we integrate
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1 [_VM] (a/B)
Jr vMo(Q; vM) (Z + [_VM](V/5)>

MvM1dy

[Voc] (MIB) eimx/ﬁ

1
=M dv.
JF VG(Q 3 VM) (Z + [Vy](M/‘s)eiﬂy/&)

Note that, since « and 8 have no common factors and
since Ma/f € Z, one has that 3 divides M. Similarly, since y
and 0 have no common factors and since My/§ € N, & also
divides M. Since M is the least such integer, M is the least
common multiple of 8 and . Thus,

1
foraeZ, p,y,8eN with Bro g
2 B
A (22)
LY in reduced form,
2 6
we set
M M
lecm{ﬁ,s}, B:E, DZE. (23)

We then divide (21) by M and integrate the following
simplified version of (21)
,VBoteiﬂa/ﬁ

1
JT vO(Q;vM) (z+ vPreimyid) ar. 24)

around a closed contour I' in the complex v-plane, where
the exponents M, Ba, and Dy are now integers (avoiding any
multivalued issue in a would-be contour integral involving
(20) by instead using the integration in (24)). The contour
I' will later be taken to be the oriented boundary of an annu-
lus centered at the origin. This key step in avoiding multiva-
lued issues in moving away from (20) to the integral in (24)
allows us to overcome the limiting assumptions in earlier
work (that g is odd and A is even in Theorem 6.3 of [2] or that
uis an integer and A is 1 in Theorem 6.5 of [2]) to now handle
the general case in this study (where y and A are allowed to be
rational, with A > 0).

In anticipation of a residue computation of the expres-
sion (24), we begin by examining the product representation
of the Jacobi theta function 8(Q;u) in (10) and removing
one appropriate factor from the product corresponding to
the vanishing of 6(Q; u) when u=—-QF. That is, note that
from (10), one has that for k>0

= 1
@0t [(1+ ) (1 i)
n=0

(1) o BT, ) (1 i)

(1+Q) (k1 Q;su)= (QkQ”‘) Ok1Q:u)  (26)

where for k >0, the expression 0(k | Q; u) in (26) is defined
by the bracketed expression in (25), namely,

R (A ()

Similarly, for k <0 one has that

0(Q;u =g H(l + Q”> (1 + qunH)
( uQ|k) [”Q H < (28)

k
<1+ élk) (kIQ;u)=<u+uQ>6(k|Q;u), (29)

where for k < 0, the expression 0(k | Q; u) in (29) is defined
by the bracketed expression in (28), namely,

0(k| Qs u { 10‘1(1 + @) n:(ﬁk“(l + %)] |

(30)

Thus, via (27) and (30), the expression 6(k|Q;u) is
defined for each k € Z.

We pause the discussion on representing 8(Q;u) in
terms of O(k | Q; u) in order to record a series of useful com-

putational lemmas. The first such lemma evaluates 6(k | Q;
~Q) as an “alternating combinatoric.”

Lemma 2. For k>0 and 6(k | Q; u) as in (26), one has

o) o 1 ()0 o)

n=0,n+k
— (_I)ngQk(kH)/Z
(31)



And for k<0 and 6(k| Q;u) as in (29), one has

s 1
tio0)-[ui(-2) 1] 55
( ) H Q n:O,nl;\[lq—l Qk !
k k(k+
= —(-1)f QD=
(32)
Proof. The proof is given in Lemma 5.1 of [2]. O

The second lemma will provide a structure for the proof
of the third lemma, and it will be utilized in a subsequent
residue computation.

Lemma 3. For an integer M > 2, let w = ™™ be an M™ root
of unity. Then,

M-1
MM = (x - b) fobe-f—(x b) TT(x - «b). (33)
j=0 p=1
Hence,
M-1 M-
Zx]bM’l’] Hx w’b). (34)
j=0 p=1

Proof. Upon expansion of the middle expression in (33), the
left-most equality is self-evident. The right-most equality in
(33) follows from the fact that for each p€ {0,1,---,M -1}
one has w?b is a root of ¥ — b, and hence, x — w’b is a fac-
tor. To obtain (34), one divides the right two expressions in
(33) by (x—b). The lemma is now proven. O

The third lemma will simplify the computation in (50)
below.

Lemma 4. For an integer M > 2 let @ = ™™ be an M™" root
of unity. One has

M-1
(35)
p=1

Proof. Set x=1=0b in (34) to obtain (35). The lemma is
shown. O

We record three further lemmas on the behavior of roots
of unity for later computational use.
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Lemma 5. Let w = ¥ be an M" root of unity, and let ¢
=P for some p € Z have order N. Then,

N-1 I, ifN=1,
Z ¢t = In particular,
=0 0, ifN22, (36)
w1 ifM=1,
w =
=0 0, ifM=2.

Proof. If N =1, then ¢°=1. If N >2, then let o= Y '¢"
Observe that since ¢V = ¢° we have ¢o = o which gives 0 =
(1-¢)o. Since 1 —¢+0, we conclude o =0. In particular,
if p=1, then N=M and the second equality in (36) holds.
The lemma is demonstrated. O

The next lemma generalizes the previous lemma.

Lemma 6. Let w = ™ be an M" root of unity. Let p € Z be
fixed. Then,

M-1 [ E]P M, ifp=0 mod M, (37)
w | = )
0, ifp+#0 mod M.

Proof. If p is a multiple of M then [0']” =1 and then Y’
(0] = ¥5"1 = M. If p is not divisible by M, then w? #1 is
a root of unity with order, say, N > 1, with NT = M. Then,

Y W)= Y W= Yl Y W)
=0 £=0 - =0 C;I\l;l_l (38)
+ Z [wpf+~-~+ z [w"]e
(=N (T-1)
=0, (39)

where the vanishing in (39) follows from the vanishing of
each summand

&UM%WWWEW% (40)
e=(j-1)N =0

in (38), which in turn follows from an application of Lemma
5. This proves the lemma. O

The following is a refinement of Lemma 6.

Lemma 7. Let 0 = e™™ be an M™" root of unity, with M = ab,
where a, b € N. Let p € Z be fixed. Then if a = 1, one has

for allp, (41)
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and if a> 1, one has

a, if p=0 mod M,
ail[we]pz 0, ifp;EOmodMundp:Omodb,.
- (' =1) 6 if p#0 mod Mandp#0 mod b
@1 , ifp#0 mo andp# 0 mod b.

(42)

Proof. Let o = Y-} [@"]". Then, if a =1, one has o = [’] =
17 =1, giving (41). If a > 1, one has

o= [ =[]+ Y [0 - [0] = [} +o-1
- - (43)

Hence,
[@f - 1]o = [0 - 1. (44)

If p=0 mod M, 0=y [w'] =35 1=a, giving the
first case in (42). If p# 0 mod M and p=0 mod b, then w*
is a b root of unity and the right hand side of (44) vanishes
while [wP — 1] # 0, giving o = 0 for the second case. Finally, if
p#0 mod M and p#0 mod b, then w? is a b™ root of unity

and the right hand side of (44) does not vanish while [wf —

1] #0, resulting in o = ([w*]f —1)/[wf — 1] #0. This shows
the third case and finishes the proof. Note that the third case
is the only case with p # 0 mod b, because in the first case if
p=0 mod M with M = ab, then p=0 mod b. This gives the
lemma. O

We return now to the discussion in (25)-(30). Let k > 0.
In (25) and (26), we let u = v™ and w = €™M be the M root

of unity; one then has that, for each £ with 0 <€<M -1,

o vM 1
G(Q;VM>=(AQH(1+ a) <1+W)

T Y

, <1 . VQAZ>9(kIQ;vM) - <Qk +kVM>9(k| QM) (46)

. (H%ol (v _ wjeirr/MQk/M)

o >9(k|Q;vM)

_ (v - wte™MQHM) (Aﬁ (V_wjein/MQk/M)> (47)

Qk
O(k1Q;v™),

j=0,j#¢

where (27) was used to move from (45) to (46) and (33) in
Lemma 3 was used to move from (46) to (47). Thus, for k
>0, the residue of f,(v)=1/[v0(Q;v™)] at v, =w'e™

Q"M is given by

Qk
Res(fp Vk,z) = wzeiﬂ,MQk/M
1
(Hj\;l a’;# (wteim™ QFM _ i gintM QKIM ))

1
9 (k |Q; [wte™ QM) M)

(48)
Q 1
= . : 49
[t QM) (T (1 - ) ) 0(k1 Q=) )
L S !
~QMBEIQ-Q)] M1 ] (50)
(_1)k+1 1
" B QER M (51)

where we have factored out wte™ QM from each factor in
(Hjﬁa; Lo(@'e™MQIM — ™M QM) in the denominator
of (48) to obtain (49); and the first equality in (50) follows
from Lemma 4 if M >2 (and is automatic if M =1); and
the second equality in (50) follows from (31) of Lemma 2.

Let k < 0. In (28) and (29), we let u =vM and w = ™M,
one then has that, for each £ with 0<¢<M -1,

O(Q;vM)zyQﬁ(1+gz><l+1mém)
TOER| (-
Y )noﬁkll HVMQ”“)]

1 v +Qk
:(1+VMQk> (k1Q;v™) ( ) (k1 Q;v™)

(53)

M=1( i in/M AkIM
=<HJ‘—° rora )>9(k|Q;VM)

in/M Qk/M )

_ (v-ute H ( WeiQ k,M)> (54)

j=0,j#¢
9(kIQ;VM),



where (30) was used to move from (52) to (53) and (33) in
Lemma 3 was used to move from (53) to (54). Thus, for k
<0, the residue of f,(v)=1/[v0(Q;v™)] at v, =w'e™
Q"™ is given by

N B [wz ein/MQk/M}M
es(f1> Vie) = T tem M QM
1
()

1
(k1 Qs [wremi )

(55)
_ -Q 1
[t QM) (TS, (1 - 01 ) 0(K1 Q- 56)
_@ ! _! !
@ MPHEIQ-Q)]  Tm[-rpw] )
(_1)k+1 1 (58)

= V%Qk(kﬂ)lz M’

where we have factored out w'e™ QM from each factor in
(Hj\g; Lo (@' e™MQIM — ] e™MQMM)) in the denominator
of (55) to obtain (56); and the first equality in (57) follows
from Lemma 4 if M >2 (and is automatic if M =1); and
the second equality in (57) follows from (32) of Lemma 2.
Note that the form of the final expression in (51) agrees
with the form of the final expression in (58). Hence, we have

that for all k € Z the residue of f,(v) = 1/[v0(Q;vM)] at v,

— @lel™M QM

is given by

(_1)k+1 1

Res(fi, Vig) = ————75— - (59)
P Tkt [,%Qk(k“)/zM

The previous discussion allows us to reach the following
conclusion:

Proposition 8. Let «, 3,v,6, M, B and D be as in (22) and
(23). Let ke Z, w=¢e™"™, and ¢ satisfying 0< <M -1 all
be fixed. Let z € (C\{—[a)MQk/M]DY} be fixed. Then the resi-
due of

1 B gimal B

fZ(V) = VQ(Q ; VM) (Z + VDyeirrylﬁ)

(60)
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at v, = wte™M QM is given by

(f ) ( 1)k+1 1
Res >V = D
2 ke uw Qk(k”)/z M (Z [: )Eeirr/MQk/M] Yeirrylﬁ)

(61)

[ whemM Qk/M] Bt jimalp

(_1)k+1 ] [w€+1Qk/M]B“
) #?)QWHWM <z+ [wEHQk/M] DY) ’

(62)

Proof. Referring to (24) and (59) and the discussion above,
equality in (61) follows immediately, once one determines
that

yBaginalp

(z + vDreimyd) (63)

is analytic in v at v, = w'e™ QM. Thus, we must require

- Dy ; N .
that z + [w'e™MQFM] ™ /0 1 0, which is equivalent to z

# —[wz“Qk/M]Dy, as seen in the next sentence. Equality in

(62) follows directly from the facts that e = [¢in/M]M/F
- [ein/M]B“ and ™ — [em/M]MV/5 - [ein/M]DV. The proposi-
tion is now shown. |

Note that when € = M — 1 and z = ix in (62), the resulting
expression matches the k™ summand in (16) up to the con-
stant factors 1/v/27 and (=1/[Mu3))).

Having found the residues at w'e™™ QM the next prop-
osition allows for the determination of the residues of f,(v)
in (60) at the roots of (z+ vPYe"™"?). First, observe that (z
+vP7em™0) =0 precisely when vPY =ee 07z namely,
when v = @*e™PYle=mv/BDY 7 wwhere z, is a [Dy]™ root of z,

@ = e>/PY] is the [Dy]™ root of unity, and 0 <x < Dy — 1.

Proposition 9. Let z € C*\S where S= {—[wf”Qk/M]Dy | ke
Z,0<j<M~-1}. For 0<k<Dy—1, @=¢e""IP, z, a fixed
[Dy]™ root of z, and z, = e™!PVle= VIV 7 | the residue of

1 VBaeimx/ﬁ ”
fZ(V) - VG(Q;VM> (Z+VDyeiny/6) ( )
at v, = @ ™Vl M0z = ¥z, is given by
1 1 ~K Ba iﬂd/ﬁ
Res(f0v,) i (65)

) D_VQQ(Q; @z

Proof. Equation (65) holds for Dy =1 upon setting v=—
ez in the expression vE*e™F/[v9(Q ; vM)e™"]. Observe
that for Dy > 2 the expression (z +v??¢"™") can be factored
as follows:
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< z 4+ P einy/a) — oI (VD)/ _ pinpmimyld z) (66)
Dy-1
171y/8 (V _ a)jein/[Dy] e—irry/[(?Dy] ZO> (67)
j=0
Dy-1
=™ H - lz)) (68)
=(V—(I)KZI) [eznylé H (V—&)le)‘|, (69)
j=0,j#x

where one uses (33) to move from (66) to (67) and one uses
the definition z, = &™PVle™/ODVz to simplify (67) into
(68). Notice next that evaluation of the bracketed expression
in (69) at @*z, yields

[éﬂ)’/(s H ((ble —WZI)]
j_

=0,j#K
_ Dy-1 A (70)
— emy/é[&);czl]Dy—l IJH (1 _ L:)J_K)‘|
j=0,j#x

= ™0z, P Dy
where equality in (70) follows from (35) in Lemma 4. [

To compute the residue of f,(v) in (64) at v=v, = @z,
one observes

1
CENICHEEN

Ba i
@ pimal B

Res( 2> Vx) =

(71)

[@*z,]
) —1 ~x o
[e’ﬂv/‘?HJZVO,#K (w z, — aﬂzl)}

1 [a)le]theirroc/ﬁ
= : Jup - 72
Wzl]e(Q; [d)"zl]M) ez Dy )
1 [&)Kzl]BlXeina/ﬁ
= 73
ezny/&[a)lczl]DV 9<Q; [&)KZI]M) Dy ( )
~ 1 [a)le]theirm/ﬁ
- % Dy ' (74)

SICHCEAS

where (71) follows from (69) and (72) follows from (70),
while (73) follows from a consolidation of the factors [@*z,

] and (74) follows from the facts that @ is a [Dy]™
_e—m'y/i)‘

root of
unity and le)y = z. Of course, we must have that 1/(
v(Q;vM)) is analytic at v =v, = @"z;, and hence, [@"z,]"
# —Q* for any k € Z, which is seen to be equivalent to z #

—[@"Q*M)" for any j=0,-.M-1, and any keZ.
Furthermore, we must have [@"z,] # 0, which is equivalent

to z#0. Thus, we require that z € C*\S, as hypothesized.
The proposition is now proven.

Lemma 10. Let M =lcm {f3,8}, and let NeN. Set I'y =
Cy —cy=0Ay be the positively oriented boundary of the

annular region Ay in C enclosed by the circular paths Cy
— ((Q(NH)/M + QN/M)/2)6i¢ and N ((Q( -N-1) M +Q N/M)/
2)e!%, where ¢ increases from 0 to 2m. Let z € C*\S, where S
= {— [0 Q"M)™ | ke Z,0<j< M- 1} and w =¥,

Let v=a"z; for 0<x<Dy—1 denote the roots of z+
vPYemalB — 0, where @ = &2V, 7, is a [Dy]™ root of z, and
z; = e™PYlem im0V 7 - Choose N sufficiently large so that
for 0<x<Dy—1 one has &z, € Int(Ay), the interior of
Ay. Then, for f,(v) as in (62), one has

1 ina/B
dv= A d
JFNfZ(V) v JFN v0(Q; ) + VDYemY/S) v

(Q;vM) (2
M-1 N _\k+I 0+1 yk/M B
wy M 5 S [QD2 44 [wka/M] Dy

(75)

emip g Dy-1 ]Bzx

[@*z,

(-2) Dy & 6(Q:(@'z)")

+2mi—— (76)

Proof. The integral over I'y yields 27i times the enclosed res-
idues, which occur at v=v, = 0"z, for 0<x<Dy—1 in Int
(Ay) the interior of Ay, as well as at the zeroes of 6(Q; vM)
in Ay, which by construction of I'y are v=v;, =w'e™

Q"M for —-N <k<N and 0< €< M — 1. So the residue theo-
rem gives

J 1 1/Boceirmc/,li p
. v
r, VO(Q;vM) (z+ vPreimyid)

M-1 N Dy-1
= 27Ti<z Z Res(fz,vk,e)> +271i< Z Res(f,, VK)>

=0 k=—-N

(77)

[w“l Qk/M] Ba

78
+ [wm Qk/M] DY‘| ( )

, (79)

1 N k+1
—Zﬂz—MZ Z [ .

eimxlﬁ 1 Dy-1 [(DKZI}BD‘

+2mi—— — _—
(=2) Dy 5 0(Qs[atz]")
where Res(f,, vj,) in (77) has been replaced by (62) to obtain
the summation in (78) and where Res(f,, v,) in (77) has been
replaced by (65) to obtain the summation in (79). The
expressions in (78) and (79) now give (75) and (76), and
the lemma is proven. O
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Lemma 11. Let the assumptions in the first paragraph of
Lemma 10 hold. Then,

| 1 Vtheimx/ﬁ i
i - =0, 80
NinOOJcN vO(Q;vM) (z + vDreimyd) i (80)
1 VBoceimx/,B
li - dv|=0, 81
Ninm,[qw vO(Q: V) (z + Ve [ (81)
and hence,
1 vBoceimx/ﬁ
li . dv| =0, 82
Nﬂloojr\T vO(Q; VM) (z + vPremd) dv] (82)

1 yBa gimal

li dv=0. 83
NE»leFN vO(Q; VM) (z + vDrem”) Y (83)

Proof. We show (80) and (81), which implies immediately
that (82) and (83) hold. Now, the vanishing of each of the
limits in (80) and (81) holds because 6(Q;v™) grows suffi-
ciently rapidly as N approaches infinity for v € Cy or v €
cy- This rapid growth will follow directly from the identity
(12). Designate C,={w|w=((Q"™ +1)/2)e*, ¢ € [0, 2r]}
as a reference circle of radius p:=(Q"™ +1)/2>1 which
by construction satisfies that 6(Q ; w™) never vanishes. This
nonvanishing is the result of the fact that 1 < p = [w| < Q"M,
whereby 1 < [wM] < Q, along with the fact that all zeros of
0(Q;vM) occur for WM = _QF for some ke Z, from (13).
By continuity of 6(Q ; w™) on the compact set C,), there exist
constants b and B, each depending on Q, such that for all
weC,

0<b<]0(Q;w")|<B<oo. (84)
O

Note that v € Cy, implies 3 w € C, with v=Q"¥w, and
by (12), one has

6(Q;vM) =9<Q; [QN/Mw}M) =60(Q; Q"w")

85
_ QN(NH)IZwNMG(Q;wM)) (85)

with [0(Q;vM)| = QN2 pNM|g(Q ; )| > QVIN+112 pNM
b. Then for N, such that ([QN‘)/MP]DY —lz])>0and all N >

N, one has
JCN vO(Q; VM) (z + vDremd)
R

1
- JCN 0(Q;vM)| |z + vPreimyd| IZh (86)
S L
< (QN(N+1)/2pNMb) <[QN/MP]Dy B |z|)

1 yBaginal

|dv]

27,

Abstract and Applied Analysis

which approaches 0 as N approaches infinity, as QV™*1/2 js
the dominant term. Similarly, v € ¢y implies 3 w € C, with

v=QN"UMy and by (12), one has

6(Q;v") =6 (Q ; [Q“N‘I)/Mw}M)
_6(Q: @ u) (87)
_ Q(—Nfl)(—N)IZwM(—N—l)G(Q : wM)’
with  [0(Q; vM)| = QVIN+D2 pMIN-1)19(Q 5 M) | > QVIN+1)2
pM(—N—l)b'

Thus, for N, such that ([z| — [Q“N~VM ™) 5 0 and all
N > N, one has

I

1 1/Bozeinozlﬁ
vO(Q; VM) (z + vDremd)
[ g P v

¢, 10(Q;svM)] |z+ VDYei”Y/5| [v|
_ 1 [Q(—N—l)/Mp] Bar
< (QN(NH)/ZPM(—N—l)b) (|z| _ [Q(_N-1)/MP]DV>

||

27,

(88)

)2 is

which also vanishes as N approaches infinity, as Q¥V™+!
the dominant term. The lemma is now shown.
With Lemma 11 in mind, we record the following corol-

lary which will be utilized later.

Corollary 12. Let S=S(¢,, ¢,) ={ve C" | ¢, <arg (v) < ¢,}
U {0} be the sector in C emanating from the origin with
argument falling in the interval [¢,, ¢,] with ¢, — ¢, <2m.
Let sy =SNcy and Sy =S8N Cy, where z,Cy, and cy are as
in Lemma 10. Then

1 ,VBoc eimx/ B

li dv=0, 89

NinOOLN vO(Q;vM) (z + vDreimvid) Y (89)
1 yBaginalp

li dv=0. 90

Nlnoojsw vO(Q: M) (z + vDremd) Y (50)

Proof. One has

0 1 yBaginal p .
< A )
JSN VG(Q 5 VM) (Z + VDyemy/8> v ( )
1 vBoteimx/ﬁ
2
SJsN vO(Q;vM) (Z+ VDYeiﬂylé) |dv| (92)
o LimalfB
: Lo e )
cy [V O(Qs vM) (z + vDreimd)
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Since the limit as N approaches infinity of (93) vanishes,
by (80), the vanishing in (89) holds. The vanishing in (90)
holds by replacing Sy with sy and Cy with ¢y in
(91)-(93), taking limits as N approaches infinity, and relying
on (81). This proves the corollary.

We have now arrived at a preliminary version of the
main theorem of this study. It is “preliminary” in that in cer-
tain cases each side of the main equality (98) and (99) in
Theorem 13 immediately below reduces to an identically 0
function, and it will be necessary later to give nonidentically
vanishing criteria in our main result Theorem 23, where we
will also relate the expression in (99) to the Fourier trans-
form of a function naturally generated by f M(t). First, we

pause to catalogue the current set of results.

Theorem 13. For q> 1, let f ,, (t) be as in (1) andfw(t) be
as in (14), respectively, where we assume p € Q and A € Q.

Let z € C*\S where SE{—[wf”Qk/M]DYIkEZ,OSng_
1}. Then,

;] Ml (_I)k [w€+1Qk/M]B“
B M Z k(k+1)/2 +1kiM DY (94)
o M5 =% | Q z+ [w* Q ]

ema/ﬁ 1 Dy-1 [a)le]th

(95)

where ., is given by (11), where 0(Q;z) is the Jacobi
theta function, where

a p+ y A
— =27 == M=1 )
M M (96)
" B=—  D=— ’
w = ZmiIM & = e2milDY]

and where a € Z and B,y,8 € N with a/f and y/§ in
reduced form. M is taken to be the least common multiple

of B and 8. Also, for z, any fixed [Dy]™
that z, in (95) is given by

root of z, one has

in/[Dy] p=iny![8Dy] , " i, (97)

z;,=e whereby z?y =—e

Setting z=ix (94) for x € R and requiring that &+ 0
mod 4 give the following relation of the weighted average
of the rotations of the Fourier transforms F[f

(D)%)
with the average of the rotations of z;/0(Q;z}):

M-2

¥ [%[Mr)} @+ X [ fa )] (ﬁ)]

_ (98)

11

M?) eimx/ B 1 1

(—ix)

Dy-1
< z;]

LN I S i
Dy ;;JG(Q,[w“z3] )

(99)

Here, g[fﬂ)/\(t)](x/[we”]m) is given by (17). Also, for

z, any fixed [Dy]™
given by

root of ix, one has that z; in (99) is

inl[Dy] ,-iny/[Dy] 5. (100)

zz=¢ z,, whereby z?y =-e
Proof. Integrating the integrand (64) over the oriented
boundary I'y of the annular region Ay as in Lemma 10
gives expressions (75) and (76). Taking the limit of (75)
and (76) as N approaches infinity, and relying on Lemma
11 gives

1 [ E+1Qk/M]B“

M-1 oo k+1 W
0=2mi 101
Zoo Qk k+1 z+ I:w3+1 Qk/M} Dy ( )

73
Hq e—o k=

eirwc/ﬁ 1 Dy-1 [&)KZI]BOC

(-9Dy & 6(Q: @z ]")

where z, is given by (97). Dividing (101) and (102) by
27i and moving the double summation to the left side
of the equality give (94) and (95). Now, multiplying
(94) and (95) by ‘ué/\/ﬁ gives

+2mi (102)

(&)

1Mi 1 5 (-1)F
Me:o T T Qk(k+1)/2

[w€+1Qk/M] o H 03)

z+ [w“l Qk/M} Dy

(104)

O
Setting z = ix in (103) and (104) gives that (97) becomes

(100), and we then also replace z, in (104) by z; to obtain
(105)-(107) below. Factoring out the powers of w*! from

(103) now yields
[leM] Ba
ix + [w“l Qk/M]DY:| }

1 Mol [whl]B“ ] @ (—l)k
MZ{ 1 \/T Z { )2

& 7 e | QR
(105)
1 M [ wt1B o) [Qk/M]
= M = |:[w€+1 Z |:Qk k+1)/ IX/[weH]Dy + [Qk/M]DV:|:|
(106)
R N S 0 (107)

Vam (-ix )ITVMe(Q;[ a'z)")
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One now recognizes that in (106)

1 i": (_1)k [Qk/M]B‘X
2m, = | QR ix/[wt1] + [Qk/M]DV

- (_1)k [Qk/M} (M/B)a
= an;()o Qk(k+1)/2 ix/[a)“l}Dy+ [Qk/M:I(M/(?)y
ol [ (_1)’< [Qk] (@)
= 2m = Qk(k+1)2 ix/[w“l}Dy+ [Qk] (v/9)
(108)
=7 [JN( w(t)} (x/ [“’M]Dy) (109)

where (109) follows from (17).
Relying on (109) one sees that (106)-(107) becomes

(110)

-1

lM
o

“whl]B‘X*DYg[jw\(t)} (x/ [w“l} DV)}

i Dy- ~

V2 (9 By & 5(q;far=")

, (111)

which is equivalent to (98) and (99) when one observes that
for €=M —1 in (110) one has w**!' =M =1.

At this point, we have shown (98) and (99) only for x # 0
, so we next handle the case that x = 0. Notice that (108) and
(109) are defined at x =0 via

o] (21 7)
=L§ |:(_l)k [Qk](“lﬁ) ] (112)

7T Pt Qk(k+1)/2 0+ [Qk} (y18)

| @ (_Qa/ﬁ—y/6—1)k
1
— \/_EEQ(Q;_Qa/B*Y/(?fl), (114)

where (114) follows from (10). Now, at x = 0, from (114) one
observes that (110) and (111) still hold in the sense that it
becomes

3 S5 o] ()]

=0

:%lzgl[[wm}mmﬂ <\/L2_ﬂg<Q;_Qu/ﬁy/61)>
(115)

Abstract and Applied Analysis

i Dy-1
3 eimalf 1 BV Ba

| #o [©"25)
=0=1 =7 _ N T ol . i~x, M)
franiees V2n (—ix) Dy = G(Q; [@KZ3]M)

., (116)

where the vanishing of (115) follows from the vanishing of
(159) which is proven in the paragraph containing (164) in
Proposition 20 below (with # set to 0) and the vanishing of
the limit in (116) follows from Corollary 32 below. Finally
the requirement that § # 0 mod 4 is equivalent to the condi-
tion that z = ix does not belong to S for any x € R by Lemma
14 below. The theorem is now proven.

The following lemma gives a simple characterization for

having some x with ix € S (which is to be avoided in Theo-
rem 13).

Lemma 14. In the setting of Theorem 13, with the notation as
in (96), one has

- . D
3 x € R suchthat ix€S= {—{w]“Qk/M} i |j,keZ}

(117)

&30=0 mod 4 (118)

Proof. Observe that the existence of an x € R with ix €S is
equivalent to the existence of a j € Z with either i = [wf“]DV
. . D .

(in which case x=-[Q"M] " for some ke€Z) or i=—

[*1]” (in which case x = [Q*M]™ for some k € Z).
Since w = exp (27i/M), one has
3 xeRwith ix€$
=3 jezwith+i=[o"]”
=3 jeZ me{l,3},and
n € 7, with errim/ZeZm'n — leri(j+1)Dy/M

(119)

=3 jeZ,me{l,3},andn € Zwith % +2n=2(j+1)§

(120)

—3jeZ,me{l,3},andn € ZwithS[m +4n] =4(j + 1)y,
(121)

where (120) follows from the fact that D = M/8. Now from
(121), one has that § must be divisible by 4. Thus,

3 xeR with ix€S=8=0 mod 4. (122)

Conversely, if § =0mod 4, then 3 pe N with §=4p.
Since y and & have no common factors, one concludes that
y is not divisible by 2 or 4. Thus, y = [m + 4n] for some m
€ {1,3} and some n € Z. Hence,

4py = 8y = 8[m + 4n]. (123)
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Setting j=p — 1 gives that (121) holds. We conclude

8=0 mod 4= 3 x € Rwith ix €. (124)

Equations (122) and (124) now give the equivalence
(117) and (118), and the lemma is proven. O

3. The Functions Naturally Generated by
the f wA (t)

In this section, we again assume the notation of the previ-
ous section. In particular, the notation in (96) holds.
Namely, y, A € Q are rational with A > 0, with x, t € R. Also

(_1)k exp (_ [we+1 Qk/M] Dyt)
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(p+1)2=a/f and A/2=7y/8 with a€Z and B,y,5 €N,
where both a/f3 and y/6 are in a reduced form. Finally, M
=lcm {B, 8} is the least common multiple of $ and §, B=
M/, D=M]/§, and w=e*""™ TLet Q=¢** and let 0<¢<
M — 1. With this notation in mind, we are able to make the
following definitions.

Definition 15. Assume that 6 #0 mod 4. Then by Lemma
14, one sees from (117), (118), and (119) that 7 j € Zwith
+i=[w*]". Hence, the real part % ([w'*!]"™) #0. For the
real part Z([w'*1]™) > 0 define

Fua(Ja)) = D2 PR = (fpa([0"1)71). forez0, (125)
0, fort <0,
and for real part %([w*"']”") <0 define
0, fort >0,
Il =) )y G e g;fﬁfiQk/M]D”) = (Df (")), foreso, e

while for & ([w**1]"") <0 we also define

Fur ([@77) = X can @ ([@]7'e) - (127)

0, fort >0,
- 128
(‘Ufu,a([“’m]l)yf), fort <0, (128)

where X(—oo,O)(t) is the characteristic function of the interval
(—00,0). We emphasize the (+1) coefficient in (125) versus

the (-1) coefficient in (126) and (128).

Note that for Z([w*"1]"") <0

tk%jy,/\ ( [“’hl]mt) =J~i,/\(0) =1 (0), (129)
and for Z([w*1]™) >0
tim F ([@01]76) =F0(0) = £0(0). (130)

Definition 16. Assume 6 # 0 mod 4. The function naturally
generated by f,,(f) is given by

Wﬂ,/\(t) = Z_ [(‘JEH]B(X}‘M’A < [a)e+l]Dyt) (131)

=0
- {Z} [w€+1]3aj.H’A ( [(UEH]Dyt) N {Z‘i [weH]BaJ;H’)L ( [weﬂ]Dyt) ’
(132)

where the leftmost summation over the negative index {—}
in (132) stands for summation over the indices € with Z%(

[0*1]”") < 0 and the rightmost summation over the positive
index {+} in (125) stands for summation over the indices ¢

with & ([w**1]™") > 0.

While the 7', (t) are constructed here in Definition 16,

they were originally obtained as the inverse Fourier trans-
form of the expression in (98) in Theorem 13 (scaled by
M). In this sense, the 7,,(t) are natural. We point out

that the 7,,(t) may vanish identically, as discussed in
Proposition 21 below. However, there are a wealth of
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W' ,(t) that are not vanishing identically, as characterized
in Proposition 21. In any case, the %/,,(t) have useful

properties that are now recorded as a series of proposi-
tions. The first observation is that 7%/, ,(t) is real valued.

Proposition 17. For all t e R, W', (t) € R.

Proof Observe that for [w'*!]™ =R (jw"]™)+is(
[W*1]™)  one has Conj([w*!]™) = R ([w*]™) - is(
[0*1]”"), and hence, conjugation preserves the sign of &
([we“]Dy). Thus, conjugation also preserves the sets {-}
= (0| Z([0]”) <0} and {+}={e| %([0*"]”") >0}
This allows us to conclude that

Conj[f([0"]71) | =Fua ([@)7)  (133)

independently of the (—1) factor in (128) versus the (+1)

factor in (125), where @ = Conj(w) = e 2™, Hence, from
(132), one has

o (3 0) = 6] T (18] ")
n Z [‘I’M]Baﬂ,}t ( [a;e“]mt)

{+}
M-1 (134)

[c—oul] Bo?y,)t ( [c—vhl] Dy t)

[we+1]30¢fwl ( [we+1] D)’t> ,

o=

=
L o

=0

where the last equation in (134) follows since conjuga-
tion permutes each of the sets {w'|0<e<M -1}, {o*
|ee{-}}, and {w' | € € {+}}. The proposition now follows.

|

The second result gives smoothness.

Proposition 18. 7, (t) is € at t =0, and hence, W' ,,)(t)
is in € (R). Furthermore, W',,)(t) is Schwartz.

Proof. Away from t =0, %', (t) is € via (125)-(126). From
(~132), note that for t <0, one has 7,,(t) = Z{_}[w"'“]B“
fM,A([we*l}Dyt) and for t >0 one has 7', (t) = Z{+}[w“1]3“
f #,A([we*l]Dyt). Smoothness will follow at ¢ =0, by showing
that limt_)of‘W(") (1) =lim, o ‘7/}%(1‘) for all n € N,. From

wA
(125) and (126), one has

Abstract and Applied Analysis

lim W}%(t) = limfz [wm]le & ([we“]Dyt)

t—0" > t—> =t ﬁ wh
_ tl'ﬂ& z [w8+1]3“(_1)n [wul}DY"
'fwrn/\,)t ( [w(’.ﬂ]DY t)
— {Z% [w€+1]30‘<_1)n [(UEH]DW ~j+nA,A<O)
(135)
= 2 [ ) @ ] (1) a0, (136)

{3

where (135) follows directly from differentiating (126) and
(136) also follows from (126). Also,

Jm 30 = Jim 3 @) (fot]™)
- tm{z} W 1) [t
Fuoma(10])
=2 T T S
(137)
= Y T a0 (13g)

{+3

where (135) follows directly from differentiating (125) and
(138) follows from (1). Equality of (136) with (138) would
be equivalent with

0= LZ} [w€+1]3“ [a)ul]DY” " {Z% [we+1]3“ [a)“l}Dyn fﬂ+nA,A(O)'

(139)
O

Now if Ba + Dyn#0 mod M, then
Z [w“l}Ba [wm]Dvn + Z [wen]Ba [a)EH]DY" =0 (140)

{3 {+3

from Lemma 6. Hence (139) holds. On the other hand, if B
a+ Dyn=0 mod M, then

Z [we+1]3“ [w€+1}DY“ + Z [a)¢+1]3a [wul}DY“ =M%0
{=} {+}
(141)
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from Lemma 6. In this case, one has that for some k€ Z

Mk =Ba+Dyn=M “+Vn] ok= {oc +yn} eZ

Y B9
(142)
@k—lz:%—l+gn]ez, (143)

where we have used (96) to rewrite B=M/f, D= M/§ in the
second equality of (142). Now from Lemma 2.4 of [2], one

has f”+M( ) e(qz//\ q(y+nl—1)//\): (Q._Q([%.+n)n—l)/2) where
from (96) we have used g** = Q. From (13), it follows that

0(Q;—QW+™=12) = 0 if and only if there is a k € Z with k
= (u+nA—-1)/2. Now,

= prmrol <:>k=M+1—1+n%<:>k
(144)
= E—1+Xn ez
B 9 ’

where (96) was used to rewrite (¢ + 1)/2 = a/f3 and A/2 = /6.
Observing equality of the rightmost expression in (144) with
the rightmost expression (143), one has that in (139)

M-1
lz [we+1]3“ [a)m} ] # 0 precisely Whenf,ﬁn,u( ) 0.
€=0

(145)

Thus, in all cases, (139) holds, whence equality of (136)
and (138) holds. We conclude that 7, ,(t) is € at t=0

and thus on R.

Finally, the fact that %/, (¢) is Schwartz follows from (1)
the fact that it is in €*°(R) and (2) from the fact that for |¢|
sufficiently large one has |7,,(t)| < Kt (UD+Ks for
constants Ky, K, >0 and K; € R, which in turn follows from
the expressions (125) and (126) and from Proposition 8.1 of
[2]. The proposition is now proven.

One consequence of Proposition 18 is that 7, (t) has a

Fourier transform which is Schwartz. The following proposi-
tion allows us to observe that 7, (t) was defined so that its
Fourier transform would be given by (98) (up to the con-
stant factor 1/M).

Proposition 19. The Fourier transform of W', )(t) is given by

FH (D] (x) = ly[ } +Ag pe1ypo-dy

. F/T[fM(t)] <ﬁ>] .

(146)
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Proof. From (131), one has

We next evaluate F| [fM)A([wZJrI]Dyt)] (x) in (147). Observe
that for Z([w**!]™) > 0 one has

97[]?;4,)\ ( [wm] D}’t>] (x)
i . L exp (- [a)““ Qk/M] by
gl L=

— k ~ N
= \/E Z qk(k—u)/AJ exp (—ixt— [whl Qk/M} t) dt
k=—co 0

1)k exp (—ixt— [t QM) Dyt) OO

—ix — [w€+l Qk/M] Dy

-5
1 (e8]

-1 1
\/—Z ( )A

ix + [w“le/M] o

(148)
Similarly, for & ([w**1]™) <0, one has
g[}'ﬂl([ Hl}Dyt)](x)
0 ) exp ([t QM Pry
= LJ‘ e*”“( 1) Z (—l)k ( [k . ] ) dt
N e . e

R GV ; e+t v ] PV

_\/T_ﬂk;mmj_m(—l)exp (—zxt— [w Q } t) dt
1) (-1) exp (—ixt— [we“Qk/M]Dyt) ‘

 Von :Z qk(k’“w —ix — [t Q]

1
Z / Dy "

27T [ ix + [w“le’M]

—00

(149)

From the matching forms of (148) and (149), one sees
that (147) becomes

ML e 1R (-1
F[W 2] (%)= ) [0] =
g =0 1 V2, = gttt (150)

it [t @)™
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Noticing that
(_l)k (_1)qu(w+1>M (_l)k[qzm]k(wl)ﬂ
qk(kju)/lz P = (q“) (kD)2
~ (_l)k[Qk](fﬁ'l) ( 1) [Qk/M] M(alp) (151)
- QF (k)2 Q (k1)
(_l)k[Qk/M]Ba
reexpresses (150) as
M-1 0 k7 kiv B
_ er17Be 1 (-1) [Q ]
F(W (1)) (x) = e;) 0] an; QF(k+I)2
' 1
ix + [wMQk’M]Dy
(152)
MZI Wt ]B i (_1)k [Qk/M]Ba
& Dy \/2_ = Qi [we+1]Dr+ [Qk/M] Dy
M- 1
2 €+1 Ba— Dyg[f ( ):| (X/[C()“—I]Dy),

(153)

where (153) follows from (17). Now, (153) gives (146) and
the proposition is proven. O

Another property of %/, (t) is that all of its moments

vanish.

Proposition 20. All moments of W' ,,,(t) vanish. That is,

J oW, ()dt=0, ¥ neNU{0). (154)

—00

Equivalently, all the derivatives of |

W, \(1))(x) satisfy

n

STV a(0)](x)| =0

x=0

(155)

Proof. We proceed by showing (155). Differentiating (152)
yields

) _l)k [Qk/M}B“
Zoo Qk(k+l)/2 (ix+ [w€+1Qk/M]DY> ntl

(156)
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Evaluating at x =0 gives

o

x=0

1 €+1:|BLX 0 (_l)k [Qk/M]Ba
= (=i)" '
(=)"n 20 N k;w QK2 ([warle/M]Dy)nH

_(_i)nn!M—l [wz+1]3w ) (_l)k o] B Dy(n+1)
- \/E ;} [w“l]Dy(nH)k;w Qk(k+1)/2 [Q }

(157)

[w

es

i _\;.)zﬁ/l!MZ—l|:[we+l]Ba—Dy(n+l)6(Q;_Qa/ﬁ—(rﬁ—l)y/ﬁ—l)} (153)
T =0

—

V2| e

Here, movement from (157) to (158) is justified as fol-
lows:

(=i)"n! S ¢+17 Ba—Dy(n+1) o/ B (n+1)y/d-1
=Y [0 0(Q-Q P ). (159)

) -1 k Ba—Dy(n+1)
£ ol

! ) (160)
(—1) M M{a/f-y(n+1)/0)
- k; [Qk(k+1)/2 [ } ]
o) -1 k
- 3 [—Q(kaﬁ 5 [y ] (161)

\ (_1)k wlBy(n+1)0-1]]1F
= k;w [Qk(kw [Q[ 1B=y(n+1)18 l]} (162)

_ G(Q;_Qa/ﬁ—(rﬁrl)y/&—l) ’

where (160) follows from B = M/f3, D = M/§ as in (96); (161)
follows from cancelling out M; (162) follows from multiply-
ing up and down by Q% and (163) follows from (10). O

(163)

Examining (159), one sees that if Ba—Dy(n+1)#0
mod M in (159), then by Lemma 6, one has ﬁgl
[weﬂ]B"‘*DV(”H)

=0 and (159) vanishes. On the other hand,
if B —Dy(n+1) =0 mod M, then there is a k € Z with

Mk:Boc—Dy(n+1):M[——Z(n+1) =k
1= (%Y
Lg 8(n+1)}<=>k 1—{ (n+1)- ]EZ,
(164)
whence Q(Q;—Q“/ﬁ_(”+1>7/5_l) =0 by (13). Thus, (159) again

vanishes. Since (159) now vanishes in all cases, we have van-
ishing of every derivative of F[7,,,(t)](x) at x=0, giving
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(155). Thus, (154) now holds, and we have vanishing of all
moments. This completes the proof of the proposition.

Notice the similarity of the argument in Proposition 20
with that of Proposition 18. In each case, a factor formed
from the sum of powers of roots of unity fails to vanish pre-
cisely when the remaining theta function factor vanishes.

The next proposition gives a simple characterization for
W', (t) to vanish (and to not vanish) identically.

Proposition 21. For all notation as in (96), the following
equivalences hold:

[0#0 mod ] & ‘Wﬂy)‘(t) =0

1| ¢+17Ba-Dy [ 7 X _
@M[Z (@] Vj[fy,a(t)} ([w“I]DV)]:O (166)

. ‘uéeimx/ﬁ 1 i Dy-1 [~Kz3]th _,
Var (-ix) \Dy | & e(Q; [(Z)"z3]M)
(167)

Thus, [§ =0 mod ] occurs precisely when W', )(t) does
not vanish identically, which in turn occurs precisely when
the identity (98) and (99) in Theorem 13 is not an identically
zero tautology.

Proof. The right-most equivalence in (165) holds by linearity
and injectivity of the Fourier transform; and the equivalences
in (166) and (167) hold by Proposition 19 and Theorem 13,
respectively. It remains to show the following equivalence:

[6#0 mod f] & [the vanishing of (167)]. (168)

Observe that in the argument of the theta function in

(167), the expression [@*]M = [d)k]M holds precisely when 3 j
27j/Dg* = @F (and then k =« + jy). One might expect
2mi]IM d')K

withe
that the previous statement would be that 3 J withe
= @; however, e2//M = ¢2mil/IDO] = R2milyI[(PY)8] g ap integral
power of @ = e>™/[PV| precisely when J = j8 is a multiple of &,
resulting in canceling of & terms. O

Next, summing over indices with like values of [@*]"
first gives

ii Ba
e27T1]/D ]

K
Wz,

I
2 ~
i1
-~ w)]
I b
D>
/N
Q —

s [e2miiDa 7, M )

17
_ y-1 [D-1 [e2nij/D]B“[&)xz ]Ba
S 0(Qs @)
_ -l _<D—l [eZnij/D]B“> [0z,
x=0 j=0 Q(Q; [CZ)KZ3]M)
(169)
- li [eZ”f/D]B“] Yil M (170)
=0 =0 G(Q; [d)"z3]M)

By Proposition 22 below, the expression Yo [[@*z;]™/
0(Q; [@°z;)™)] in (170) does not vanish identically. Thus,
(169) and (170) vanish identically if and only if Y '
[ez”f/D}Bu vanishes. However, this summation of D" roots
of unity to the Ba power vanishes precisely when Ba # 0
mod D by Lemma 6. Thus, Ba #0 mod D is equivalent to
identically vanishing in (169) and (170) and therefore equiv-

alent to identically vanishing in (167). Now,

Ba #0 mod D < 2 nsuch that Ba
M
=Dne3 nsuchthatﬁa
M
= —ne& A nsuchthata—

q B
=ned+0 mod S,

(171)

where the last equivalence holds from the fact that a/fisin a
reduced form. Thus, the leftmost equivalence in (165) holds.
From this left-most equivalence, one deduces that 7, (t)
does not vanish identically precisely when & =0 mod f5.
The proposition is now proven.

The following proposition, utilized in Proposition 21,
relies on properties of the Jacobi theta function to obtain a
nonidentically vanishing condition.

Proposition 22. The function

y-1 ~x,_1Ba
Z B (172)
= e(Q; [d)"z]M)
is not identically 0 in the argument z € C. Hence,
y-1 ~x,_ 1Ba
Z [(U 23] (173)

= e(Q; [&)"23]M)

given in (170) is not identically 0 in z;, where z5 is as in (100)
and (184).

Proof. If y=1, then (172) becomes [z]**/6(Q;z™), which
does not vanish identically. For instance when z=1, it
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becomes 1/6(Q;1) #0. If y > 1, we show that the function

Z[ @™ }jz;g)([ A0 [94"))
0(Q; (@)

- PRl
[-06(s [@4]")
is also not identically 0. This in turn is equivalent to the
numerator in the right hand side of (174), namely,

(e flotere)
=76(Qs[@z)")0(Qs [%]") - 0 [@'2])")
(175)

(174)

") y_l<[@"Z]B“ ﬁ G(Q; [&ﬂ'z]M)>, (176)

k=1 1<j#K

not being identically 0 in z. Setting z = (-Q)"™ in (175)
and (176) gives that

0(Q: (™)) =0@-q =0 (77)
and then only the summand in (175) survives:
:;( o 1/M i—[ ( D)
= (- Q)”M]B“G(Q W( Q)6
. ( ( wy 1 M(_Q)) £0,
(178)

where the nonvanishing in (178) is obtained from (13) along
with the fact that

Q)" = -q [emiﬂqu Mg [ez”“f“’y} (179)

does not lie on the negative real axis for j=1,---,y - 1. To
see this latter point, if j§/y =n € Z, one has j§ = yn, from
which one has that j is divisible by y (as Y/ is assumed to
be in reduced form). However, each j=1,---,y—1 is not
divisible by y. Thus, (172) does not vanish identically. By
the identity theorem, (172) does not vanish on any subset
of C having a limit point. One concludes that (173) is not
identically 0 in z;, as the set of z; as in (184) ranges over a
set with limit point as x varies in R. The proposition is
now shown. O

In light of Proposition 21 and Lemma 14, we refine and
sharpen Theorem 13 by
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(1) removing all identically 0 = 0 tautologies in (98) and
(99) via making the additional assumption that & =
0 mod

(2) guaranteeing that the expressions in (98) and (99)
are well-defined via making the easily checked
assumption that § # 0 mod 4

(3) incorporating %,,,(t) into the theorem while
including the additional properties of 7", (t) gar-
nered from Propositions 17-20

In doing so, we arrive at the main theorem of this study.

Theorem 23. Let q > 1, and for t 2 0, let f ,, (t) be defined as
in (1), with u € QA€ Q. For t R, let W', )(t), as in Defi-
nition 16, be the function naturally generated by f,,(t). Let
the notation of (96) hold. In particular, let (u+1)/2=alf
and M2 =1y[3 be in a reduced form; let § + 0 mod 4 with §
=0 mod B (which gives M =8 and D=1); and let w=
&1 with @ =™, Then, W', ,(t) is a real valued Schwartz
wavelet with all moments vanishing with Fourier transform

given by F|W',,(t)|(x) satisfying
ST (0] () (180)
1 7 S er17Be-y o[ 7 x
-1 [ff[f,,,m} 0+ 2 6700 (m)]
(181)

_ue™P 1 (1N [ate)
NG (—ix)( {;Q(Q @ P)D’ (182)

where 0(Q ; z) is the Jacobi theta function, where

5 o .
Q= q(?/y, B=— W= eZnt/5 o= eZm/y’

5 ,

and where for z, any fixed " root of ix, one has that z,
in (182) is given by

(183)

—irt/§ Y- _¢

_ inly —miy/d ;
zz=e"Ve 2, Z} ix

(184)

Also, %[}M)A(t)](x/[we”}m) is given by (17). Further-
more, given f,,(t), one has that ", )(t) is uniquely defined

by Definition 16, and it satisfies the same multiplicatively
advanced differential equation (MADE) on R as does f (1)

on [0, 00), namely,
(1) = (=1)"°q R, (q'). (185)

Proof. 7' ,,)(t) is real valued and Schwartz via Propositions 17
and 18. From Proposition 19, one has that equality in (187)



Abstract and Applied Analysis

below holds, and, from equation (98) and (99) in Theorem 13,
one has that equality in (188) below holds.

I ()] () (186)
1 & e+1 Ba-D
i Pl
. (187)
()
NS () i (188)

Var (-ix) \ Dy x=0 G(Q;[wZS] )

From Lemma 14, the hypothesis that §+#0 mod4 is
equivalent to the condition that (186)-(188) are defined for
all x € R. By Proposition 21, 7, (t) is identically 0 in ¢ pre-
cisely when 6 #0 mod f; thus, the hypothesis that §=0
mod f in the theorem gives precisely all the nonidentically
zero examples of (186)-(188). Furthermore, from the hypoth-
esis that § =0 mod f, one has that M =1lcm {3, 8} = §, from
which we conclude that D = M/§ = §/8 = 1. Setting M = § and
D=1 in (186)-(188) yields equations (180)-(182). Similarly,
setting M =68 and D=1 in (96) (respectively (100)) yields
(183) (respectively (184)). Next, all moments vanish by Prop-
osition 20. It remains to show that 7, (t) is a wavelet solv-
ing the MADE (185). The wavelet property follows from the
following three criteria:

(1) W (1) € Z'(R) N L*(R) N ZL*(R) because W,
(t) is Schwartz

(2) f t) dt =0 because each moment, including

the Oth moment, of 7',,)(t) vanishes

(3) ffooo((|9[‘7/#A(t)](x)|2)/|x\) dx < 0o because F[W',,
()] (x) is Schwartz and decays rapidly in the tails and
because F[7',,(t)](x) vanishes to infinite order at

x =0 by Proposition 20
O

Now, from [2], f,,,(t) on [0, c0) satisfies the MADE

S + +
Far(®)= (1)1 g g L (qh). (189)
This follows, since
Ay 2y
375 whence A= 35 (190)

Setting A =7y and L = ¢ in equations (16)-(18) in Theo-
rem 2.2 of [2] gives the MADE (189). The MADE for WM
(t) now follows from (189) as 7/, (t) is a linear combina-
tion of expressions involving f,, () (by Definition 16 and
by (125)-(127)). This proves the theorem.
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Remark 24. While the assumption that =0 mod 8 in The-
orem 23 may at first seem to be limiting, in fact, there
remains a wealth of nonidentically-zero cases (with §=0
mod f). The examples below in Sections 5 and 6 demon-

strate that Theorem 23 is quite general in nature. For now,
observe that if § is a multiple of f then lem {S,8} =6 =M.

Hence, if M=08=]]L p’ is the prime factorization of M,
j=1£7
the nonidentically zero cases for %,,(t) and its Fourier
koo
transform are handled by those = HJLI p; with 0<k;<n;

for all je {1, -, J} and with the parameters y and A satisfy-
ing (u+1)/2=a/f and A/2 =y/d in a reduced form.

Remark 25. We also point out that even when & # 0 mod f3,
we are able to relate the Fourier transform of f, () to the

Jacobi theta function. However, the Fourier relation in this
setting comes from an analogue of 77/, (¢) that is generically

noncontinuous at ¢t = 0 and is not a wavelet. See Theorem 28
and the related discussion below.

Remark 26. In a development similar to (169)-(170), it is also
possible to show that

lMZI @ Fa )] ([w])]

£=0

B st ()|

(192)

(191)

However, the development in (169) and (170) is pre-
ferred in order to harness properties of the Jacobi theta func-
tion to gain a nonidentically vanishing criterion, as in
Proposition 22. Nonetheless, in comparing the expression
in (170) with that in (192), observing that they share a com-

mon factor [Zj'fol [e2/P]%], and contemplating equation
(98) - (99), one is led to consider the relation between

3] s i
o(Qsla=")

[@"
‘g l[weﬂ]Ba—Dyg{fM(t)} (ﬁ)] ,

including when 6 # 0 mod f. This will be done in The-
orem 28 below, where it will allow for the recovery of Fou-
rier transform information for f,,(f) in the cases that

8#0 mod S.

(193)

Remark 27. At this juncture, we pause to convey a surprising
consequence of expressing the Fourier transform of 77, in

terms of Jacobi theta functions, as in Theorem 23. Knowl-
edge of the Fourier transform of 7/, in terms of the Jacobi

theta function allows for the proof of nonvanishing results in
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the cases of y=1,2 in Corollary 34 and Proposition 36
below. This pair of nonvanishing results serves to underpin
a main connection between the solutions of MADEs of type
W, to the theory of wavelet frames in harmonic analysis.
That is, in these cases, 7/, is a mother wavelet generating

a wavelet frame for the square integrable functions #*(R),
as is demonstrated in Theorem 37 below. Thus, the current
study lays the foundation for a set of strong connections
between solutions of MADEs, special function theory, and
the theory of wavelet frames. Next, we recover information
on the Fourier transform of fM(t) when § #0 mod 8 in

the second main theorem of this work, again relating the
Fourier transform to the Jacobi theta function.

Theorem 28. For q > 1, let f,,(t) be as in (1) andfw(t) be
as in (14), respectively, where we assume p € Q and A € Q",
with notation as in (96), in particular (u+1)/2=alf3 and A
12=7y18 are in reduced form. Let 0(Q; z) be the Jacobi theta
function. Let § # 0 mod 8 and let § + 0 mod 4. Then,

[wm Qk/M] Ba

1 1 6-2 oo (_1)k Lo4
— 5 z Z Qk(k+1)/2 ix + I:weJrle/M]Dy ( )

eimx/ﬁ 1 K+y=1 oz Ba
_ . - [ 3} (195)
(-ix) \ v &, e(Q; [(Z)"z3]M)
D [eZnioc(S/ﬁ _ 1} 1 VBaeimx/,B
+ . J - ; dv
2mi &, VO(Q; VM) (ix + vPreimvid)
(196)

Here, for z, a fixed [Dy]™ root of ix, one has that z; in
(195) (and (201) below) is given by
2= ™YYz whereby  Z5 = —eTix. (197)

Also, R, is the ray emanating from the origin given by
(210) and (206), and

T
x, = min {K | arg (&)"z3)>——}. (198)
M
Furthermore, p, is given by (11), with
W= leri/M and &= eZm'/[Dy]’ (199)

where M is taken to be the least common multiple of 3 and 6.
One also has the following relation of the weighted partial

average of the rotations of the Fourier transforms F|f ,,(t)]
(x) with a partial average of rotations of z;/60(Q;z}"):

; [g[f,lﬁ(t)} @+ Y 5] 0) (ﬁ)]

_ (200)
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et 1 (1[0 e o1
Vor (-ix)\y | & G(Q; [@“23]1‘4)
3D miad/f _ Ba ,imal/f3
Ho [eZ d ! ML)
[27_[]3/21- R, VG(Q ; VM) ix + yDyeinyld
(202)

Again, z; in (201) is given by (197). The expression in
(202) is referred to as the defect.

Proof. Instead of integrating the integrand f,(v) in (64) over
the oriented boundary I'y of the annulus Ay as in Theorems
13 and 23, we shall integrate f,(v) over the oriented bound-
ary I'y of the intersection of the sector S=S(¢,, ¢,) = {v e
C* | ¢, <arg (v)<¢,} U{0} with the annulus Ay, where
¢, is chosen as in (206) below and ¢, — ¢, =27/D. Thus,
T'y= RN +Sy—R,n —sy. Here, sy=Sncy and Sy =8N
Cy» where as before, Cy = e#[QWN*)M 1 QN'™]2 and ¢y =
e9[QUNVM 4 Q"N™M] /5 but in the current setting, one has
Sy and sy that ¢ increases from ¢; to ¢,. Also, R, \ and
R, y are portions of two rays, as given by

4 (-N-1)/M , ~-NIM (N+1)/M . NIM
RIN:{v:pe’¢l Q +Q SpiQ +Q },
’ 2 2
(203)
4 (-N-1)/M | -NIM (N+1)/M | ANIM
RZN:{v:pe’*’JZ Q +Q SpsQ +Q }
” 2 2
(204)
O

Referring to (117) and (118) in Lemma 14, one has

j,keZ},

and this in turn is equivalent to the fact that for all x € R the
roots (in v) of ix + [v]"e"™® = 0 do not lie among the zeroes
of 6(Q; vM) by the remarks at the ends of Propositions 8 and
9. Hence, for all x € R and each associated z; as in (197) and
for each integer «, one has @*z; which does not fall among
the zeroes of 0(Q; v"). Namely, for all x € R and each asso-
ciated z;, and for all values of x one has @z, ¢ {e™Mw*
Q"™ | ¢,k € Z}. In particular, setting ¢ = —1, then, for all x
€ R and each associated z; and for all values of x and #,
one has that arg (©*z;) # —n1/M + 2rn. We now choose

0#0 mod 4=V xeR

ix¢S= {_ {wjﬂ Qk/Mi| Dy (205)

¢p,=-nIM—-¢, ¢,=¢, +2n/D, (206)
where € < 271/M is chosen sufficiently small so that none of
the @*z; falls in the sector S(—n/M —e—mn/M). Then, the

corresponding sector S=S(¢,,$,) gives the intersection S
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N Ay which has oriented boundary T'y = Riy+Sy—Ryy
— sy as describe above. Define x; = min {x | arg (®"z;)>-n
/M}. Choose N sufficiently large such that all @*z; are con-
tained in Ay. Then integrating f,(v) in (64) over the contour

T'y gives 2ti times the enclosed residues. Namely,

JFNfZ(V) dv

1 yBaginalp
= JN - : dv
1y VO(Qs VM) (ix + vPreimo)

2 N
=2mi Z Z Res(fz,wzei"/MQk/M) (207)
€=1k=—N
K +y-1

+ 27i Z Res(f,, 0*z3)

K=K,

11 -2 N (_1)k+1

Ba
R [w€+le/M]
!/l E——l Pt Qk(k+1)/2 i

Dy] (208)

X+ [w““Qk/M]

inal/ Ki+y-1 K
v L )
: >

Dy & o(Qs @)

= (209)

where the evaluation of the enclosed residues in (207) occurs
via Propositions 8 and 9, similar to the analogous computa-
tion in the setting of Theorem 13. Also, comparing (208)
with (75), notice the summation (over £) in (208) has M/D
= 0§ terms (as compared to M terms in (75)) as the sector
S=35(¢,, d,) sweeps through an argument of 27/D in (208)
as opposed to sweeping through an argument of 27 in
(75). The choice of ¢, = —m/M — ¢ is made in order to have
€ start at —1 in (208), whereby the first term (at £ =-1) in
the double summation in (208) will have w*!'=w’=1,
matching the expression for F| [}F’A](x) in (16) after letting
N approach infinity. Again, comparing (209) with (76),
notice the summation (over ) in (209) has [Dy]/D =y terms
(as compared to Dy terms in (76)) as the sector S=S(¢,, ¢,)
sweeps through an argument of 272/D in (209) as opposed to
sweeping through an argument of 27 in (76). The choice of
x, is made to give @z, as the first (v) root of ix+vP¥
e = 0 falling in S(¢,, ¢,) N Ay, that is with smallest argu-
ment such that ¢; < arg (@©"z;) < §,.
Now, defining the rays

R, = {v=pe® [0< p<oco}, (210)

R, = {v=pe? |0< p<oco}, (211)

one has that integration along R,, \ approaches integration
along R, for m=1,2 as N — co. Hence, one has the fol-
lowing limit:
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Nh_,rnooJ:l: f2(V) dV
N
li 1 VBaeimx/ﬁ
= m
NLoo FN v@(Q ; vM) (ix + vDye"”W‘S)
li 1 yBagimalp .
= 1um )
N Rin+Sy—Ron—sn VG(Q ; VM) (lx + ‘[/D)’elﬂ)//a)
1 yBaginalp
= lim . 0
N0 )R,y VQ(Q > VM) (ix + vDYemy/é‘)
(212)
1 V ezmx/ﬁ
— lim ' p
Nl—woJR v@(Q VM) (zx n vDVelﬂy/B) Vv
/ (213)
1 elma B d
= ' y
JR] VG(Q > VM) (ix + vDyemy/é)
1 yBaginalp .
- 14
JRZ vO(Q;vM) (ix + vPrem”) .
1 yBagimalp ( )
- - dv
JRI v0(Q; VM) (ix + vDVetﬂyIS)
! [Vezﬂi/D] el 27i/D
i e dy
J R, ye2mi/DQ (Q; [VeZm’/D]M ) ( i+ [VeZni/D]Dyeinwa)
(215)
V etmx/ﬁ
= JR] vo(Q; VM) (lx + VDVei”V/S)
[Ve2ni/D] Baimalp (216)
v0(Q; M) (ix + VDYeiﬂy/S)]
1 VBOteimx/ﬁ
=1|1- e2moc8/ﬁ:| 4 dv, .
[ R, VG(Q > VM) (ix + vDyelﬂy/B) ( )

where in moving from (212) to (213), one can drop the inte-
grals over Sy and sy in the limit by Corollary 12; in moving
from (213) to (214), we have relied on the remarks following
(211); in moving from (214) to (215) we used R, = e*™/PR;;
in moving from (215) to (216), we have simplified powers of
e?™'P by utilizing M/D =48 and Dy/D=y; and in moving
from (216) to (217), we have used B=M/f3 and D= M/é.
Relying on (217) and taking the limit of (207)-(209) as N
approaches infinity yield

{1 ~ eZma(S/ﬁ} J 1 VB(xeimx/,B v
R, VO(Q; VM) (ix + vPremyi?)

52 k+1 W1 OMM Ba (218)
=2niil Z OZO: -D™ [ e ]
u M (& S | QU2 ey [w“le’M]Dy
eimalf Ki+y-1 KZS]
+271i (219)

LRI R G
(=ix) Dy & (Q,[w"z3]M).
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Rearranging terms in (218) and (219) and multiplying
through by D/[27i] give (194)-(196). Referring to (16), mul-
tiplying (194)-(196) by [/%/\/ 27, and factoring out the pow-

ers [w*1]® from the numerator and [w*]”" from the

denominator of (194) give (200)-(202). The theorem is
now demonstrated.

Remark 29. When x =0, we will consider the expression
(202) (the integral together with its coefficient) to be the
defect from having the expression in (200) vanish at x =0,
as the expression in (201) vanishes as x approaches 0 by
Corollary 32 below. As a consequence, one concludes that
if the defect (202) (when x = 0) does not vanish, then expres-
sion (200) cannot be the Fourier transform of a wavelet.
Observe that when 8 #0 mod B, the term [e2™@F —1] in
(202) does not vanish, and vanishing of the defect when x
=0 is equivalent to the vanishing of the integral expression
in (202).

Remark 30. If one were to allow for the case § =0 mod f in
Theorem 28, one would then have M =lcm {f,8} =6 and
D =M/§ =1 in this case. Furthermore, in this case, Theorem
28 would reduce to Theorem 23, as the coefficient would be
[e?7/F —1]=[1-1]=0 in (202). Thus, if one were to
remove the hypothesis that § #0 mod  in Theorem 28,
Theorem 23 could be subsumed into Theorem 28. We
choose to keep the cases § =0 mod 3 and § # 0 mod f3 sepa-
rate in order to highlight the special properties of 7", (t)

when & =0 mod f.

The following proposition gives a pair of flatness condi-
tions, and it forms the technical basis for the proof of Corol-
lary 32.

Proposition 31. Let q> 1 and ¢ be fixed with —m < ¢ <.
Then for 0 < r < co and for any power p € R, one has

P P
lim — =0= lim ——.

220
r—s0 Q(q ; re¢) r—00 O(q ; re¢) ( )

Due to its length, we leave the proof of Proposition 31
until the end of this section, where the interested reader
can peruse it. Instead, we immediately proceed to Corollary
32 and its proof, as Corollary 32 is used throughout this
study.

Corollary 32. Let § # 0 mod 4, and let z; be as in (184) and
(197). Namely, z, = e™PVle=m0DVlz where z, is any [Dy]™

root of ix. As a consequence, Z3Dy = eV x Let o= 2DV,
Then for k=1, -+, Dy

= 0. (221)
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Proof. Note that —e™/9z)" = ix. Hence,

1 [~;<Z3]Boc 1 K

_ _ z;]

.
%o(Qsfa'a)) (o) 60(Qs (e

Ba
3

M) (222)

One concludes that

i [|z3|M] (Ba-Dy)/M | 23)
)| jo(eslea)|

1
ix@(Q

Z3

~ K }Boc

Applying Proposition 31 with p=(Ba-Dy)/M as x
— 0 gives (221). Note that the assumption that §#0

mod 4 assures that [@*z;]" does not fall along the negative
real axis. This gives the corollary. O

We finish this section with the proof of Proposition 31.
Proof of Proposition 31. Set r = q*, where 7 ranges from
—00 to 0o. Then, from (10), one has

6(asre)[* = |0(a: a7 [ =0(g3 4°*)0(q: 47 )

00 T ol
B qe 1
_‘qu<1+ q" > <1+ qrei¢qn+1>
o) T i
qe 1
. 1 1+ ——
//‘q g( + qn ) < + qrezqﬁan)
21 297 cos (¢) "
() (e 25+ 55)

= . 2 cos (¢) 1
' g(l + g + q21q2(n+1))
= (1) T (1 cos @07 +sin)
lj([q Tl 4 cos (¢)]2 + sin2(</>))
(224)
_ (@2 J(T)J (-t - 1), (225)
where
J(7)= ﬁ([qf’" +cos (¢)]° + sin2(¢)) (226)
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From (224) and (10), one has that, for cos (¢) >0,
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2.2 = 1
ptasare) (1) I+ 3) T1(1+ )

- (‘u‘l>2 7 2, ory (‘uq)z ()"
—que(q )= e ,Zz(q2>”“‘m’””
(227)
) @y -

‘uqz (qz)m(m—l)/Z ’

where the inequality in (228) holds for all m € Z. Hence,
inverting (227) and (228), taking square roots, and multiply-
ing by r” = g*F, one obtains that for each me Z

\/ mm1/2 pmr.

”q

e

0(q;re?)| |6(q:q7€?)

To handle the limit as 7 — +00, pick m > p. To handle
the limit as 7 — —o00, pick m < p. Thus, (220) holds when
cos (¢) > 0.

The remaining case is —1 < cos (¢) < 0. Here, the possi-
bility that cos (¢) = —1 is excluded, since if cos (¢) were to
equal —1 then 6(g;re”®)=6(g;—r), which has an infinite
number of zeroes (for r=¢/ with je€ Z). It will be shown
below (see (239) through (241)) that we have the following
two limits:

lim J(

T—00

-1-1)=1= lim J(7).

T—>—00

(230)

It will also be shown (see (242) and (259) below) that the
following rate of growth holds:

](T) ~ qZTLTJ—LTJZ-%—LTJ — qLTJ2+{1+2(T—LTJ)}LTJ as T — 00, (231)

where | 7] denotes the greatest integer function evaluated at
7. Hence, from (231), we have the related rate of growth
J(-t-1)= qz(—r—l)\_—Tflj—t—‘r—ljzﬂfr—lj
= qUTHZ+{—1+2<IT\—HTH)}HTH—ZHT\-HTH] as T — —0o.
(232)
For the time being, we assume (230)-(232) and use (225)

to show that (220) holds as ¥ — oo (equivalently as 7 —
00) via

rP qTP qPT
‘9(61;?6“5)’ ‘9(q5q13i¢)’ He /I (D) (=1 1)
g (233)
= q{m+1+2(rﬂq)}m/z
_qp {|z]+1+2(7= 7)) }|7]/2
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_q{zp [7)-1-2(7 l7]) _)OasT_)OO’

7))} 7] /2qp

(234)

where one moves to (233) via (230) and (231). The vanish-
ing in (234) is seen from the fact that when |7] >2p-1
the exponent {2p—[t|-1-2(r—|7])}|[7]/2 in (234) is
increasingly negative as T — 0o, while p(7 — |7|) remains
bounded.

Similarly, we use (225) to show next that (220) holds as
r — 0 (equivalently as T — —00). In this setting,

o | e
Oa;re®)| 10(g:97¢)|  p, \/I(D)] (-7~ 1) (235)
q_P(_T)
- gUr=12( =Ll D3 el 2={lw1= L]
= q*P(ITI*HTHﬂITIJ)*{HTH*HZ(ITI*UTH)}HTIJ/2+[ITI*UTH] (236)
= g~ Ll =12t )2+ ) =L, 0 a5 7 — —oo.
(237)

where one moves to (235) and (236) via (230) and (232). The
vanishing in (237) is seen from the fact that when ||7|| > 1
—2p the exponent —{2p+ ||z|| - 1+2(|z| - ||z|])}||7])/2
in (237) is increasingly negative as T — —00, while (-p +
1)[|z| - ||z]]] remains bounded.

All that remains is to show (230)-(232). We first show
lim, . J(-7—1) =1, from which it will immediately follow
that lim,_,_ /() = 1. Note that

J(-t-1)= ([q"’"‘l + cos (¢)}2 + sin2(¢))
2 cos (¢) . 1)

T+n+1

s 'I;.'élg e

<q2 T+n+l)

2c05(9) 1)

q T|+|7]+n+1) +qr—[rj+LTJ+n+l

2
1( 2(1-| 7 +2k o 19) + 1)’

q(T_\.TD*'k
where the reindexing k= |7| +#n+1 occurs in moving to
(238). For 7 satisfying |7] >log,(2) and -1 <cos (¢) <0,
-7 —1) in (238) by

o 4 00 -2
exp <k Z k> < kH <qk+1> <J(-t-1)

=|7]+1

=
Il
o

k‘

%:18

(238)

one traps J(

(239)

where we have further assumed that 7 is sufficiently large so
that In (1 - 2/gl7*1) > —4/gl7/*1 (that is 1 - 2/ql"*! falls in
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the interval {x € R|In (x) >2(x-1)} >(2/3,1) # &). Since

< -4 -4 g
lim exp — | = lim exp (——) =1,
o Q§MJ oo P A\FT (- 1)

(240)

< 1 1 7
lim exp — | = lim exp () =1
e Q%MQ = P\ @I {7 1)

hold, the trapping in (239) gives that lim,_, J(-7—1)
=1. An immediate consequence is that lim__ ,__J(7)=1,
giving (230). We conclude that there is an N, so that for 7
> N, one has

<J(-t-1)< (242)

N =
N W

We next show (231). From (226), observe that for 7> 1
one has

s

1) = T (17" + cos (@) +sin’(¢) )

,i
_

(A
—

S
Il
| (=]

= TJ (g + cos (§)]" +sin’(¢))

. ﬁ ([q”” + cos ((p)]z + sin2(¢)) (243)

n=|1|
= LTJ_OI ([qf’” +cos (¢)]° + sin2(¢))

CTT (Tt 4 cos (1] 4 sin?
o)
7)1

- ([q"” +cos (@) + Sinz(‘/)))

0 (244)

—e

([rtecos 0]+ sin(e))

T
=)

= ([qT’" +cos (¢)]° + Sin2(¢))](T - [7])

e ([ =9 2 e

Il
=

i) i) q‘r—n q‘r—n
= g%l (q—Z) [7)(l7]-1)72 51 < {1 + Cos,(,:p)] 2 + [Sinf(f)} 2)
n=0 9 9
J(z=7])

(245)
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[z)-1 2 . 2
_ 2t|t)-|7 )+ cos (¢) sin ((/))]
q H(P+¢w}+hw »

(- 7))s

where a reindexing by k=#— | 7] moves one from (243) to
(244); one obtains (245) from (244) by (226); and one factors
out a g**" from each product in the left most product
expression in (245) to proceed forward.

Now, J(7) is nonvanishing for all 7, as |0(q; re)|” =
10(q; qTe’“P)|2 has vanishing points if and only if ¢ = +7, up
to full revolutions, and 7 € Z (by (10)). Thus, the compact
interval [0, 1] under J maps to a compact interval [M,, M,]
(with 0 < M, £ M, < 00). Since 7 — | 7| €0, 1), one has

0<M,<]J(t—|1])<M, <00, (247)

and J(t - |7]) is bounded for all 7.

It remains to show that HLT:JO_I([I +cos (¢)/q" ") +
[sin (¢)/q""]?) in (246) is bounded as T approaches infinity
(again, in the setting that —1 < cos (¢) < 0). An upper bound
C, independent of 7 follows via

([ )

(248)
B -t { L _cos (¢) r [ sin (¢) ]2
- g~ L7+ (e gl
— LTJ 1+ cos (¢) 2 + Sil’l ((/5) 2 (249)
B H gL+ gL+
k=1
_ 7] 2 cos (¢) . 1
- T—|T|+k 2(t—|7])+2k
k-1 9 9
(250)
u ( 1 i 1
< 1+ ) < exp —
11 7 L gk
< 1 1
<exp <;§1 qzk> = exp (cf—l) =G, (251)

where the reindexing k = | 7| — n is used to obtain (249).

Starting with (248)-(249) to obtain (252), a lower bound
C, independent of 7 for 7> N (with N determined below)
follows via

(b )
1

([ ]+ )
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i ]

Vv
> —
al
/
L —

—

+

TJ (253)
& 2cos (¢p) cos*(¢) sin*(¢)
= L1 (1 + 7 + e + sy )
_ 1_[1(1 L2 C(Z;k(¢) . Cojzi(c(p) . S;;ig‘f)))
k=1 (254)
|| 2cos (¢) cos*(¢) sin*(¢)
(1 + T T S )
k=N 1 1 i
>N—1<1 L2 cosk(</>) . C0522](<¢)) u (1 + 2cosk(</>)) (255)
P q q k=N 1
ST (1 £¢))2 exp (H 4C0—Sk(¢)> (256)
k=1 g S
2(N-1) 4

where N appearing in (254) is chosen sufficiently large so

that In (1+2 cos (¢)/q") >4 cos (¢)/g" (that is, 1+2 cos

(¢)/q" falls in the interval {x € R|In (x) >2(x—1)} > (2/

3,1) # @). This justifies movement from (255) to (256).
Hence, we have from (251) and (257) that

0<C, < H q cos ( ]2 + {Si;ff)}j <C,. (258)

From (242), (247), and (258) applied to (225) and (246),
one obtains

0< (#q)zqhhj—[rjzﬂrj ClMlé
2
< (1) 1@ T- 1= 0(as47¢%)

2 T‘L’*‘l’2 T 3
S@q) 7 lJ+LJC2M2§<OO,

(259)

for 7> max {N, N}, where ¢>1 is fixed. Thus, (231) is
demonstrated. As a consequence, we also have that (232)
now holds. The proposition is proven.

4. Connection to the Theory of Wavelet Frames

We have seen in the previous section that expressing the
Fourier transform of 7,,,(t) in terms of Jacobi theta func-
tions, as in Theorem 23, provides a strong connection to
the theory of special functions. However, more can be con-
cluded. Namely, from the relation of the %, (t) to the
Jacobi theta function, we also demonstrate in this section
the connection to the theory of wavelets and wavelet frames.
In particular, for low values of y, we establish that each
W, (t) as in Theorem 23 is a Schwartz mother wavelet

for a wavelet frame generating all of Z(RR).
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Recall that f(t) is a wavelet if it belongs to &'(R)N
Z*(R) N Z*°(R), has first moment % f(t)dt =0, and sat-
isfies the admissibility condition that [* |F[f ()] (x)[*/)x]
dx < co. Furthermore, such a wavelet f(¢) is a mother wave-
let for a frame of form

S(f s g by) = {ayf(a t + mby || f| (260)

n,meZ},

if S(f ; ag» b,) generates Z*(R), where a, > 1 is the scale
factor, b, > 0 is the translation parameter, and || f|| = ||f]|, is
the norm of f in #*(R). One defines the diagonal term G,

[f1(x) by

Z|97 %))

||f| 261

and the off-diagonal term G, [f](x) by

=Y Y |7

||f|| j€Z keZ\{0}
A0 (a{;x ¥ an/bo) ,

G [f

which together give the frame condition

0< inf {Gy[f](x) = Gi[f](x)}

1<|x|<a,
< sup [Go[f](x) = Gy[f](x)] < 00,

1<|x|<a,

(263)

sufficient for S(f ; a,, by) in (260) to be a frame. As is shown
in [36] and [37], for b, > 0 sufficiently small, (263) is in turn
implied by the conditions (264) immediately below:

and IC>0
Clx| (264)

(14222

0< inf {Go[f](x)}

1<|x|<a,

with  |F[f(1)](x)] <

In Proposition 36 below, we see that there are natural
scale factors a, that allow us to compute G,[f](x) for the
wavelet f(t) =%, ,(t) for low values of y, where knowledge
of properties of Jacobi theta functions lets us compute G|
W' ,2)(x) exactly, which in turn will establish the nonvanish-
ing of Go[%/,,,](x) in the left hand criteria of (264).

But first, we need to obtain an even stronger nonvanish-
ing analogue of Proposition 22 in the setting of Theorem 23
(in particular, with §=0mod §) under the additional
assumption that y=1,2.
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Proposition 33. Under the notation and assumptions of The-
orem 23 (in particular § =0 mod f and M =3), along with
the additional assumption that y = 1,2, one has that (172)
becomes

(265)

yi[ [GJKZ]Ba :|)
= e(Q;[aﬂ‘zP)

which never vanishes for z € C* if y=1 and for y=2and z €
C” (265) vanishes precisely when

22— QU+1+2, forsomep € Zwithj=0 if Baiseven,
2 =—Q"1*, for somep € Zwithj=1 if Baisodd.
(266)

Equivalently, (265) vanishes precisely when z=¢™1%

it QUp+ 1211129 for some p, € € Z, where j = 0 if Ba is even,
and j= 1 if Ba is odd.

Proof. If y =1, then @ = e¥™¥ = e?™/1 = 1 and (265) becomes
[2]"%/6(Q; [2]°), which never vanishes for z € C*. If y=2,
then @ = e?™/? = 2™2 = _1 and (265) becomes

yi[ @] ]_ (2] [~]P

Slo(esl@d’)| o(osk ]) 0(Qs[-21)
11%0(Q—2°) + [-1]%6(Q; 2°)

e

(267)

where equality in (267) follows from the fact that § must be
odd, as /9 is in reduced form and y = 2. Now from (10) the
numerator in the bracketed expression in (267) becomes

ofert)sbra(erd) oo
00 (_Zé)ﬂ : (Zs)n
= n:ZOO |:Qn(n1)/2 + [_I}B W (269)
(=) E)
- :Z ( Q (n-1)12 (270)
00 2<25)2k ' '
Z QR if Bais even,
N W 2(26)2k+1 (271)
k; _W’ if Bais odd,

where

(1) if Ba is even in (270) the n = odd cases cancel, leav-
ing the n =2k in the Ba even case of (271)
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(2) if Ba is odd in (270) the n = even cases cancel, leav-
ing the n =2k + 1 in the Ba odd case of (271)

Now, in the B« even case,

00 Z(Z()‘)Zk 00

2 (225)kQ’k
kZ QEk-12 =
=—00

Pt Q(4k272k)/2 Q_zk/z
o) 26/Q z 28
=2 =20( Q* ,
Z (e Q)

where the last equality in (272) follows from (10). And in the
Ba odd case,

(272)

0 _2(Z8)2k+1 ) i 00 (Zza)kQ—3k
B = Q(4k2+2k)/2 QK2
0 (225/Q3)k 220

(273)

Z QP2

=-2z

where the last equality in (273) again follows from (10).
Thus, (268)-(271) reduces to

10(Q=") + [-110(Q; )

. 220 ' .
20 (Q Q ) if Bais even, @74
i 225
_2269 (Q4 5 —3> N if Bais odd.
Q
Thus, (267) reduces to
-1 ~x,_1Ba
[@*z]
’;0 le(Q; [tb"z}‘s>]
= [Z]Ba 4 [_Z]Ba
10 o
0(Qsf’)  0(Qi[-=) .
| 0(Q'52°1Q) o
L
s | 0(Q'5(2°/QY)) o
22 le(Q;28)0(Q;_Zs) > lfBOCIS Odd
9(Q4 : (225/Q1+2j))
= (=1} B(x+]6
(276)

j=0, if Baiseven,
where
j=1, if Baisodd.

Then, (276) vanishes for z € C* precisely when 6(Q*;
z%®/Q"¥) =0, which by (10) occurs precisely when 22/
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Q'*¥ = -Q" for some p € Z. This last statement is equiva-
lent to (266). Equivalently, we have such vanishing when
z= (_1)1/[26] Q[4p+1+2j]/[26] = oil[20] g2mit/[20] Q[4p+l+2j]/[26] for

some p, ¢ € Z. This gives the proposition. O

Corollary 34. In the setting of, and under the assumptions of,
Theorem 23, with 8 =0 mod f and § # 0 mod 4, withy =1
or y =2, one has that

y-1 [a)KZS]B(X X
1=0 0<Q; [@*z5] )
where z; = €"Ve™™7, and z, is any fixed y'" root of ix.

Proof. By Proposition 33, when y =1, the nonvanishing of
(277) holds automatically for x # 0. Also by Proposition 33,
equation (266), when y =2, the vanishing of (277) holds if
and only if for

—rri/zﬁerri/(Zy) eiv/y ‘x| 17y

2y =ee (278)

7rl/2 —m/(S m/4 w/2 |x|1/2 (279)

one has z2° = —Q"*1*% for some p € Z and for j = 0 if Ba
is even or for j =1 if Ba is odd, where in (278)-(279) one has
v=0if x>0 and v=m if x < 0. From (279) and the fact that
¢ is odd (since y =2 is even), one sees that

Zg& _ ei3n’5/2eiv§|x|5 — (il)(i1)|x|8 — ii|x|6 + _Q4‘D+1+2j,

(280)

for any values of p and j, because -I_-i|x\6 is imaginary
while —Q**1*%/ is real. Thus, (277) never vanishes for x €
R* when y =2, and the corollary is proven. O

Remark 35. Although, for y=1,2 by Corollary 34 one has
(277) never vanishes for x € R*, one has that (277) vanishes
to infinite order at x = 0 by Corollary 32.

Proposition 36. Let q > 1. Under the assumptions and nota-
tion of Theorem 23, with W' ,,)(t) as in Definition 16, for y
=1 and a,=q>1 with Q=q"*=¢%"=¢q° whereby q=
QY = a,, one has that

1 2 QZBO(/S
Gy|w )] (x)= 01 Q;
0[ }4,/\]() HW%)‘HZ ( Q2+2/6’Z§6(x)|26> (281)
[ouem 1z
Var (0 0(Q AW)
QZB(X/(S 5

>

1
17 Al (

| 5> | F (W 2 (D] (%)

’ Q> | Z§6 (x) 2

(282)
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which is €% and never vanishes for x € R*, in particular for
x| € [1,q] = [, a,].
And for y=2 and a,=q*>> 1 with Q=qg"* = " = ¢°?

whereby ¢° = Q*° = a,, one has that
GO [WM,A] (x)
_ 1 o <Q8 . QBald )
HW;MHZ Q6+8/6|Z3(x)|46

. 8[1‘8 el B (—1)j2[Z3(x)]B“+j69(Q4 : ng(x)/Qsz) 2

2v2m (=ix) Q(Q;Zg(x))G(Q;_Zg(x))
(283)
1 s QBatd )
=0 s —— N |\F|w ’
H%MHZ (Q Q6+8/8|Z3(x)|48> [F7 (] )
(284)

where in (283) j=0 if Ba is even and j=1 if Ba is odd.
Expressions (283)-(284) are € and never vanish for x €
R*, in particular for |x| € [I, ¢°] = [1, a,).

Proof. First, we handle the y=1 case with a,=q=Q".
Under this assumption, along with the assumptions of The-
orem 23, one has that (180)-(182) become

¢ [Z3( )]Ba
F\W C —
- (S‘Mé einalf
whereC= ———
V2n
From (184), one has z;(QPx) = Q”7z;(x) = QPz,(x) for

p€R, whence z5(Q"°x) = Q"z}(x) for n€Z in the theta
function expression in (285). One concludes that

FW (1)) (Q"%)
L [a@]"
(-Q""x) 8(Q:5(Q"))
1 Qnth/(S [23 (x)]Bot
(—iQ"’5x) 6(Q; Q'Z(x))
1 QnBoc/5 [23 (x)]Bot
(—iQ”/‘Sx) Q2 [Z‘g(x)] nO(Q : Zg(x)) ,

Il
o

(286)

Il
o

I
o

where equality in (286) follows from (12). From (286) and
the fact that a, = g = Q'"°, we have (288) below:

Go[ 7 a (D] (%) = ——— Z |7 (1)] (@ )‘ (287)

H%aH
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_ }C| ) Q¥Bed 1 [Z3(x)]B“ 2
(9 || w20 | @0 (@) "2 28 () [ (-16) 6(Q; 25 ()
1 C [z (%)™
[l [E0(Q: A)
| i UQzBMQ 2/6|Z (x)|—26]" |:(Q2)-zn/z”
Bt (Qz)n (n+1)/2 (Qz)f n
(288)
) ) e ™ 2 i {QZBa/5Q72/6|Z3(x)|—26Q72]n
TP E00(Q20)| (@)
(289)
_ 1 c [Za(x)}Ba ’ 2. ()2Bald (28|, (1) [-26 ()2
17l | 0(Q: ) (@@ ().

(290)

where the move from (289) to (290) is justified by (10). Now
(290) is equal to (281), which by (285), is equal to (282).
From its definition in (287), Gy[%',,(¢)](x) is invariant
under multiplication of the argument x by QY = (qa/”)w
= q"V = q. This g-invariance can also be checked via proper-
ties of the theta functions in expression (281). From (277) in
Corollary 34 coupled with (285), one has nonvanishing of
F|W )\ ())(x) for x € R*. Since 6(Q*;z) only vanishes for
z=-Q* for kez by (10), we have that 6(Q?; Q¥Bard =210

|25 (x) 72Q2) never vanishes for any x € R* as its argument
is positive. From these two nonvanishing results applied to
(282) one has that Gy[%,,,(t)](x) is € and never vanishes

for x e R*. The y =1 case is now shown. O

We turn next to the y=2 case, with a, =g*>=Q"°. In
this setting, from Theorem 23 one has that (180)-(182)
becomes

T (e am
FW ua (D] (x) = 2 (—ix) <B(Q;Z§S(x)) ' Q(Q;—z‘g(x))>

(291)

T C1y22 ) 0(Q"; (2 (x)/Q1"¥))
2 (—ix) ’ 0(Q;2°(x))0(Q—2(x))

(292)

N j=0, if Baiseven, (293)
where
j=1, if Baisodd,
3 Linalp

where C = (SM\Q/;_H , (294)

and where (292) and (293) follow from (275) and (276).
From (184), one has z;(Q"x)= Q"Vz;(x) = Q**z;(x) for p
€ R, whence z3(Q"x)=Q"z}(x) and z2(Q*°x)=Q"
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2% (x) for n € Z in the theta function expressions in (292).
From (292), along with the fact that with a,=¢* = Q"°,
one then has that

( ( n/6 )/Q1+2j)
@ =@ Ae)
( 1)] 5 [QZn/5Z3(x)]Ba+J'5 0(Q4 ; Q4nZ§6(x)/QH2j)
(-iQ*"x) (Q; Q"2 (x))0(Q—-Q™25(x))
C(-1)2 [z ()]
2 (71-Q4n/5x)
. (Q4)"("+1)/2 [zgd(x)/QHZj} "9(Q4 /QHZ/)
QZn(ZnH)/ZZzy,a(x)e(Q ; Zs(x))QZn(ZnH)/Z( ) Zzylé( ) (Q Zg(x))
[Q—4/6Q2(Ba+j6)/8Q—1—2j(71)2526 (x)} n
QZV!2

e
)

Ba+jo

(295)

(296)

F 1 (1) 225 () 0(Q"; 22 (x)/Q") }
2 (—ix)

0(Q: 2 (0)0(Q-A()
[Q*4/8Q2(Ba+j6)/6Q7172j(_1)Zg25 (X) Q,z} n

i (@4 [F[T a (O] ()],

(297)

where j is as in (293); (12) was used to move from (295) to
the subsequent line; all terms involving a power of n have
been factored out in (296); and in moving to (297), the
expressions involving powers of n have been multiplied by
Q?"/Q " while the bracketed expression in (296) was rec-
ognized as the Fourier transform of 7, (t) via (292). One
then uses (297) to compute the diagonal term Go[%",(t)]

(x) as follows:

. [#ron(@ )]

- W \F (7 (D] (%))
Us

Go [ 2 ()] (x) = HW N
78

(298)

Qiq } (299)

Q4B(x/5
Y T bl
Q6+8/5 |Z3 (X) |45

(300)

o [Qfs/a Q*(Ba+jd)13 Q—2—4j‘ 2,(x) |745
(Q3>n n-1)/2

U

where (297) is used to move from (298) to (299) (after tak-
ing absolute value and squaring) and (10) is used to move
from (299) to (300). Finally, (300) is seen to be equivalent
to (284), which is in turn equivalent to (283). From its
definition in (298), Go[%',,(¢)](x) is invariant under
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1/8 4/
=q Y

multiplication of the argument x by Q*® = (g%")
=q"?* =¢q*. This g*-invariance can also be checked via
properties of the theta functions in expression (300). From
(277) in Corollary 34 coupled with (291), one has non-
vanishing of F[7",,,(t)](x) for x € R*. Since 6(Q*; z) only
vanishes for z=-Q%* for k € Z by (10), we have that 6(Q®
; QB0 Q=6-(810) |7 (x)|*) never vanishes for any x € R*
as its argument is positive. From these two nonvanishing
results applied to (300), one has that Go[7/,,()](x) is
% and never vanishes for x € R*. The y=2 case is now
shown, and the proposition is proven.

At this point, at least for low values of y=1,2, we are
prepared to explicitly make the connection to wavelet frame
theory that follows from knowledge of the Fourier transform
of 7',)(t) in terms of the theta function.

Theorem 37. Let q > 1. Under the assumptions and notation
of Theorem 23, in particular § =0 mod f, and with W', (t)

as in Definition 16, one has, for y = 1 with a, = q, and also for
y =2 with a,= ¢, that for b, > 0 sufficiently small

W, )(t) is a mother wavelet for a frame S(W',, ; ag, by)
generating &°(R).
(301)

Proof. The theorem will follow by establishing (264) above.
Now, Go[#,)](x) #0 for 1<|x|<a, by Proposition 36.
Next, from Theorem 23, we have that 7, (t) is a Schwartz
wavelet with all moments vanishing. Since all moments van-
ish, F[W',)(t)](x) is flat at x = 0. Since 7", (t) is Schwartz,
F|W ) ())(x) is also Schwartz and therefore decays faster
than 1/|x|’ for any p € N for x near +oco. Hence, for choice
of C sufficiently large, one has F[%',,(t)|(x) < Clx|/

(1+x%)*?. Thus, (264) is satisfied, and the theorem is dem-
onstrated. O

5. Canonical Extensions

From Theorem 3.2 in [2], agiven f ,, (t) on [0, 00) has, in gen-
eral, infinitely many Schwartz wavelet extensions F, , () to all
of R with F,, () satisfying the same MADE as f , , (). In this

section, we shall demonstrate, in the setting of Theorem 23 for
low values of M =6 =1, 2, 3, that there is a natural uniquely
determined extension F,,(t) of f,,(t) to R, namely, the

canonical extension %, ,(t) of f,,(t) given as follows. We

remark that for these values 1, 2, 3 one has § # 0 mod 4 as in
Theorem 23 automatically.

Definition 38. Under the assumptions and notation of Theo-
rem 23 (in particular § =0 mod B), with M=46=1,2,3
(and § =0 mod p), the canonical extension of f,,(t) from
[0,00) to all of R is defined to be 7', ,(t), where 7', (t)
is the function naturally generated by f,,(f) as given by
Definition 16, with Wl"/\(tﬂ[o,oo) =fur(t).
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We clarify the above definition by emphasizing that
canonical extensions of f,,(¢) as the y, A vary (as given in
Definition 38) form a strict subset of the set of functions nat-
urally generated by f,, , () (as in Definition 16) . This follows
from the fact that, for § > 3, in a large number of cases one
has that %/,,(t) # f,,(t) for >0 and is therefore not an
extension (see Propositions 42 and 43 below). We next show
that for § =1,2,3,7%,,(t) is indeed an extension of £, ().

Proposition 39. Under the assumptions and notation of The-
orem 23, for §=1,2,3, with §=0 mod 3 one has that

Wo\(1)] =fun(t) for t >0, where £, (t) is given by (1).

[0.00)

Proof. We handle each value of § separately. First, let 6 = 1.

In this setting, one has w = ™M = ¢27/% = ¢2/l = 1, From
(131) and (132), one has that
o Ba~ Dy
¢ ¢
V()= Y [0 T ([0])
=0 (302)

and hence, Wﬂ’k(t)\[o’m) = fu(t) on [0, c0) holds for &

=1 because j‘M(t) = fua(t) for £ >0. This last equality fol-

lows from (125) in conjunction with (1) after noting that
1

Q=g and so [Q*M]"" = (2" = q*. We remark that,

from Case M =1 in Section 6.1 below, the § =1 Case under
consideration here consists of precisely the f, () that are

flat at the origin and the canonical extension is f,,(f)
extended to be 0 on the negative real axis, equivalently the
canonical extension is f,, (t) = 7", (t). O

Next, let § =2. Since y/6 =y/2 is in reduced form, one
concludes that y =2k + 1 is odd. Now, w = e?™/M = 27/ =
e?mi2 = _1. From (131)-(132), one has that

Wit = 3. [0 o ([))
i 2- [(—1)“1]307%,1([(—1)“1]I(Zkﬂ)t) (303)

= [F15F A ()8 + [1]%F 2 (18)

[1]Bafﬂ,A(t)> fort >0,
- (304)
1P (=1)f ,\((-1)8), fort <0,

where one moves from (303) to (304) via (125) and (128).
From (304), one sees that ‘WM’A(t)hO)OO) =fu(t) when §=2.
Also note from (304) that the canonical extension 7", (t) is

an even function if Ba is odd, and it is an odd function if B«
is even when 6 = 2.
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Finally, let 6 = 3. Since /8 = y/3 is in reduced form, one
concludes that y =3p + j for p € N, with j=1, 2. In this set-

ting, w = e?™M = 20 = &2mil3 yhich gives that
i . N7 e+l
[w€+1]DY _ [whl} 13p+j) _ [(ezm/s)(@ﬂq (305)
i3 ife=0,
_ [eZ”ij/3}€+l ={ Wil ifp=1. (306)
1, ife=2.

For each case that j = 1, 2 one has that % (e?"/?*) < 0 and
PR (e*3) < 0. From (306), [w*"']”" has negative real part for
£=0,1 and [w**!]™ =1 for £=2. Then for >0 and for £
=0, 1, (128) gives that j‘M([a)m]Dyt) = 0. Combining these
results with (131) and (132) and (125) gives for ¢ >0 that

5-1 B b
WW\(t) _ [wl’.Jrl]B“f%A([whl] Vt>
E:O (307)
_ ;‘S [whl]thjW‘ ( [wHI]D)’t)
=0+0+ [wz*l]Ban ( [wZH}DVt) =]~(W\(l‘) =fun(t)-
(308)

Hence, in each of the cases §=1,2,3 one has
W””\(t)l[o,oo) = fua(t), and the proposition is proven.

In the next theorem, we assume all of the hypotheses of
both Theorems 13 and 23 to determine a family of f,,(t)

with canonical extensions having optimal properties.

Theorem 40. Let q > 1. Assume that all the hypotheses and
the notation of Theorems 13 and 23 hold. Then for

(y,90) satisfying y € {1,2} and § € {1, 2, 3}, (309)

equivalently, for

(s A)€(Z,1)or (2Z + 1,2) or (2Z + 1,4) or
<(2Z+ 1+ 2j/3,2/3) or (2Z + 1 + 2j/3, 4/3) for j
=0,1,2,
(310)

the associated f,,(t) have canonical extensions W', ,(t)
which

(1) are Schwartz wavelets on R

(2) are mother wavelets for a frame S(W',, s ay, b,) gen-
erating £*(R), as in (301), where b, is sufficiently
small, and ay=q>1wheny=1and ay=q’ > I when
y=2

(3) have all moments vanishing
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(4) have Fourier transforms given by (180)-(182) which
relate the canonical extension of f,,(t) to the Jacobi

theta function
(5) satisfy the MADE (185)

(6) have nonvanishing diagonal frame terms Go[W' )] (x)
on [1, ay): given by (281)-(282) for y=1 and a,=q,
and given by (283)-(284) for y =2 and a, = q*, each
expressible in terms of the Jacobi theta function

Proof. Since 8 €{1,2,3} one has %',,(t) is a canonical
extension of f,,(f) to R by Proposition 39 and Definition
38. Properties (1), (3), (4), and (5) follow from Theorem
23. Property (2) follows from Theorem 37. Since y € {1,2},
Property (6) follows from Proposition 36. It remains to show
the equivalence of (297) with (310). O

We first show (297) = (310). Assuming (297), one has
M2=y/8 €{1/1,2/1,1/2,1/3,2/3} where the case that /8
=2/2 is ruled out for not being in reduced form. From this,
one concludes A € {1,2,4,2/3,4/3}. Since § =0 mod f3, one
concludes that B =1 when § =1; $=1,2 when § =2; and 3
=1,3 when § =3.

When 8 =1, which happens for each value of A, one has

‘u_+1 =x_¢ from which y = 2a — 1 is odd.
2 B 1

Thus, the =1 case gives that (y, A) falls in one of (2Z
+1,1), 2Z+1,2), 2Z+1,4), (2Z +1,2/3), or (2Z+ 1,4
/3).

When f =2, which happens only when § =2 (for § €
{1,2,3}), equivalently, when A/2=y/8=1/2, equivalently,
when A =1, one has

(311)

u+1

(x_2k+1

2 B 2

@, .
where « must be odd, as 3 isin a reduced form.

(312)

Hence, p=2k is even when =2, and in this case,
(u,A) falls in (2Z,1).

When f =3, which happens only when 6 =3 (for d €
{1,2,3}), equivalently, when A/2 =y/8 =y/3, equivalently,
when A =2/3,4/3, one has

u+l

a 3k+j

2 B 37

C - . a
with j=1,2 since 3

(313)
isin areduced form.

Hence, p=2k—-1+2j/3 for j=1,2 when =3, and in
this case, (u, A) falls in (2Z+1+2j/3,2/3) or 2Z+1+2
13, 4/3).

All of the above cases $=1,2,3 combine to require that
(u, A) satisfies (310).
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Conversely, we show (310) = (309). So assume (310).
Within this setting, examine the case that y =2k — 1 is odd,
with A € {1,2,4,2/3,4/3}. Then,

pt+l 2k-1+1

o
3 3 = inareduced form, (314)

=175

—

from which we deduce that =1 and y/6 = A/2 € {1/2,
1,2,1/3,2/3}. This implies § =1,2, or3, none of which is
ruled out as each such § is divisible by = 1. Furthermore,
from the possible A/2, one sees that y € {1,2}.

Next, examine the case that y =2k is even with A=1.
Then, p+ 1 =2k + 1. Hence,

whichisinreduced form.  (315)

One concludes that =2 and A/2=7y/8 € {1/2}, in a
reduced form. Thus, § =2 (which is divisible by =2), and
y=1

Finally, examine the case that y=2k -1 +2j/3 with j=
1,2 and A € {2/3,4/3}. Then,

1 .
prl_ 3k+j =4 which isin reduced formasj=1,2.

2 3 B

(316)

One concludes that =3 which does divide § for A/2
=y/8 €{1/3,2/3}, all in a reduced form. Thus, § =3 and
y=12.

All cases combine to give y€{1,2} and § €{1,2,3},
which is (309). Thus, (309) < (310), and the theorem is
now proven.

Selected examples of canonical extensions are now
provided.

[Example = —1o0dd and A =2] In this case,

& (-1)F exp (-4*t)

REYD , fort>0.

(317)
k=—c0 q

One sees that (u+1)/2=0/2=0/1=a/f3 and A/2=2/2
=1/1=y/é. Thus, =0 and y =1, while =8 =1, consis-
tent with Examples [M =1] in Section 6.1 and [M=6§=1,
p#=2N+1, and A =2n] in Section 6.2 below, where the cur-
rent case that 4 = -1 and A = 2 is seen to be flat at the origin.
One extends f_,,(t) to be identically 0 for < 0. This yields
fﬁl’z(t), which equals the canonical extension % _;,(t) by
(302) as 6 = 1. This particular canonical extension was first
introduced in [3] as the function K(¢). From Theorem 40,
one has that K(t) satisfies properties (1) through (6),
including that K(#) is a Schwartz wavelet with all moments
vanishing, satisfying the MADE K'(t) = K(qt), generating a
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frame for #*(R), and having Fourier transform i‘uZ/ [V2m
x0(q;ix)], as was previously proven in [3] but is now seen
as a special case of Theorem 40.

[Example p = 0even and A = 1] In this case,

[ kex _k
fuln= 3 e 00

k=-00 q

, fort>0. (318)

One sees that (p+1)/2=1/2=a/f and M/2=1/2=y/d.
Thus, a« =y =1, while f=§=2, consistent with Examples
[M =8 =p, B =p] (with the prime p taken to be 2) in Section
6.1 and [M=6=2, $=2] in Section 6.2 below. Also, we
record that B= M/ =68/f=2/2=1. Since § =2, f,(t) has
canonical extension 7%, given by (304). That is,

[1]Ba 0,1(t)’ fort>0
7/o,l(t) =
1% (=1)fo, ((-1)1), fort<0
_ (1" fo (D), fort>0 519)
[_1]1'1(—1)f0)1((—1)t), fort<0

Q (-1)F exp (—¢*
“fuulih= Y qr;( 2t)

k=—c0

which is the extension of f, to be an even function. This
canonical extension %', (t) was first introduced in [4] and
denoted there by f,(t). From Theorem 40, one has that f(
t) satisfies properties (1) through (6), including that f,(¢)
is a Schwartz wavelet with all moments vanishing, satisfying
the MADE f; (t) = —qf,(qt), generating a frame for Z*(R),
and having Fourier transform 2(yq2)3/ [V270(g%; x%)], as
was previously proven in [4] but is now seen as a special case
of Theorem 40. If one normalizes f,(t) by f,(0), one obtains
;Cos(t) = f,(t)/£,(0), which converges uniformly [4] to cos
(t) on compact subsets of R as g — 1%, as is illustrated in
Figure 2(a). Furthermore, qus(t) satisfies properties (1)
through (6), including satisfying the same MADE above
(by linearity) and having Fourier transform Z(yqz)3/ [V2rf,
(0)0(q*; x*)]. See [4] and [6] for further details.
[Example p =1 0dd and A =1] In this case,

fort>0.

f1,1(t): i (—l)kex—p(—qkt) (320)

L g k1) >

One sees that (u+1)/2=(1+1)/2=1/1=a/f and A/2
=1/2=y/é. Thus, « = =y = 1, while § = 2, consistent with
Examples [M = 3§ = p, f=1] in Section 6.1 (with the prime p
taken to be 2) and [M =6=2, f=1] in Section 6.2 below.
Also, we record that B=M/=45/3=2/1=2. Since § =2,
f1.1(t) has canonical extension 7", , given by (290). That is,
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[”Ba 110 fort>0
W(t) =
1% (=1)f,, ((-1)t), fort<0
[1]2.1f1,1(t)> fort>0
FU (-1)f, ((-1)8), fort <0 (321)
© (-1)* exp (gt
k—zoo()qk(#’ fort >0,
= - p
( 1>k200( D qk(pk_g) 1 |t|), fort <0,

which is the extension of f, | to be an odd function. This
canonical extension 7", | (t) was first introduced in [4] and
denoted there by f, (¢). From Theorem 40, one has that f, (
t) satisfies properties (1) through (6), including that f;(¢)
is a Schwartz wavelet with all moments vanishing, satisfying
the MADE f'(t) = —¢*f,(qt), generating a frame for #*(R),
and having Fourier transform 2(u, ) (=ix)/[V270(¢ 5 %)),
as was previously proven in [4] but is now seen as a special
case of Theorem 40. If one normalizes f,(t) by f,(0), one
obtains ,Sin(t) = f,(t)/f,(0), which converges uniformly to
sin () [4] on compact subsets of R as ¢ — 1%, as is illustrated
in Figure 2(b). Furthermore,  Sin(t) satisfies properties (1)
through (6), including satisfying the same MADE above (by
linearity) and having Fourier transform 2(u q2)3(—ix)/[\/2_n 0

-1 2
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(0)0(g*; x*)]. Also, qSin'(t) =q- ,Cos(qt) while qCOSI(t) =
- qSin(t). See [4] and [6] for further details.

While the above examples are consistent with earlier
examples in our previous work, the examples for

9
(1, A) € (2Z +1,4) or (2Z.+ 1+,) or <ZZ+1+ 3])

forj=0,1,2
(322)

are all not previously seen. To illustrate an example from
(322), we choose (u,A) € (2Z + 1 +2j/3,2/3) for j=0 and
develop it here.

[Example y = 10dd and A =2/3] In this case,

020: (—l)kex—p(—qk)fortzo.

(323)
R R

f1,2/3(t) =

One sees that (u+1)/2=(1+1)/2=1/1=a/f3 and A/2
=1/3=y/8. Thus, a=B=y=1, while § =3, and w = ™"
=e¥3, consistent with Examples [M =8 =p,3=1] (with
the prime p taken to be 3) in Section 6.1 and [M =6=3, 3
=1] in Section 6.2 below. Also, we record that B=M/f3 =
0/B=3/1=3. Since § =3, f,,;(t) has canonical extension
W \ 55 given by (307). That is,

Wys(t) = Z [w e+1} f, 2,3([ M]Dyt) = Z [eZ”i(“l)BrljZl 2/3({ Q27 z+1)/3} t)

=0 £=0

0+0+f,,;5(t),

(-1 f12/3([2m/3]t)+
Z - )k exp (- qt)

03]

Zfl 2/3 ([ et /3} ) fl 213 ([ 2ﬂ1/3]t) +J~(1,2/3([e4m/3] t) +J~(1,2/3(t)

where (324) follows from Definition 15 and (325) follows
from (323) and (9). From Theorem 40, one has that 7", , 5
(t) satisfies properties (1) through (6), including that
W 1 ,5(t) is a Schwartz wavelet with all moments vanishing,
satisfying the MADE sz)B(t) =
frame for #*(R), and having Fourier transform -3(u q3)3

/[V210(g*~ix?)).

‘13W1,2/3(qt)> generating a

f12/3([ 4’“/3] t) +0, fort<0

(324)
fort>0
fort >0,
ey -
(e TT1.
« €Xp (—q |e t
+(-1) Y (-1) s fort <0,
k=—00 q
One computes
W3(0) = f125(0) = Z (1) g D/Rs3]
= (326)

[ee]

—1)k s
> (qf)k(ﬁ_n,fe(q 1) =0,
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0.6

FIGURE 3: (a) y =2 exp (—1/2) sin (1/3t/2)/v/3 (dashed) approximated by f, ,5(t)
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()

/fl 2/3

0) for g=1.3 (solid red). (b) Scaled y =2 sin (\/_ t

/2)11/3 (dashed) approximated by the scaled canonical extension exp (t/2)% ,5(t )/7/1)2/3( ) (solid blue/red) for g=1.3 and ¢ near 0.

Each is scaled by exp (#/2).

while the first derivative at the origin is

12/3 fl 2/3 _f5/3,2/3 (0)
~ Z 1 (327)
L k(k-1-2/3)/12/3]
- z = 0(g%-q) #0 (328)

where the penultimate equality in each of (326) and (328)
follows from (10), the second equality in (327) follows from
the fact that f W’L(t) =~f,a(t) (as is proven in equation
(11) of [2]), and the inequality giving nonvanishing in
(328) follows from (13). While we are here, we also compute
the second derivative at the origin by

f7/3 2/3 (0)

1
= Y Vs
; ;)O g -1-43)273]

_ ¥ ()

P (qg)k(k—l)/Z

12/3 fl 2/3

=0(q5-q") #0,

Normalize %, ,/5(t) by 7', ,,5(0) = —0(¢*—q) to obtain

9(a; ) =W ,5(t I 23(0), where g(q;t) satisfies (1)
through (6) of Theorem 40, while having Fourier transform

3(/4q3)3x2/[\/27r 0(¢*—q)0(¢%—ix’)] and satisfying the same
MADE as %' ,5(t), namely,

gV (q:t)=q"g(q; 9); (330)

(329),

with initial conditions

9(4;0)=0, g'(q;0)=-0(q’-9)/[-0(q"~q)] =
and g”(q ;0) = 9(q3;—q2)/ [—9(q3;—q)] =—q.
(331)

This second derivative reducing to —g in (331) follows
from Lemma 41 below. For small g > 1, as g — 1%, (330)
and (331) can be considered to be a perturbation of the
ODE initial value problem (332) and (333), where

A =1(t), (332)

with initial conditions
f(0)=0,f"(0)=1,1"(0) = -

which is solved by f(t)=2exp (~t/2) sin (v/3t/2)/\/3.
Figure 3 provides graphical evidence that %", ,;(t)/% ",
(0) converges to f(t) =2 exp (~t/2) sin (v/3t/2)/1/3 near t
= 0. We have scaled Figure 3(b) by exp (¢/2) to better visual-
ize the graph on the negative ¢ axis.

(333)

Lemma 41. For g > I the Jacobi theta function (10) satisfies

9(q3 ;qZ) - 9(q3;_q2)
0(q°;9) 0(q%-q)

(334)

Proof. We show both equalities in (334) together by requir-
ing that each + below be always simultaneously + or always
simultaneously —. One has
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(335)

+1

=q {(iq)G(ff ; ?ﬂ =q[0(q%q)],

where the second equality in (335) is given by the left hand
equation in (12) and the last equality in (336) is given by
the right hand equation in (12). Dividing (335) and (336)
through by 6(q*;q) gives (334), and the lemma is shown. [

In the next two propositions, we see for § > 3 that there
are numerous cases for which 7, ,(t) is not an extension

of a given f,, (?).

(336)

Proposition 42. Let the notation of Theorem 23 hold. Let §
>3 with §+0 mod 4 and §=0 mod S be as in (337).
Recall that for given f,,(t) one has an integer a and natural

numbers f3,y, 8 with

u+l
2

N>

in reduced form, and in reduced form,

= R
Il
=

(337)

while B=M/B=08/f, D=M/8=38/8=1, and w=e>"°. We
observe that there are an infinite number of n € N such that

g+nZ ¢Z.

5N (338)

Furthermore, recall that

(+) = {e | @(w]“l) > o} c{0,1,2-(5-1)}. (339)

If for any such n as in (338), one has that

Y (@] 41, (340)
{+}
then
W.""A(t)ho,oo) :/:f,u,/\(t)' (341)

That is, the function W', )(t) naturally generated by f,,
() does not restrict to f, , (t) and is not a canonical extension

Offy,/\(t)‘

Proof. Note first that there are no two consecutive integers n
and n + 1 with

f+nz €Z, and %+(n+1)gel,

B 9

(342)
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for if there were two such consecutive integers, by sub-
tracting one equation from the other in (342), one would
conclude that y/8 € Z also. However, this is impossible as y
/6 is in a reduced form with § > 3, while y/§ being both an
integer and in a reduced form would require § = 1. We con-
clude that there is an infinite number of n € IN with (338)
holding. O

Fix any n satisfying (338). For this n, from (138) and
from the discussion between (138) through (144), one con-
cludes

700)= Y [ (-1)"f 0 (0)

{+}
— {Z:} [w€+1]30t+nDy(_l)n6(Q;_Q(;Hn)t—l)/Z) (343)

— Z [wl+1]Ba+nDY(_l)n9 (Q;_Q(X/ﬁJrn}’/é\fl) .
{+}

Furthermore, for our same fixed n, from the fact that
fun(®) == 122(t), [2], one has

f;(:)t(o) = (=1)"f emn(0) = (-1)"0 (Q;—Q(""ﬁ)*”(w‘s)-l) )
(344)

Since (338) holds 6(Q—QWA(¥o)=1y 20 by (10). If
(343) were to equal (344), then dividing through by 6(Q;—
Q¥/A+n(¥9)=1) and recalling that D=1 in our setting would
require that

Z [le}Bo&nDy _ Z [whl]B"‘*”Y -1,

{3} {+}

(345)

which is disallowed by the hypothesis (340). Thus, if n sat-
isfies (338) and (340), one cannot have equality of (343)
and (344), whence 7, (t) does not restrict to f,,,(t) on |
0, 00). The proposition is proven.

We next harness Proposition 42 to show that for A with
8=5,6,7, none of the functions 7', (t) restricts to f,,(f)

on [0, 00).

Proposition 43. Under the same setting, notation, and
assumptions as Proposition 42, for f,,(t) with a, B,y as in
(337) but with the restriction that 6 = 5, 6, or 7, one has %/M
() does not restrict to f,,,(t) on [0, 00). Thus, f,,(t) on [0,
00) does not have a canonical extension for these values of §.

Proof. Let § = 5, 6 or 7. For given y, define 9 to be the unique
value with =% mod § and 0< 7y <8 - 1. Observe that in

(339) for fixed 8 one has w' = €2/ = e2mv/0 — ()v  Thus,
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TaBLE 1: Notation and cases as used in Proposition 44.

8 Y {e+1}={0 7.6} {+} {3
1 14,5 0,3,4 12
2 23,5 12,4 03

° 3 23,5 12,4 0.3
4 14,5 0,3,4 12
1 1,56 0,4,5 12,3

6 5 1,56 0,4,5 12,3
1 16,7 0,5,6 12,34
2 34,7 23,6 0,1,4,5

, 3 2,57 14,6 0.2,3,5
4 2,57 14,6 0.2,3,5
5 34,7 23,6 0,1,4,5
6 16,7 0,5,6 12,34

the set {+} associated to y, § is identical to the set {+} asso-
ciated to 7, 6. O

In Table 1, for the given value of § and associated possi-
ble ¥ one has, by inspection, the unique values 1<€+1<8
with %(w?)**" > 0 that determine the set {+}. We denote
the values € + 1 by o, 7, 8. This last § is the same value giving
A/2 =9/, where § =5,6,7.

For instance, to obtain the second row of the above
Table 1, when 6 = 5 and y has associated value y = 2, one has

R = %<e2niy/8)e+l _ %<e2ni?/5>e+l

_ %(eZﬂi2/5)8+1 >0

(346)

precisely when the € + 1 in (346) assume the values ¢ +
1=2,3, or 5, that is, when

R (e2ni2/5)2 = cos (274/5) >0, ,9?(&”"2/5)3
= cos (276/5) > 0, and %(eZ”iZ’S)S
=1>0.

(347)

In this case, one has {€+1}={0=2,7=3,8=5} and
then {+}={¢} ={2-1,3-1,5-1} ={1, 2, 4}; the remain-
ing values of € form {-} = {0, 3}.

Now note that, in all cases in Table 1,

o+7=0, whenceV jeZ onehas ¥/ (348)
and e”™"° are conjugates,

which follows from the fact that e277//0 . g27iTild — g2milo+7)jlé
= 2799 = 1. We conclude that for all § = 5,6, 7 and y with
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/6 in a reduced form, and for all integers j one has

Z (wj)ul _ (ezmj/a)" 4 (ezmj/a)T + (ezmj/a)6

o (349)
=2 cos (2maj/d) + 1 # 1.

The inequality in (349) follows from the fact that no
integer multiple of 271/§ for § =5,6,7 is an odd multiple
of 7/2.

Now, we have seen in Proposition 42 that for each of &
=5, 6,7 there are infinitely many » with (338) holding. Fix
such an #, and set j = Ba + ny in (349) to obtain

Z (w[Ba+ny] 1 — Z (whl)[B“*'”V] #1, (350)

{+3} {+}

from which we see that both (338) and now (340) hold. We
conclude from Proposition 42 that 7, (t) does not restrict
to f,2(t) on [0, 00) for any A with § =5, 6, 7. Therfore, such
f,,2(t) do not have canonical extensions. This completes the
proof of the proposition.

We remark that for § > 8 and not divisible by 4, results
similar to Proposition 43, with more tables analogous to
Table 1 (but having many more cases), and with inequalities
analogous to (349) (but with multiple cosine terms), should
give that canonical extensions are at least rare, if not
nonexistent.

6. Examples

The goals of this section are twofold:

(1) To classify those y and A for low values of M =4
such that f,,(f) and %,,(f) meet the assump-
tions of Theorem 23 (including 6 =0 mod ) and
satisfy (180)-(182);

(2) To fill out selections from the examples in goal 1 in
detail

Throughout the discussion, the notation given in (96)
holds, and M =lem {3, 8} = 6.

6.1. Classifying yu and A in Theorem 23 with Low M =§
Values. Recall that the fractions /3 and y/8 in (96) are in
reduced form.

[M=6=1]: since M=8=1em {f3,8} =1, we conclude
B =1=4. This is equivalent to

Now (351) holds if and only if 4 =2« — 1 is an odd inte-
ger and A =2y is an even positive integer. To match notation
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in previous work [2], we relabeled y=2N+1 and A =2n.
Such fy,1,,(t) are precisely the f, , (¢) that are flat at t =0

(as is shown in Proposition 2.2 of [2]). We further analyze
this case in detail below and record now that

M=6=16 [ucZwithy=1mod2,and A

(352)
€ Nwith A =0 mod 2].
[M=68=pisprime|: since M=8=Ilecm {S,8} =p, we
conclude B € {1, p} and & = p. Thus, there are two subcases.
[M:S:p, ﬁ:p]:

1 200 —
&:ﬁ:g@”:%wﬂho#o mod p,

2
) P ) (353)
22Y Yoo >0 withy #0 mod p.
2 86 p p
[M:6:p)/3:1]:
”TH=g:%@y:Z(x—I@yeZwithy=lmod2,
2
%: g :IZ)@/\: ?)/ > 0withy#0 mod p.
(354)
Thus, we have
M =§ = pisprime & [the rightmost pairs (355)

of conditions on gand A in (353) or (354)hold].

[M = 4]: this case is disallowed.

[M =6=6]: since M=lcm {f3,8} =6, we conclude f3 €
{1,2,3,6} and & = 6. There are now four subcases.

[M=6=6, 3=6]:

u+l

_oc(:} _(x—3
2 a H=

6 3
witha #0 mod 2and a# 0 mod 3,

I R

(356)
&: X:Z@,\:X >0
2 8 6 3
withy #0 mod 2andy #0 mod 3.

Please see Section 7 for a detailed convergence study
involving the current example (356) with a=-1,=6,y =
1,and § =6.

[M=5=6, B=3]:
(4;71 :%:%@M: 20(_3withoc;E0 mod 3,
A
E:%z%@k=§>0withy¢0 mod 2andy # 0 mod 3.

(357)
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[M=5=6, B=2]:

+1 o «
‘u_:_zzﬁlu:oc—lwithoc¢0 mod 2,

2
:%(:»)L: =~ >0withy#0 mod 2andy # 0 mod 3.

Ay v
2 4 3

(358)
(M=6=6,=1]:
prl =ﬁ=g@‘u=2(x—1@yelwithy=1 mod 2,
2 B 1
AY_Y ot sow
E_S—g(:ﬁt—§>0w1thyq&0modZandy;EOmod&

(359)

Thus, we have

any of the rightmost pairs of conditions on
M=6=0&
pand Ain (356) through (359) hold
(360)

Other y and A with f ) meeting the criteria of Theorem

23 and M not among the above cases can be determined
similarly via the following proposition.

Proposition 44. Let M = H]]: J p;’ be the prime factorization
of M>1 and M#0 mod 4. The y and A with f,, meeting
the criteria of Theorem 23 are

20— f3
u= ; (361)
B
2y
=7 362
A= (362)
that satisfy the conditions
] n
M=58=]p/ (363)
=1
I
B= ]/ witho<ki<nVj (364)
=1
a#0 mod p; when k; >0, (365)
y#0 mod p;Vp;. (366)

Proof. From Proposition 21, one sees that the hypothesis that
6 =0mod f in Theorem 23 is required in order to have a
non-identically vanishing of (180)-(182). From this, we
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conclude M =1lcm {3, 8} =8, giving (363). Since f3 is a divi-
sor of § = M, one obtains (364). Equations (365) and (366)
follow from the fact that a/f3 and y/§ are in a reduced form.
(361) and (362) follow from (96). The proposition is shown.

O

p+l (2N+1)+1 N+1 «
2 2 1 B

Q _ qZ//\ _ ql/n

w 2mi/M _ 27 _ 1

Il
[¢]

Inserting these values in (131) gives (368), while inser-
tion in (180)-(182) gives (369) and (370) below. That is,

1-1

W2N+l,2n(t) = Z [I]Nszﬂ,Zn(lnt) :J?2N+1,2n(t)' (368)
=0
Furthermore,
%g[WZNH,Zn(t)](x) = g[izml,zn(t)] (x) (369)

- H3Qein(N+l) 1 1 n-1 &‘)KZ3]N+1
SV cﬂinéwpqw@ﬂ> G0
_wEn™ o 1 Zl L
Var (i) \n | 5 (@2, V0(Q; [0z))
(371)
:p%(—l)NH 1
Vo (-ix)
1 [=2 QV(N+1)2
QL&WWWW%W%QW%J>
(372)
:M?_\)(_l)NHQN(NH)/Z l nil 1
Vo (Fix) \n|56(Q:[@'z)Q N )| )
(373)

where (371) follows from moving [&)"'23]1\”1 from the numer-
ator to the denominator; (372) is obtained by multiplying
numerator and denominator by Q¥™+1’2; and (373) follows
from (12). Also, from (184), z; in (373) is any fixed n*" root
of zj = —e™"ix. This example recovers Theorem 6.3 in [2].
Also, if one sets N=-1 and n=1, one has %'y, ,,,(t) =

37

6.2. Selected Examples from Section 6.1 in Further Depth:
Canonical Extensions. [M=0=1, y=2N+1, A=2n]: we
expand on [Example M =1] in Section 6.1, where it was
shown that g =2N + 1, A =2#n, and 3 =8 = 1, which specifies
(96) as

A 2n n vy
2 2 1 6
=M1 p=M_,
“BT1T =5 1. (367)
Ba=1la=N+1 Dy=1n=n
@ = e2miln

W _\,(t) =f_,,(t) which is discussed earlier in [Example u
=-1odd and A =2] in Section 5, and which was denoted
K(t) in [3]. This recovers the inaugural wavelet in the first
paper that inspired the current direction of study.

Finally, 7,5, 1.2,(1) =f2N+1,2n(t) satisfies the same mul-
tiplied advanced differential equation on R as does f,y, ,,
(t) on [0, 00). That is, (185) becomes

%/S\)m,zn(t) = (_1)%1q(n+2N+l)/2W2N+1,2n(qnt)~ (374)

[M =68 =2]: we expand on [Example M = p] in the previ-
ous section for the case p = 2. There are two subcases, when

B=2or =1
M=6=2, f=2]:
prl_a_ o A_y_y M=2
2 B 2 2 & 2
M 2 M 2
IZ/A: 21y B:_: :]_ = — = — =
Q=q7"=4 B2 5 2
Ba=la=« Dy=1y=y
w= eZni/Z — em’ =-1 o= eZni/[Dy] — eZni/y

(375)

Note that in this case, since a and y must be odd, y =«
—1is even, and A =y is odd, so we set y=2N and A=2n
+1=y. Then, Ba =2N + 1 and Dy =2#n + 1. Inserting these
values in (131) gives (376)-(378), namely,

W Ngna (8) = [_1}2N+1}2N,2n+1 ([_1]2“11‘)

+ [T o (1))
(376)
= W oz (P10 + Wz (1) (377)
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= [1[(-Dfanznnt (D] X oo + [onaner (D] Xjo.oo)

(378)
e ~4"t]
_ k_ ¢
- k_z (=1 gFR=2N) /1] (379)

Note that (378) and (379) show that 7",y ,,,,(t) is an
even function. Also, from (180)-(182) along with (184),
one has

FW N an (1)) (%)
2#3Qei7r(2N+1)/2 1
Vo (-ix) (380)
1 2n [62ni1c/(2n+1)z3]2N+1
2n+1 KZOG(Q; [eZniK/(ZnJrl)ZS]z)
with
Z§n+1 — _e—rri(2n+1)/2ix’ (381)

where Q = g*>"*1), Finally, the MADE (185) becomes

Wg\;,znﬂ () = (_1)2n+1+2q(2n+1)(2n+1+2N)/(2n+1)WZN)MH (q2n+1t)
— _q2n+1+2NW2N,2n+1 (q2n+1t) .

(382)

When 7 =0, the above results recover the even case of
Theorem 6.5 of [2].
When n =0 and N =0, the above results give

o] e_qk‘t‘
Vo)=Y () S (383)
k=—0c0 q
with
W)= 3 (L= ST (s
0,1 - 2 _
W qk W (qz k(k-1)/2
, 1 0 1\?
:9<q ;——) =ue [] (1 - ﬂ> >0. (385)
q 3 q

In this setting (383)-(385) we recover [Example y =0
even and A =1] from Section 5, with normalization %", (¢

)W, (0) = ,Cos(t).
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(M=6=2,B=1]:
prl_o_o Ay _y M=2
2 1 2 6 2
M 2 M 2
:2/A: 21y B:izfzz D:izle
Q=q"=q B )
Ba =2« Dy=1y=y
W= eZT[i/Z — eT[i o= eZni/[Dy] — eZTti/y
(386)

Note that in this case y =2a — 1 is odd, and A =y is odd,
soweset y=2N+1landA=2n+1=7. Then, Ba=2(N + 1)
and Dy=2n+1. Inserting these values in (131) gives
(387)-(390), namely,

W2N+1,2n+1(t> = [_1]2(N+1>f2N+1,2n+1 ([_l]znﬂt) (387)
T o ([CD77) (388)
= [1]}2N+1,2n+1([_1}t) + [1H2N+1,2n+1([1]t) (389)

=[1] [(_1)f2N+1,2n+1(_t)]X(foo,O) + [f2N+1,2n+l(t)]X[0,oo)

(390)
k
. o) k efq M

Note that (390) and (391) show that %"y, ,,,,(t) is an
odd function. Also, from (180)-(182) along with (184), one
has

F|W 12011 (D] (%)
le%ein(ml) 1 1 % [eZHiK/(2n+1)z3]2(N+1>
V2r  (-ix) |\ 2n+1 K:OG(Q; [e2nik/(2n+l)z3]2) ’
(392)
with
Z§n+l — _efni(2n+1)/2ix’ (393)

where Q = /"1, Finally, the MADE (185) becomes

2
W 1 (F)

— (_1)2n+1+2q(2n+1)<2n+l+2N+1)/(2n+1)W2N+1,2n+1 (q2n+lt)

2n+2+2NW

=-q AN+1.2n+1 (qznﬂt)-

(394)
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When n =0, the above results recover the odd case of
Theorem 6.5 of [2].
When n =0 and N =0, the above results give

. o] e_qu
W, (t)=sign (t) Y (-1)f FET (395)
k=—0c0

In this setting, (395) recovers [Example =1 odd and
A =1] from Section 5, with normalization %", | (t)/%",,(0)

= ,Sin(t).
[M =6 = 3]: we expand on [Example M = p] in the previ-
ous section for the case p = 3. There are two subcases.

Won- 1+[27/3),2( 3n+])/3(t>

27i/3713N+] 7 2mif37 3+ i3 3N+ 7 Aif31 30
[e ™ ] f2N 1+[2]/3],2 (3n+])/3([e ™ } t) +[ ™ ] f2N 1+[2773),2( 3n+])/3([e i ] t)

39

[M=6=3, B=3]:
prl_a_a Ay _y M=3
2 B 3 2 6 3
M 3 M 3
=2/)L= 3y B=7=7=1 D - ha—
Q=q9""=¢q B3 53
Ba=la=« Dy=1y=y
w= e2711'/3 o= 27'[1/[Dy] 21'[1/[)/]
(396)

Note that y=2a/3 -1 with «#0 mod 3 and A=2y/3
with y#0mod 3. Thus, we set a=3N+] and y=3n+j
where J,j€{1,2}. Hence, y=2N —-1+2J/3 and A =2(3n +

j)/3. Then, Ba=3N + ] and Dy =3n+ j where J,je {1,2}.

Inserting these values in (131) gives (397)-(400), namely,

‘ s (397)
+ [1]3N+ f2N—1+[2]/3],2(3n+j)/3 ([1]3n+]t) = [6271]1/3]fZN—1+[2]/3],2(3n+j)/3 ( [6271]1/3] t)
+ [e4ﬂ]i/3]f AN-1+2]/3).2(3n+j)/3 ( [(e4ﬂji/3} t) +[1]f 2N-1+[2]/3),2(3n+j)/3 (398)
Son-1epr3)203n+j)3 (1) fort>0
(t) = 4 ) . ) (399)
(1) sz aeneys ([€77] 1) + €2 (1) fon v pyrs)anegys ([€777]F) } fort <0
k
Gl
k(k=2N+1-[2]/3])/[2(3n+j)/3] ° ort="5
k=004
= 5® (400)
k+1 k [e2mjil3] ¢ k+1 k[ 4mjil3] ¢
2lil3 Z exp (—q*[e*"]t) i3 z exp (4" [¢""]1) fort<0
L Pt k 2N+1-12]13))/[2(3n+))/3] Z Pt k AIN+1-12]3))/[2(3n+))13] ° )

Also, from (180)-(182) along with (184), one has:

9‘[%/21\1—“[2//3] (3n+j)/3(t)} (%)
3[’4 em (N+[]/3]) 1

Var o (-ix)

1 3n+j-1 [ p2mind (3n+j) 23] 3N+]

3n+j| & O(Q; [62ni;c/(3n+j)zg]3)

(401)

with

3n+]

z5 —e ) By (402)

where Q = ¢*®"*), Finally, the MADE (185) becomes

3)
W2N—1+[2]/3],2(3n+j)/3 (t)

_ (_1)3n+j+3q(3n+j+2N—1+[2]/3])/[2/3] (403)

W IN-1+1213) 2(3n+j)/3] (613n+j t).

[M=6=3,=1]:
prl_o_a A_y_y M=3
2 1 2 6 3
M 3 M 3

=2 = g3l B=_="=3 D=_=>=1
Q=9 B 1 33

Ba =3« Dy=1y=y
— eZm’/S o= leri/[Dy] — eZm‘/[y]

(404)
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Note that y = 2a — 1 is odd and A = 2y/3 with y # 0 mod 3.
Thus, we set 4 =2N + 1 with y=3n+j where j=1,2 and A
=2(3n+j)/3. Then, Ba =3(N + 1) and Dy =3n + j where j

i/373(N+1) % i/373n+j i/3713(N+1) 7 i/373n+j
W2N+1)2(3n+j)/3(t) = [62711/3} f 2N+1,2(3n+j)/3<[62m/3] t) + [647“/3} f 2N+1,2(3n+f)/3([e4n1/3} t)

+ [1]3<N+1)f2N+1,2(3n+j)/3 ([1]3n+jt)

= [1}}2N+1,2(3n+j)/3 ( [ehﬁﬁ] t) + [1FZN+1,2(3n+j)/3 ( [(e4nji/3} t) + [1]J~(2N+1,2(3n+j)/3(t)

f2N+1,2(3n+j)/3(t)’

S ap ot
. g k=210 )]
=—00
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=1,2. Inserting these values in (131) gives (405)-(408),
namely,

(405)
(406)
fort>0
2mjil3 47jif3 (407)
(_1)f2N+1,2(3n+j)/3 ( [e ]t) + (_1)f2N+1,2(3n+j)/3 ( [e ]t) }’ fort <0
fort >0,
k [ 4mil3 (408)
(1) Y (R Cal™]) e,

00 k [ a2mi/3
x exp (—q*[e]t)
(_l)kz (-1) g k=2N=-1)/2(n4j)/3]
=—00

where each of the three summations in (408) vanishes at ¢
=0 as one can compute that

\ (_l)k N
Z k(k—2N-1)I2Gnt)3] 0(Q-Q") =0, (409)
k=004

with Q as in (404), where the vanishing follows from (13).
Also, from (180)-(182) along with (184) one has

F W2N+1,2(3n+j)/3(t)] (%)

) 3“861'71(1\”1) 1
V2r o (-ix) (410)
1 373]':*1 [ezmx/(3n+j)z3]3<N+l)
3n+j| & G(Q; [ezmkl(3n+j)z3}3) ’
with
ng—j — _e—ﬂi(3n+j)/3ix’ (411)

where Q = g*®"*). Finally, the MADE (185) becomes

(3
W21\3+1,[2(3n+j)/3] (t)
— (_1)3n+j+3q(3n+j+2N+1)/[2/3]W2N+1,[2(3n+j)/3] (q3n+jt).

(412)

k=—0c0

qk(k—ZN—l)/[2(3n+j)/3] ?

When N =0,n=0, and j =1, equations (410) and (412)
recover, respectively, the Fourier transform and the MADE
satisfied by %', ,/5(t) as seen in [Example y=1 odd and A
=2/3] in Section 5.

7. Convergence of MADE:s to Classical
Solutions, an Example

The purpose of this section is to provide an overview of an
example of a 77/, (¢) satisfying a MADE where the normal-
ization %', (t)/% ,)(0) converges to the corresponding
solution of its classical analogue (the ODE obtained when
the parameter g in the original MADE is set to 1). Our
example is 7%_ 5 ,5(t), which is not a canonical extensions
as will be seen below. As such, it represents a new phenom-
enon with corresponding new challenges. First, %#"_, 5, 5(t)
can be obtained as the output of a reproducing kernel com-
putation for an input wavelet %"_, ,/5(t), in the same manner
of computation as in [4]. Second, since it satisfies a MADE
of order 6, there are 6 derivatives to determine and use to
compute initial conditions at the origin. Third, determining
the initial conditions for the analogous ODE will be accom-
plished with the aide of a significant new result, namely the
generalized g-Wallis formulas in Theorem 46. This theorem
is also crucial in our proof of convergence of the normalized
solution of the MADE to the solution of the analogous ODE.
The normalization % _y3 1,3(t)/% _y;3,,3(0) will be our main
object of study as the parameter ¢ — 1*. From (425), the
parameters yu=-4/3 and A=1/3 show our example
W _43.5(t) to be from [M =8 =6, f=6] in Section 6.
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7.1. Preliminaries. For b > 0, the reproducing kernel compu-
tation relevant to our setting is

J W o3 p5(E -

—00

. (_i exp <2m'e6+ m) b)}

4
-3i Uy . i
= <77>2 (=)~ [™F a3 (€777B) + f Lyys.15(0)
2(ke)

—27i/6
+e fanais

b) dt (413)

(415)

(ezm'/sb)]

_ M (=)W _431/5(b)
21y

Moving from (413) to (414) is accomplished via Plan-
cherel’s theorem where the expressions for the Fourier trans-
form of % _,,,; are given by Theorem 23. The resulting
integral of Fourier transforms is evaluated with a residue
computation in the upper half-plane (for b >0) similar in
nature to the computation of reproducing kernels for b >0
in [4]. This computation is lengthy, and the details are left
as part of a more general set of reproducing kernel compu-
tations in an upcoming work. A direct computation moves
one from line (414) to (415), while equation (132) of Defini-
tion 16 gives for b >0 that

(416)

W _y3,3(b) = [ezﬂi/éf —4/3,1/3 (e—zm/sb) +f_43,15(b)

o . (417)
+e 2711/6](74/3’1/3 (62711/6 b)] ,

which justifies movement from (415) to (416).
Setting b =0 in (413)-(416) yields

j Wy (O_y ya(t) dt

o | )
= |‘7/—1,2/3(t) 2= _3I<HQ3)

)

which in turn gives the functional identity

(418)
(_i)W—4/3,1/3 (0)’

1 -3 (” q3)4
_ i ) (419)
W _43,,3(0) z(yq(,) {]'“7/_1,2/3(0\!2
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Normalizing (413)-(416) by the squared %? norm and
applying the functional identity in (419), one observes that

1 00
- Hw _ t—b)dt
712 HZJ W ran(OW 125t = 0)
4
) NN
- 2 N W _4313(b) = 7 0)
2<Mr16) |7 12505 ~4/3,1/3
(420)

Recalling that %5 ,5(t) is real valued, and applying
Cauchy-Schwartz to (420) yields

W 12/3(t b)
|7 28],

| = 12/3(t)
|7 1258,

2 2

\%

1 (o]
WJ W _10i3()W 1p5(t = b)dt
—1,23(F) ||, ) o0

W—4/3,1/3 (b) '
W—4/3,1/3 (0)

(421)

which gives a unit global bound on the normalization
W _4y3.13(b)| W _yy5,,5(0)| independent of g for all b>0.
Now, equation (132) of Definition 16 also gives for b
<0 that

W _y313(b) = [6747“'/6( )f a3 (e 4m/6b) e

Fapap (€7700) + (1) s 1/3( 8m/6b)]

= [eZm‘/G —4/3,1/3( 2m/6 b) +f_a315((=1)b)
yemip ( e2m/6 (~1)b)]

= [ezm/sff4/3,1/3 (e_zni/6|b|) +f_a3.15(10])

+ e—27‘ri/6 a1 (eZHi/G | b|)]
(422)

= 7/-4/3,1/3(|b|)’ (423)

where comparison of (422) with (417) allows movement
to (423). So W _,3,,3(b) is an even Schwartz function
and consequently the bound in (421) extends to a global
bound: for all b€ R and for each g>1, one has

1> (424)

W—4/3,1/3 (b) ‘ )
W—4/3,1/3 (O)
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From (415) and (416), one sees that % "_,;;,,5(t) sat-
isfies the same MADE as does f_,5,,(t), where y=-4/3
and A=1/3. From these values, we deduce that

pu+l —43+1 -13 -1
2 2 2 6
a«a A 13 1 vy (425)

by which one sees that a=-1,8=6,y=1,0=6.
From these parameter values, one sees that %", (t)
falls in the example class [M=8§=6,8=6] with (356)
holding. Since §=6, we conclude from Proposition 43
that %_,5,,;(t) is not a canonical extension of f_,
(t). See also Table 1 where % _,;,,(t) fall in the cate-
gory of row §=6,y=1,{¢+1}={1,5,6}, {+} ={0,4,5},
and {-} ={1,2,3}. From (2), one determines the MADE
for f_y5,5(t) to be

6 _
f<_4>/3’1,3(t) _ (_1)1+6q1(1+( 4/3))/(1/3)f_4/3’1/3 (qlt) (426)
= _q71f74/3,1/3(qt)'
And hence,
6 _
W(—ABB,IB(t) =—q"'W _4315(qt)s (427)
while
W ay315()]" Y _y315(4t)
{7- » } _— [7 : ] (428)
W _43113(0) W _43113(0)

Each of (426)-(428) we take to be our MADE under
study for this example. We take the classical analogue of
our MADE to be the ODE obtained by setting g=1 in
the original MADE. In our case, the classical analogue
of (426)—(428) in this example is

99 (t)=-g(t). (429)

Next, we turn to the computation of our derivatives,
which will in turn lead to the initial conditions for our
MADE and (by taking the limit as g — 1%) the initial
conditions of our analogous ODE (429). Relying on
(417) and the fact that

Fur(®)=~f pan (), (430)

(which can be directly computed from (1)), one sees
that
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W ss(0)= [ s (770) [ 4 s (1)
4 o 2mil6 f(j/)im ( ezm‘/st) [ezm/s] M}

_ (_l)m[ s (e‘Z”i/Gt) o~ (m=1)2nil6

2mil6 —1)2mi/6
+f—4/3+m/3,1/3(t) +f—4/3+m/3,1/3 (e & t)e(m )2 }

(431)
When m =6, we have a direct check that the MADE
given in (427) holds, after noting that f_, .., .(t)=

q"'f_4315(qt) which follows from (441) below with ¢
=1. Evaluating (431) at t=0 yields

74/3 113(0)

=(- 1)m[ GRS B 2n1/6}f4/3+m/3,1/3(0)
)
)

= (=1)"[1+2 cos ((m—1)27/6)|f _y/3,s3,1/3(0)

=(=1)"[1+2cos ((m- 1)2n/6)]9(q6;_1(qs)—wsﬂn/a)’
(432)
where we have used the fact that
S (-1 R
fy,)t(o) = L= = (e
k=—oc0 d k=00 q q
(433)

_ 6<q2/,\;_q(;471)/)\) k

Il
EMS

to move to (432). Note that the last equality in (433)
follows from (10).

Setting m=6€+j with je€{0,1,2,-,
relying on (12), it follows that

5} in (432) and

WD) 4(0) = (~1)°I[1 + 2 cos ((6€ +j — 1)27/6)]0

. (qﬁ;_l (q3)—7/3+(6€+j)/3)
= (=1)/[1 +2 cos ((j— 1)27/6)]0
. <q6;_1q6<e—1)+j—1)
= (=1)/[1 +2 cos ((j - 1)27/6)]q°"1¥>

(™) 0(a%a ).
(434)

From (434), we see that for j=1 the theta factor 6(q%—
g1 =6(q%-1) = 0 by (13). Also from (414), for j=3,5 one
has [1+2 cos ((j—1)2m/6)] =0. We conclude that 7 648,;]1/3
(0)=0 for j=1,3,5 odd. Setting £=0,j=0 in (434) gives

that % _y5,5(0) =[1+2 cos ((~1)27/6)] (~q ") " 6(q%—q ")
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=-2q0(q%-q"). Thus, the derivatives of all orders of the
normalized function at t =0 are expressed via

0 _ [ e
4 4/3)1/3(0) B (_1)2[1 +2 cos ((j—1)2m/6)] 3(e-1)e  (j-1)(e-1)-1 G(L;_qﬁl) i=0,2,4 (433)
- > q q — > ]_ &>
2 0(q%-a")
0, ji=1,3,5
_1) P () (1)1 (g6, o1
(-1)'q a_ Y (4%4") =0
0(4%-q7")
= (_1)€q3(€—1)€q(1)(8—1)—19(qé;_ql) ) (436)
0(q%-q7") ’ !
(_l)/8/2[_1]q3(€—1)€q3(€—1)—19(qé;_q3) .
0(ab—qg-1 » j=4
(4%-q7")
0, i=1,3,5
_1)8 A DE (D11 0
(=1 "q ; j
= (=)t PE NGO gy j=2 (437)
(_1)€/2[_1]q3(€—1)8q3(€—1)—16(qG;_q3) )
0(q%-q ") ’

where moving to the j=2 case in (437) is facilitated by the
fact that —g0(q%-q7') =0(q%—q") which is obtained from 0, j=13,5
the right hand equation in (12) when g is replaced by ¢° (-1 j=0
and u is replaced by —g. We remark that, from (430) and _ ¢ .
(433), the derivatives of all orders of all normalized f, ,(t) (1" (=1, j=2
(and functions constructed from the f,, () such as 7", (t ( 1] lim 0(q°-4°) _ F1[-2] = (-1)%, j=4

)) at t =0 are expressible in terms of ratios of theta func- 2 2

tions, as is seen overtly in (436) above for the normalized (439)
%/H’A(t)/‘WM(O).

We next determine the derivatives of all orders for the where we have relied on the power of the generalized g-Wal-
ODE in (429) analogous to our MADE in (428) by taking ;g formuylas for ratios of theta functions obtained in Section
the limits as ¢ — 1" of the derivatives obtained in (437). -3 ,.4 given by (470), (482), and (485) below to evaluate
That is the limit in the case j=4 of (438) above. More precisely,

by (482) in the case at hand, we have

60+]
g(6€+])(0) = lim W(74/§{1)/3(0)
1" W _431,3(0)

0 Fras o (ST (20
q;}

—1" | 0(q%-q7") 0(gb;—gb(-1)+5
hm+(_l)eqs(efl)eq(q)(eq)q’ i=0 (.q q )
q—1 = (-1 sin (3n/6) 1 2]
=9 lim (-1)}FEDeGOED1 (g, j=2 sin (571/6) (1/2) '
qﬁl* (440)
; (_l)z _11,3(6-1)e 3(e-1)-1 9(‘16;—q3) _
qE%T[ llg q W’ j=4

One final observation regarding higher order derivatives
(438) of order 0 mod 6 follows. From (430), one has
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(6¢) _ 6¢ -
Fraas(t) = (1) asasenin(t) = fapeaens ()
B
L gFk+ar3-20/173 L g0 (k-e-erdi3)/173

0 (_1>m+‘le*qm(qzt)
= Z O GAB)T
00 (_l)me*qm(qet)

D)

m=—00

q(m2—€2+(4/3)m+(4/3)l’.)/1/3

(c)"e U
q(m(m+4/3))/1/3

_ (_l)eq(ez—4£/3)/(1/3) i

m=—00

— (_1)2q€(€—4/3)/(1/3)f_4/3,1/3 <q€t) .
(441)

7.2. Convergence. We now are prepared to prove that f(t)
=W 4313/ W _yy315(0) satisfying the MADE f(© (1) = -
g 'f(qt) converges as g — 1" to the solution g(t) of the
analogous ODE g(®(t) = —g(t) having initial conditions
given by (439) with € =0. That is, the initial conditions are
given by

(442)

The unique ODE solution satisfying (442) is given by g
(t) = cos (t), by inspection. Convergence of f(t) to g(t) =
cos (t) will be in the sense of uniform convergence on all
compact subsets S of R. The proof will hinge on three factors
(for K sufficiently large): (1) proximity of f(¢) to the Taylor
polynomial P [f](¢) on S; (2) proximity of g(¢) to the Taylor
polynomial Py [g](¢) on S; and (3) proximity of Py[f](¢) to
Pylgl(t) on S. These in turn then force proximity of f(t)

to g(1).

Proposition 45. For any compact set S in R, f(t)
W 43,03 _yy3.,5(0) converges uniformly to g(t) = cos
YonSasq— 1.

E

Proof. First, the 6N + 5-degree Taylor polynomials Pgy,s[g]
(1), Penslf](t) of g and f, respectively, expanded about t
=0 are given by

6N+5 (n ) N 6k)
_ g (0) 6k
P6N+5[g](t) - = Z 6k)'
+ < g(6k+2)(0) £ok2 | Z 9(6k+4>(0) f6k+4
(6k +2)! (6k +4)!
— i(_l)k £6k N (_1)k+1 6k+2
= (6k)! paurt (6k +2)!
N k
(_1) 6k+4
t
i ,;) (6k +4)

(443)
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6N+5 £(n) () k)
F70) . 5 100)
P6N+5[f](t) = Z l t" Z (6k)' %
n=0 :
< f<6k+2)(0 6k+2 + i 6k+4 6k+4
— (6k+2)! & ( 6k+4
i _ k 3k(k 1)q( 1)(k-1)-1 ok
k=0
(444)
S (—l)quk(kfl)q(kfl)fl(_q) t6k+2 (445)
Pt (6k +2)!
+ i (- g EIPEN (0(a%-4)1[-26(45-07")]) okes
P (6k +4)! ’
(446)

where (443) follows from (439), and (444)-(446) follow
from (437). These have respective remainder terms

g'*NO@) f6N+6 _ -1)™'g(&) 1N+ (447)

Renis[9](t) = (6N +6)! (6N +6)!

for some & between 0 and ¢, and

(6N+6)
Rovslf) = Lo
i (_1)N+1q(N+1)(N+1—4/3)/(1/3)f<qN+1() v,
(6N +6)!
(448)

for some { between 0 and t, where (448) follows from
(441). Given a compact set S in R there is a p > 0 such that
S < [-p; p), and thus it is sufficient to prove uniform conver-
gence on [—p, p|. For t € [-p, p], from the triangle inequality
one has

1f () = g(D)] < 1f (1) = Penas 1] + [Pon+s [f1(2)
- Pl Poslgl() =99y
= |[Renss [f1(0)] + [Pens [£1(2)
= Penys[9](t)] + [Renys[g](2)]-

Now for t € [-p, p] and relying on (448), one sees

(_1)N+1q(N+1)(N+1—4/3)/(1/3)f(qNJrlc)

— 6N+6
RexsF1(6) = CEr f
(N+1)(N+1-4/3)/(1/3) ,6N+6
q p N+1
: (6N +6)! fa0)]
(450)
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6N+6

(N+1)(N+1-4/3)/(113)

(6N +6)!

<4

(1],

where moving from (450) to (451) is obtained from the

global bound (424). Similarly, from (447), one has

45

—1)N+1 6N+6
(as)  Rewislel(0)]= ‘%W < e s
as |g(&)] =|cos (§)| < 1. Also, from (443) and (444)-(446)

and for N > 2, we have

N kg 3k(k-1 N k+1 3k(k-1) ,(k-1)
) { g gt 1} J6k {g* Vg -1} (642
ol F1(t) — Peyys[g)(1)] = kz <6k> + Z G5 '
N i (DY I0(q%-4°) 120050 7)] - 1} s
pard (6k +4)!
< N | gkt gD k1)1 1|P6k N |kt ge g
! (6k)! pard (6k +2)!
i|q3kk g 71>—1e(q6;_q3)/[-ze(qe;_q—l)] - 1|p6k+4 (453)
Pt (6k +4)!
_ N ‘q3k(k 1) ( 1)(k-1)-1 _ 1|p6k+ N ’q3k(k71)q(k—l)' _ 1| p6k+2
pard (6k)! Pt (6k +2)!
§:|q3kk 1) 3(k 1)- (Q(q —q ) [ 29(q6;—q’1)]) _613k(k71)qa(1¢71)71|Pék+4
part (6k +4)!
. i‘q%(k DDt | s
pard (6k +4)!
which, after rearranging and factoring, equals (F(£) - g(1)] < g I35 poN+6 1
N |q3k(k’1)q(’1)(k’1)’l _ 1‘ o N |q3kk D g(k1) — 1| s " [q3N(N—1)q3(N—1)—1 _ 1} [ef]
p
pard (6k)! paurt (6k +2)!
. N |q3k (k1) g3(k-1)-1 _ 1 s 0(¢%-7) » +’ e(qsé_(f)l | e g poN+6 .
& (6k +4)! [~20(¢5-q71)] [-20(q%~-q7")) (6N +6)!
N g3k(k=1) g3(k-1)-1 (456)
q q okt4 [ BN(N-1) 3(N-1)-1 _ {
Z (6k +4)! P [q 1 } Given &> 0, choose N, >2 sufficiently large such that
N ek N ek N eked one has p®No*/[(6N, + 6)!] < £/4 to begin bounding the sec-
. Z P + P + P ond term in (456). To handle the terms in (455), note that
& (6k)! &= (6k+2)! & (6k+4)!
0(4°-7") W R 1< (eM4)[(6Ny +6)!)/ [p™"] and, (457)
+ -1 B Y —
[-26(q%—q7")] 1 2 (6k+4)! automatically, 1 <1+ ¢/[4ef],
_1)- 0(¢°—q
< {qw(N 1)q3<N -1 _ 1}[ ]+ m - 1‘ and pick g, > 1 so that
. 3N(N-1) 3(N-1)-1
q 1 e. (No+1)(No+1-43)/(13) _ (€/4)[(6N, +6)]] (458)
(454) o [pNo] ’
Ap.plying (451), (454), and (452), respectively, to the qéNU(NU_l) S(NU_U_I el (459)
terms in (449), one has that for each N >2 [4er]



46
Then, for 1< g < g, one has

(e/4)[(6N, +6)]]

Ny+1)(N,+1-4/3)/(1/3
g Nor D (Nor1-43)/(13) R (460)
) €
q3Nu(N0 1)q3(N0 -1 <l+ —— [4 P] (461)
Hence, for 1 <q<gq,
ﬂ < q(N0+1)(N0+1—4/3)/(1/3) ﬂ <eld (462)
(6N, +6)] (6No+6)
and
[q3NO(N0—1)q3(No—1)‘1 —1|ef <e/4, (463)

where (462)-(463) control the terms in (455) as well as the
last term in (456). To handle the remaining term in (456),
pick g, with 1 < g, < g, such that for all 1 <g < g, one has

0(4°-a°) 3Ny (Ng-1)_3(Ng-1)-1
Pl (464
Mﬂﬂfrqw IS N
which follows from the fact that
0 6;_ 3
(@q) _,, (465)

im ———~—
a—1" [-20(q%-q7")]

via (440) above and/or the generalized g-Wallis formula

(482) below (in the case that m=6,K=-1, and J=3).
Then for 1<q<gq,, it follows that
‘ 6(‘16;—‘13) — 1| NoWom1) 3 (No=1)-1p
[-20(q%-97")]
O (466)
9(6] ;—q) 3No(No=1) 3(No-1)-1 p _ €
<|lTHare 0 1|90 90 &<
[-20(q%-q7")] 4

Applying (462) and (463) along with (466) to (455)
and (456) with N taken to be N, one has that for 1<gq

<q

(467)

for tel-p,pl. So f(t) =W 4315}/ W _43,5(0)
approaches g(t) = cos (¢) uniformly on [-p, p] as g — 17
, and the proposition is proven. O
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7.3. Generalized q-Wallis Formulas. In [6], we have proven a
g-Wallis formula given by the first equality in (468)

In (q) (#qz)3 _ g _ 10_0[[( (2n)?

im I
—1" 0(¢*-1/q) 1| (2n-1)2n+ 1)1 (468)
[22] [44] [66
=113 [335] [57])
where the last two equalities of (468) are Wallis’ formula for
m/2. We now finish the paper by generalizing the above

result in order to provide a number of related generalized
q-Wallis formulas.

Theorem 46. Let m € N with m>2, and let j€{0,1,---,m
— 1} with ke {1,2,---,m—1}. Then the following families
of generalized q-Wallis formulas hold:

| 3
@ () __—mm (469)
a—1" 0(q"~q") sin (kmt/m)’

. 0(q"~¢) _ sin (jn/m)
q;ml* O(qm,—qk) " sin (krim) (470)

Proof. The proof relies on the following factorization of sin

(%) /x:

(471)

sinx(x) _ ﬁ(l— ﬂf—;z>

n=1

From (10) and (11), one has

In (q) (uqm)3
0(q"~4")
_ (@)L [(1 - 1g™)(1 - 1/g™)]
b T Lo [(1 = a*7g™) (1= 1/ [g* g™ V] )]
_ In (q) JT,.,[(1 - 1/g™)(1 - 1/g™)]
(1= 4)TTso[ (1 — a¥1g™ 1)) (1 - 1/ [gkq V)] ) |
In () [ [, [(1 - 1/g™)(1 = 1/q™)]
D) (200 ) o [(1 = 117 5) (1= 1ig+4)]

4 -
qmn+k _ 1):|
(zi5'q") ]
(znln+k lqg)
_ -in(g) 0 (Z%lqﬂ) (ZZ”’B ff) }
(a-1)(Ztat) i (205t (Tt

(=1)(q-

~In [ (g™ (g - 1)
(q) H (1/(q2rqnn ()mn k—l

_ )
(a-1)(Ziaat) i | It
(S5 'e')

)

- mzew)ll

—In (g) _(
(4 —1)( gt

(472)
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where we have reindexed replacing n+1 by n in the
denominator to obtain (472). Relying on the facts that

[limqap In (g)/(g—1)]=1 and [limqﬁﬁzgzoqe] =Y01
=p+1, one sees (since ke {1,2,---,m—1}) that

3
. ln (q) (Mq’”)
lim —

—1" 0(q"—q")

B H{((Wﬂm 4]

q—1" ( )(Zt 04 ) n>1 (’Z’lf(l)*k—lqe) (Zﬁrgk—lqz)
(473)
_ -1 (mn)
k 1_[(mn K(mn+k) k Hl (474)
_ -1 1 B -1 1
k n>1 1- (k/m) In? k anl [1 - (kﬂ/m)z/ﬂznz]
(475)
-1 kn/m —lm
= Tsin (kr[/m) - sin (kT[/m) > (476)

giving (469), where (471) was used to obtain the first
equality in (476). Now when j=0 (470) holds since 6(q™
—-1) =0 (which in turn follows from (13)). For je {1,2,
---,m—1}, one now has from (469) that

o), e o)
=1 0(q"=q") =1y (g (quf 0(q"~d")
_ sin (jn/m) (—m/m) _ sin (jm/m)
(-m/m) sin (k/m)  sin (kn/m)’
(477)

giving (470). This finishes the proof of the theorem. [

Remark 47. We call the above results generalized g-Wallis
formulas via the following reasoning. First, note that the
left-most infinite product

(mn)?
S i A (478)
g (mn —k)(mn + k)
in (474) generalizes the infinite product
| (479)
H l(Zn -1)(2n+1)

in the Wallis formula for 71/2 in (468). In particular note
that when m=2 and k=1 the infinite product in (478)
becomes the infinite product in (479), and the Wallis prod-

47

uct for 71/2 is then duplicated in (474)-(476). Second, note
that the product

mn-k-1 ¢ mn+k-1 ¢
= ‘1)( e=0 4

in (473) is the g-analogue of the product (478). Hence,
we are introducing generalized g-Wallis formulas.

(480)

Corollary 48. Let m e N satisfy m>2. Let J=mL+jeZ
with je{0,1,---,m—1} and K=ml+k e Z with ke {1, -

,m—1} then
3
i In (g) (f“q”‘) (= )e”ﬂ/m (481)
g—1 0(q",—qX)  sin (kn/im)’
0(q"~9) L+e Sin (jze/m)
i =(- . 482
th% 0(q™,~q%) 1) sin (kr/m) (482)
Proof. Relying on (12), one has
3 3
In (q) (qu) In (g) (#qm)

lim =

¢—1 0(q"—q%)

qg} e(qm’_thk)
3
. ln (q) (Ablqm>
1m
q—1* (qm)Z(Hl)/Z (_qk)ee(qm)_qk)

—7/m)
— (-1t (-7 i
( )sinkn/m

(483)

giving (481), where the last equality follows from (469).
If j=0 then (482) holds since then 6(q™;—q™) =0 by (13).
If on the other hand j€ {1,2,--,m — 1} then from (481)

04"~ < ng) @) )3
lim 7’K lim 3
¢—10(q",—q%) a1 (M ) 0(q"-q%)
_ sin (ja/m) (-1)"'n/m (484)

(- )L”;-[/m sin (krr/m)

— (_1)L+€ sin (]T[/m>
sin (kn/m)’

giving (482). Observe that when m =2 and K =-1=2(
—-1) + 1=mL + j, then setting m=2, K=-1, £=-1, and k
=1 1in (481) recovers the g-Wallis limit in (468). This proves
the corollary. O

We point out that in the case of rational exponents
lim,_,.0(¢™"~q"*)/0(q™";=q"") can be evaluated by
obtaining a common denominator N for the fractions in
the exponents and reexpressing them as m/n=M/N,
al/b=A/N, and c/d = C/N to obtain:
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Corollary 49. In the case of rational exponents

) O(qm/n;_qu/h> L e(qM/N A/N)

0 B () th}m
- jim XD asy
Q—1* ( )

>

= (-1 [+¢ SID (J”/ )
sin (kn/M)

where Q=q"N and A=ML+j and C=M~e+k with j, ke
{0,1,--,M~1} and k#0.

Proof. One applies Corollary 48 with A=ML+j and C=
Me+k with j,ke{0,1,---,M—1} and k#0 to obtain the
last equation in (485). This proves the corollary. O

We point out that, in our setting, important and useful
applications of these generalized g-Wallis formulas (espe-
cially those of type (470), (482), and (485)) occur in proving

(1) initial conditions for a classical ODE analogous to a
given MADE as seen earlier in (439) and (440)

(2) convergence of MADE solutions to their classical
analogous ODE as seen in (464) and (465) in
Proposition 45
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