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Abstract: This study explores the advanced mathematical modeling of electromagnetic energy har-
vesting in vehicle suspension systems, addressing the pressing need for sustainable transportation 
and improved energy efficiency. We focus on the complex challenge posed by the non-linear behav-
ior of magnetic flux in relation to displacement, a critical aspect often overlooked in conventional 
approaches. Utilizing Taylor expansion and Fourier analysis, we dissect the intricate relationship 
between oscillation and electromagnetic damping, crucial for optimizing energy recovery. Our rig-
orous mathematical methodology enables the precise calculation of the average power per cycle and 
unit mass, providing a robust metric for evaluating the effectiveness of energy harvesting. Further, 
the study extends to the practical application in a combined system of passive and electromagnetic 
suspension, demonstrating the real-world viability of our theoretical findings. This research not 
only offers a comprehensive solution for enhancing vehicle efficiency through advanced suspension 
systems but also sets a precedent for the integration of complex mathematical techniques in solving 
real-world engineering challenges, contributing significantly to the future of energy-efficient auto-
motive technologies. The cases reviewed in this article and listed as references are those commonly 
found in the literature. 

Keywords: electromagnetic damping; Energy Harvesting Shock Absorbers (EHSAs); induced  
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1. Introduction 
The increasing global energy demand and the corresponding rise in environmental 

concerns have catalyzed a shift towards sustainable and efficient energy usage, particu-
larly in the automotive industry [1]. 

With the ongoing evolution towards electric vehicles, overcoming limitations such as 
low autonomy compared to fossil fuel vehicles has become a critical challenge [2]. 

A promising approach to address these limitations is through energy recovery sys-
tems, which not only enhance vehicle range but also reduce energy consumption and 
emissions [3]. The automotive industry faces increasing pressure to enhance energy 
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efficiency and reduce environmental impacts. The global shift towards electric vehicles 
emphasizes the necessity for innovative solutions to improve vehicle range and efficiency 
while addressing environmental concerns. Among various strategies, energy recovery 
systems have emerged as key technologies to enhance vehicle efficiency and sustainabil-
ity, particularly in the context of vehicle suspension. 

Regenerative braking systems [4], thermoelectric generators [5], and energy recovery 
from engine gases [6] represent significant advancements in this domain. However, these 
methods each have limitations and areas for improvement, particularly in the context of 
maximizing efficiency and applicability. Recently, attention has turned to the vehicle’s 
suspension system as a novel source for energy recovery [7]. Traditional shock absorbers 
dissipate mechanical energy as heat, presenting an opportunity for energy recovery [8]. 
The concept of Energy-Harvesting Shock Absorbers (EHSAs) has been introduced as a 
means to convert lost kinetic energy from road irregularities into usable electrical energy, 
potentially increasing the overall efficiency of vehicles [9]. 

Various technologies have been proposed for EHSAs, including hydraulic EHSAs 
[10] which employ a pump and motor to convert mechanical to electrical energy and are 
capable of handling high forces, but are often bulky and complex. Piezoelectric materials 
[11] are more suitable for high-frequency applications but face challenges at lower fre-
quencies typical of suspension systems. 

Electromagnetic EHSAs have emerged as a promising technological solution, partic-
ularly for their compact design and potential for high energy recovery efficiency. These 
systems harness electromagnetic induction to generate electricity, but optimizing their en-
ergy conversion process remains a significant challenge [12]. These systems can be divided 
into linear and rotational electromagnetic generators [13], and systems that convert trans-
lational suspension movement into rotational motion, such as pinion–rack [14] or ball 
screw [15], among others. 

Innovations in linear systems include the application of magnetic solutions using 
both hard and soft magnetic materials in dampers, and these have been explored to over-
come existing limitations and enhance the efficiency of electromagnetic EHSAs [16]. These 
systems utilize the interaction between magnets and coils to convert motion into electrical 
energy. The design and efficiency of these systems depend heavily on the positioning and 
characteristics of the magnets and coils [17], making it challenging to assess and optimize 
these technologies [18]. Despite this, the potential of electromagnetic systems in convert-
ing suspension activity into electrical energy is considerable. Not only do they offer a 
means of energy recovery, but they also enable the transformation of passive suspension 
systems into active ones, allowing for adjustable operating characteristics [19]. 

An important aspect of designing effective electromagnetic suspension systems is 
understanding the relationship between the magnet’s position and the amount of energy 
that can be collected using the coil [20]. This relationship is crucial for optimizing the sys-
tem’s efficiency, as the energy collected depends on the coil’s position relative to the mag-
net. 

One critical gap in current research is the lack of a comprehensive understanding of 
the dynamics governing magnetic suspension systems and their potential for energy re-
covery. Traditional linear models fail to capture the complex behaviors of electromagnetic 
interactions in suspension systems, leading to inefficiencies and missed opportunities for 
energy recovery. Additionally, there is an absence of a standardized protocol for compar-
ing different energy recovery systems, which hampers the assessment and optimization 
of these technologies [21]. 

This study aims to address these gaps by delving into the advanced mathematical 
and physical analysis of electromagnetic energy recovery within vehicle suspension sys-
tems. Specifically, it seeks to explore the dynamics of these systems beyond conventional 
linear models, employing techniques such as Taylor expansion and Fourier analysis to 
offer a more detailed and accurate understanding. 
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Furthermore, this research intends to bridge the theoretical and practical aspects of 
energy recovery, by not only examining the fundamental principles governing electro-
magnetic suspension systems but also by considering their real-world application and op-
timization. By analyzing combined passive and electromagnetic suspension systems and 
converting differential motion equations into algebraic ones, this study aims to provide 
valuable insights into the design and efficiency of energy recovery solutions. 

In response to these challenges, the mathematics and physics underlying the electro-
magnetic energy harvesting obtained during car motion is reviewed in this article. In es-
sence, this article intends to explore the sophisticated mathematical landscape of electro-
magnetic energy harvesting in vehicle suspension systems. It aims to shed light on the 
complex interactions and dynamics within these systems, offering a pathway to more ef-
ficient and effective energy recovery solutions. Through this rigorous analytical approach, 
the study contributes significantly to the broader goal of enhancing vehicle energy effi-
ciency and sustainability in the automotive industry. 

In Sections 2 and 3, the correlation between the oscillation and the electromagnetic 
damping is analyzed. As in many cases, the magnetic flux is not a linear function of the 
displacement, and the general procedure to solve the motion equation based on Taylor 
expansion and Fourier analysis is revisited. In the third section, the average power per 
cycle and unit mass is calculated and described. Finally, in Section 4, the study of a more 
technical and applied system is addressed, as is the combination of a passive and an elec-
tromagnetic suspension system, by using the Fourier analysis to convert the differential 
motion equations in algebraic equations. 

2. Methodology 
2.1. Equation of Motion and Electromagnetic Damping 

Consider a magnet, hanging fixed at a spring that supports a mass, m, subject to an 
external force per unit mass F(t), Figure 1. The magnet periodic motion, along the x axis, 
generates an induced electromotive force, E, in a stationary coil located at its proximity. 
By the relativity principle, the same physics governs the case in which the coil is fixed to 
the spring and the magnet remains stationary. 

Let us call φ0 the flux through the coil at the equilibrium position of the magnet x0 = 
a. The induced electromotive force is then given by 𝐸 = −𝑑𝛷𝑑𝑡  (1) 

Here, we neglect a contribution to the magnetic flux from magnetic materials or am-
bient fields, as they would require individual solutions. Exact solutions should be ob-
tained considering these contributions, but the procedure is that presented here. 

 
Figure 1. System composed of a magnet attached to a spring and in proximity to a collector coil. 
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Part of the power absorbed by the spring from the external force is used to support a 
current I(t) in the circuit formed by the coil and the load resistance and is given by 𝑃 = 𝑑൫𝐸௞௜௡ + 𝐸௣௢௧൯𝑑𝑡 = 𝑓∗ሺ𝑡ሻ𝑥’ሺ𝑡ሻ = 𝛽’𝑥´ሺ𝑡ሻଶ (2) 

where 𝑓∗ሺ𝑡ሻ is the electromagnetic friction force opposite to the motion and β′ its corre-
sponding coefficient (𝑓∗ሺ𝑡ሻ = 𝛽´𝑥´(𝑡) ). f(t) can be written as the gradient of the work, 𝐼(𝑡)𝛷(𝑡) given by the current 𝑓∗(𝑡) = −𝑑𝛷𝑑𝑥 𝐼(𝑡) (3) 

If L and R are the induction coefficient and the resistance of the coil and R* the re-
sistance of the load, I(t) is related to E through the following relationship 𝐸 = −𝑑𝛷𝑑𝑡 = 𝐿 𝑑𝐼(𝑡)𝑑𝑡 + (𝑅 + 𝑅∗)𝐼(𝑡) (4) 

Then, (4) yields for I(t) 𝐼(𝑡) = − 1(𝑅 + 𝑅∗ + 𝑖𝜔𝐿)𝑑𝛷𝑑𝑡 = − 1(𝑅 + 𝑅∗ + 𝑖𝜔𝐿)𝑑𝛷𝑑𝑥 𝑑𝑥𝑑𝑡  (5) 

Then, according to (3) and (5), f(t) becomes 𝑓∗(𝑡) = 𝛽´𝑥´(𝑡) = 1(𝑅 + 𝑅∗ + 𝑖𝜔𝐿) ൬𝑑𝛷𝑑𝑥൰ଶ 𝑑𝑥𝑑𝑡  (6) 

Thus, the magnet and thereby the spring should undergo, per unit mass, the reactive 
force associated with the induced electromotive force, given by 𝑓(𝑡) = ௙∗(௧)௠ = ఉ௠́ 𝑥´(𝑡) =
γ´𝑥´(𝑡). 

The real and imaginary components of γ´, according to (6), are given by 

γ´௥ = (𝑅 + 𝑅∗)𝑚((𝑅 + 𝑅∗)ଶ + (𝜔𝐿)ଶ) ൬𝑑𝛷𝑑𝑥൰ଶ 

γ´௜ = −𝜔𝐿 ቀ𝑑𝛷𝑑𝑥ቁଶ𝑚((𝑅 + 𝑅∗)ଶ + (𝜔𝐿)ଶ) 

(7) 

The equation of the spring motion can then be written as a function of the external 
force F(t) per unit mass as 𝑥´´ + (𝛾 + 𝛾´)𝑥´ + 𝜔଴ଶx =  න 𝐹(𝜔)𝑐𝑜𝑠𝜔𝑡 dωஶ

ିஶ  (8) 

where the term 𝛾 is the mechanical friction coefficient of the spring motion and F(ω) the 
Fourier transform of the applied force per unit mass F(t). 

The Fourier expansion of x(t) yields 𝑥(𝜔) = 𝐹(𝜔)𝜔଴ଶ − 𝜔ଶ(1 − 𝛾´௜𝜔 ) + 𝑖𝜔(𝛾 + 𝛾௥) (9) 

Equation (9) illustrates the action of both self-inductance and resistance on the mo-
tion equation; the first one introduces a mass correction whereas the total resistance of the 
secondary circuit, coil plus load, acts as an additional friction term. 

The dissipative coefficient consists of two terms, one due to the mechanical friction 𝛾 and the other due to a new one 𝛾´௥ or electromagnetc friction coefficient. 
In many cases, the oscillation frequency is sufficiently low (a few cycles per second) 

to disregard the term proportional to L. Subsequently, Equation (8) simplifies since 𝛾´௜ =0 and 𝛾´௥ = ଵ௠(ோାோ∗) ቀௗఃௗ௫ቁଶ, therefore x(ω) can be expressed as 
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𝑥(𝜔) = 𝐹(𝜔)𝜔଴ଶ − 𝜔ଶ + 𝑖𝜔 ቆ𝛾 + 1𝑚(𝑅 + 𝑅∗) ቀ𝑑𝛷𝑑𝑥ቁଶቇ 
(10) 

Notice that if the flux 𝛷  is proportional to x, i.e., ቀௗఃௗ௫ቁ = 𝑎, the term 𝛾´  is a constant 
and can be added to the mechanical friction coefficient 𝛾 to yield a total friction coefficient 𝛾∗ = 𝛾 + 𝛾´ =  𝛾 + ௔మ௠(ோାோ∗)మ 

When the derivative ቀௗఃௗ௫ቁ can not be properly approximated to a linear function of 
x, 𝛾´  ceases being a constant and Equation (7) loses its linear character. 

Finally, it is worth to note that the electromagnetic power available to be used by the 
load, I2 × R*, according to (5) and for a constant electromotive force induced in the pick-up 
coil, reaches a maximum for R = R*. If the induction coefficient L is not disregarded the 
maximum corresponds with more generality to Z = Z*, or the matching condition between 
the load, Z*, and the pick-up coil, Z, impedances. 

2.2. Taylor Expansion of ቀௗఃௗ௫ቁ and Fourier Analysis 

2.2.1. Taylor Expansion 
Before analyzing some simple cases let us outline a general treatment of the problem 

by using the Taylor expansion of the flux around the equilibrium position of the magnet, 𝑥 = 𝑥଴. This procedure leads to the following relationship 

𝛷(𝑥) = 𝛷(𝑥଴) + ෍ 1𝑛!ஶ
௡ୀଵ ൬𝑑௡𝛷𝑑𝑥௡൰௫ୀ௫బ (𝑥 − 𝑥଴)௡ (11) 

Therefore, the term ቀௗఃௗ௫ቁଶ that appears in Equations (6) and (7) in the expressions of 
γ� becomes (taking 𝑥଴ = 0): 

൬𝑑𝛷𝑑𝑥൰ଶ = ቌ෍෍ 1(𝑝 − 1)!ஶ
௣ୀଵ

1(𝑛 − 1)!ஶ
௡ୀଵ 𝛷௡𝛷௣𝑥௡ା௣ିଶ(𝑡)ቍ (12) 

Consequently, ቀௗఃௗ௫ቁଶ ௗ௫ௗ௧ may be written as 

൬𝑑𝛷𝑑𝑥൰ଶ 𝑑𝑥𝑑𝑡 = ቌ෍෍ 1(𝑝 − 1)!ஶ
௣ୀଵ

1(𝑛 − 1)!ஶ
௡ୀଵ

1(𝑛 + 𝑝 − 1)𝛷௡𝛷௣ 𝑑𝑑𝑡 𝑥௡ା௣ିଵ(𝑡)ቍ (13) 

In summary, in the general case, 𝛾´ is not a constant but an expansion of increasing 
powers of the position x [22]. Note that when the magnet oscillates between two points 
for which the distance to the coil is maximum and minimum, respectively, the flux could 
be roughly approximated using a linear function of x. In this case, 𝛾´ is a constant and the 
motion equation has a solution that is the well-known solution of the harmonic oscillator. 
However, when the rest position corresponds to the maximum flux, i.e., 𝛷(0) in (11) is 
maximum, the 𝛾´ coefficient is at least proportional to 𝑥ଶ, as shown in one of the exam-
ples studied below. 

The approximation degree of the expansion must be tuned by considering the partic-
ular expected shape of the function 𝛷(𝑥), the distance between the pick-up coil and the 
primary field source, as well as the amplitude of the oscillation. 

2.2.2. Fourier Analysis 
As we have to deal with the powers of x(t), as indicated by (11) and taking into con-

sideration that the real part of any power of 𝑒௜ఠ௧ is different to the same power of x(t), it 
is more suitable to express x(t) as 
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𝑥(𝑡) = 12𝜋න 𝑥(𝜔)cos (𝜔𝑡 + 𝜑(𝜔))𝑑ஶ
଴ 𝜔 (14) 

According to (7), the equation of motion (6) can be written in the frequency domain 
once that the Fourier transform of 𝛾´𝑥´  has been determined. 

Taking into account the Fourier transform of ௗௗ௧ 𝑐𝑜𝑠௡൫𝜔𝑡 + 𝜑(𝜔)൯, the ቀௗఃௗ௫ቁଶ ௗ௫ௗ௧ can be 
expanded ቀௗఃௗ௫ቁଶ ௗ௫ௗ௧ =  −𝜔(𝐴(1)sin(𝜔𝑡 + 𝜑(𝜔)) +𝐴(2)sin2(𝜔𝑡 + 𝜑(𝜔) + 𝐴(3)sin3(𝜔𝑡 + 𝜑(𝜔)) + ⋯ = 

(15) 

                 𝐴(1) = −𝜔 ൬𝜙ଵଶ𝑥(𝜔) + 13 (𝜙ଵ𝜙ଷ + 𝜙ଶଶ)𝑥ଷ(𝜔) + ⋯൰ 

𝐴(2) = −𝜔 ൬𝜙ଵ𝜙ଶ𝑥ଶ(𝜔) + 14 (𝜙ଶ𝜙ଷ + 13𝜙ଵ𝜙ସ)𝑥ସ(𝜔) + ⋯൰ 

𝐴(3) = −𝜔 ൬14 (𝜙ଵ𝜙ଷ + 𝜙ଶଶ)𝑥ଷ(𝜔) + ⋯ . . ൰ 

(16) 

In conclusion, the equation of motion in the frequency domain generally becomes 
nonlinear and, thereby, it has not any closed form solution. Therefore, numerical proce-
dures such as the Runge–Kutta method should be applied to the different particular mo-
tion conditions. 

2.2.3. Example: A Particular Geometry for the Coil-Magnet System for Which 𝛷(0) Is 
Maximum or ቀୢ஍ୢ୶ቁ୶ୀ଴ = 0 

In Figure 2b, the poles of the magnet are in front of a circular coil surface in such a 
way that the flux through the coil surface is maximum, i.e., 𝛷(0) in (10) is maximum [23]. 
Appendix A presents the calculations for the case of rectangular poles structure. After as-
suming that the magnetic field lines, B, are restricted to the magnet surface, the flux 
through the n-turns coil becomes nBS(x), where S(x) is the intersection of both the magnet 
and the coil surfaces and depends on the cantilever displacement, x. 

 
(a) (b) (c) 

Figure 2. Cylindrical magnet glued to the free end of a cantilever that oscillates around its equilib-
rium position. (a) there is no intersection of the flux between magnet and coil; (b) shows how the 
intersection is equal to the entire surface of S(x); (c) shows how there is only intersection in a fraction 
of the surface of S(x). 

The induced electromotive force (2) is then given by 𝐸 = −𝑑𝛷𝑑𝑡 = −𝑛𝐵𝑑𝑆(𝑥)𝑑𝑥 𝑑𝑥𝑑𝑡 = −𝑛𝐵ඥ4𝑟ଶ − 𝑥ଶ 𝑑𝑥𝑑𝑡  (17) 
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where r is the coil radius assumed to be equal to that of the magnet surface. Accordingly, 
the motion Equation (8) becomes 𝑥´´ + ቆ𝛾 + 𝑛ଶ𝐵ଶ𝑚(𝑅 + 𝑅∗) (4𝑟ଶ − 𝑥ଶ)ቇ𝑥´ + 𝜔଴ଶx =  න 𝐹(𝜔)𝑐𝑜𝑠𝜔𝑡 dωஶ

ିஶ  (18) 

where we have disregarded the self-inductance term of the circuit. 
This may also be expressed as 𝑥´´ + 𝛾∗𝑥´ − 𝑛ଶ𝐵ଶ𝑚(𝑅 + 𝑅∗) 𝑥ଶ𝑥´ + 𝜔଴ଶx =  න 𝐹(𝜔)𝑐𝑜𝑠𝜔𝑡 dωஶ

ିஶ  (19) 

where 𝛾∗ holds for the constant 𝛾∗ = 𝛾 + ௡మ஻మ௠(ோାோ∗) 4𝑟ଶ. 
According to the assumed B lines distribution around the magnet, the magnet motion 

induces electromotive force as its displacement and 𝑥 is restricted to be smaller than 2r 
[24]. 

For 𝑥 ≤ 2𝑟, the equation of motion can then be approximated by 𝑥´´ + 𝛾∗𝑥´ − 𝜔଴ଶ𝑥 =  න 𝐹(𝜔)𝑐𝑜𝑠𝜔𝑡 dωஶ
ିஶ  (20) 

with 𝛾∗ = 𝛾 + 𝛼 ௡మ஻మ௠(ோାோ∗) 𝑟ଶ where 𝛼 is a fitting parameter comprised between 3 and 4. 
For 𝑥 ൒ 2𝑟, the following motion equation holds that 𝑥´´ + 𝛾𝑥´ − 𝜔଴ଶ𝑥 =  න 𝐹(𝜔)𝑐𝑜𝑠𝜔𝑡 dωஶ

ିஶ  (21) 

In order to estimate the error associated with the use of the simplified Equation (20), 
its corresponding analytical solution has been compared with that numerically obtained 
for the nonlinear Equation (19) by using the Runge–Kutta method, as shown in Figure 3. 
The excellent match between the solution of the original equation and the used approxi-
mation confirms the reliability of this later. 

  
(a) (b) 

Figure 3. Comparison in amplitude of the solution to the original equation and the approximated 
solution for ω = 0.1 Hz. (a) Figure between 0 and 20 s; (b) by zooming in on (a), the area of the graph 
between 0 and 2 s can be seen more clearly (see Appendix B for details). 

3. Electromagnetic Energy Harvested during Spring Motion 
The instantaneous electromagnetic power harvested through unit mass is given by 𝛾´𝑥´ଶ, and taking into account Equations (7) and (9), we find for the average power in a 

cycle 
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〈𝑃(𝜔)〉 = 12 𝛾´௥𝐹ఠଶ𝜔ଶ൬(𝜔଴ଶ − 𝜔ଶ(1 − 𝛾´௜𝜔 )൰ଶ + 𝜔ଶ(𝛾 + 𝛾´௥)ଶ (22) 

In order to estimate the relative values of the real and imaginary components of γ�, 
let us consider a circular pick-up coil with the radius r and height l made with a wire of 
resistivity 𝜌 and cross section S. It is easy to find that 𝛾´௜𝛾´௥ = 𝜔 𝐿𝑅 = 𝜔 µ଴µ௥𝑛ଶ𝜋𝑟ଶ𝑙 2𝜋𝑟𝑛𝜌𝑆 = 𝜔 µ଴µ௥𝑛𝑟𝑆2𝜌𝑙 ≈ 𝜔 µ଴µ௥𝑆4𝜌  (23) 

where the last term was obtained by assuming that 𝑙 ≈ 2𝑟𝑛. 
According to (23), when µ௥ = 200, 𝑠 = 3 x 10ି଼ mଶ  and 𝜌 = 5 x 10ି଼ Ωm , the ratio ఊ´೔ఊ´ೝ  approximately becomes 3.6 x 10ିହ𝜔. Therefore, when the frequency is kept below 1 

kHz, 𝛾´௜ can be disregarded, and Equation (22) may be rewritten in a simplified form as 

〈𝑃(𝜔)〉 = 12 𝛾´௥𝐹ఠଶ𝜔ଶ((𝜔଴ଶ − 𝜔ଶ)ଶ + 𝜔ଶ(𝛾 + 𝛾´௥)ଶ (24) 

Since in EHSA frequencies higher than 100 Hz are generally absorbed through other 
elements such as tires, 𝜔 < 1 kHz does not restrict us and it is always acceptable to disre-
gard 𝛾´௜ term. 

Moreover, when ቀௗఃௗ௫ቁ = 𝑎, 〈𝑃(𝜔)〉 may be expressed as: 

〈𝑃(𝜔)〉 = 𝑎ଶ2𝑚(𝑅 + 𝑅∗)𝐹ఠଶ𝜔ଶ
((𝜔଴ଶ − 𝜔ଶ)ଶ + 𝜔ଶ ൬𝛾 + 𝑎ଶ𝑚(𝑅 + 𝑅∗)൰ଶ (25) 

The forces involved in the process of energy harvesting during car motion have Fou-
rier components of a few Hz, therefore Expression (25) is generally correct. Furthermore, 
the applied force is due to the road roughness xl, which contracts the spring and conse-
quently can be written per unit mass as 𝐹ఠ = −𝜔଴ଶ𝑥௟(𝜔). Notice that the Fourier compo-
nents of 𝑥௟  are functions of the wavelength, λ, of the road roughness, therefore, for a 
given 𝜆, the corresponding 𝜔 depends on the speed of the car, 𝑣, as 𝜔 = ଶగఒ 𝑣. On the 

other hand, the constant 𝑎ଶ,  by its definition, can be approximated to (௡ௌ஻)మ(ଶ௥)మ ≈ (௡గ௥஻)మସ , 
where n and S are the number of turns and the cross section of the pick-up coil, respec-
tively, B is the average value of the magnetic field taken over all the points of the coil cross 
section at the rest position (x = 0) of the magnet and r the radius of the coil. It has been 
assumed that the flux evolves from its maximum value 𝑛𝑆𝐵 at x = 0 to zero at x(t) = 2r, r 
being the coil radius. After taking all these points into consideration, Equation (25) be-
comes 

〈𝑃(𝜔)〉 = (𝑛𝑆𝐵)ଶ𝜔଴ସ𝜔ଶ8𝑚(𝑅 + 𝑅∗)𝑟ଶ 𝑥௟ఠଶ((𝜔଴ଶ − 𝜔ଶ)ଶ + 𝜔ଶ ൬𝛾 + (𝑛𝑆𝐵)ଶ4𝑚𝑟ଶ(𝑅 + 𝑅∗)൰ଶ    
= (𝑛𝜋𝑟𝐵)ଶ𝜔଴ସ𝜔ଶ8𝑚(𝑅 + 𝑅∗) 𝑥௟ఠଶ((𝜔଴ଶ − 𝜔ଶ)ଶ + 𝜔ଶ ൬𝛾 + (𝑛𝜋𝑟𝐵)ଶ4𝑚(𝑅 + 𝑅∗)൰ଶ 

(26) 

Consider a system in which the radius of the coil is r = 0.5 cm or S ≈ 8 × 10−5 m2, and 
the number of turns n = 1000, B = 1 T. The mass is m = 2 kg and the mechanical friction γ = 
4 Ns/kg·m, the total resistance of the secondary circuit is R + R* = 20 Ω, and ω0 =20 Hz. 
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According to these values, the electromagnetic damping verifies 𝛾´௥ = (௡గ௥஻)మସ௠(ோାோ∗) = 0.035 
Ns/kg∙m. The average power as a function of ω is then, according to (26), that shown in 
Figure 4a. If the number of turns as well as the coil radius increases up to a factor two, 𝛾´௥ 
increases up to 0.56 (disregarding the increase in electric resistance) and the correspond-
ing dependence of the power with frequency is illustrated by Figure 4b. Both curves were 
obtained from (26) after assuming 𝑥௟,ఠ = 2𝑟. 

  
(a) (b) 

Figure 4. (a) Average power as a function of ω; (b) average power as a function of ω increasing the 
number of turns as well as the coil radius up to a factor two. 

As an example, let us consider a 𝑥௟  profile that as a function of time is a rectangular 
pulse of width 2𝑡଴ =  2𝑑/𝑣, where 𝑣 is the car speed. It can then be written: 𝑥௟(𝑡) = න 𝑥௟(𝜔)𝑒௜ఠ௧ dωஶ

ିஶ  (27) 

where 𝑥௟(𝜔) = 2𝑥𝑠𝑖𝑛𝜔𝑡଴𝜔  (28) 

Therefore, 𝑥௟(𝜔) becomes negligible for frequencies below 𝜔௟ = ଷగଶ௧బ = ଷగ௩ସௗ . The limit 

value 𝜔௟ = ଷగ௩ସௗ   correponds to the maximum frequency for which the Fourier transform 
of the applied force takes significant values. If the resonance frequency shown in Figure 4 
is higher than 𝜔௟, the power absorption would be very low. But an increase in the car 
speed 𝑣 would approach 𝜔௟ to the resonance and the system will start to harvest con-
siderable power. For instance, if d = 0.2 m, as the resonance frequency is ω0 = 20 Hz, the 
speed required to reach 𝜔௟ = 20 Hz is 6 km/h. 

It is important to remark that the increase in power absorbed through the electro-
magnetic system is achieved when increasing the oscillation amplitude of the system finds 
a counterpart in the corresponding decrease in comfort. Jiang et al. [24] have studied with 
detail some of these correlations. 

Finally, it must be indicated that, according to (24), the maximum power absorbed 
using the electric circuit, when the strength and frequency of the force remain constant, 
corresponds to an electromagnetic friction coefficient given by 𝛾´௥ଶ = 𝛾ଶ − (ఠబమିఠమ)మఠమ . Note 
that the maximum electromagnetic power absorption at the mechanical resonance re-
quires that 𝛾´௥ = 𝛾, i.e., the matching of mechanical and electrical impedances. 
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4. Motion Equations and Electromagnetic Power Absorbed in an Energy Harvesting 
Suspension Formed Using a Combination of a Passive Suspension Plus an  
Electromagnetic One 

As indicated by Jiang et al. [24], an energy harvesting suspension can be formed using 
a passive suspension that consists of a spring and a damper, and via an energy harvester 
consisting of a system of magnets and coils. The magnets can be fixed to the cylinder 
linked to the wheel axis, or lower cover, whereas the coils are fixed to the upper mass of 
the car or upper cover and can move in the magnetic field. 

The equation of motion can be written as 𝑚ଵ𝑥´´ଵ + 𝑘ଵ(𝑥ଵ − 𝑥ଶ) + 𝑐(𝑥ଵ´ − 𝑥ଶ´) − 𝑘௔𝑖 = 0 𝑚ଶ𝑥´´ଶ + 𝑘ଶ(𝑥ଶ − 𝑥௟) − 𝑘ଵ(𝑥ଵ − 𝑥ଶ) − 𝑐(𝑥ଵ´ − 𝑥ଶ´) + 𝑘௔𝑖 = 0 𝐿𝑖´ + 𝑅𝑖 + 𝑘௔(𝑥ଵ´ − 𝑥ଶ´) = 0 

(29) 

The magnetic flux through the coil is assumed to be proportional to the displacement 
between the magnet and the coil as is the case studied in previous Section 3. 𝑚ଵ is the car or sprung mass, 𝑚ଶ is the wheel and wheel axes mass or unsprung 
mass, 𝑘ଵ and c are the stiffness and damping coefficient of the passive suspension, 𝑘ଶ is 
the tire stiffness, 𝑘௔  is the electromagnetic coupling coefficient, and 𝑥ଵ, 𝑥ଶ  and 𝑥௟  are 
the displacements of the sprung vehicle mass, the unsprung mass and the road profile, 
respectively. 

The system of differential Equation (29) is turned into a set of algebraic equations 
through the Fourier transform. The driving force is due to the road profile that can be 
written as 𝑥௟ = ׬ 𝑥௟(𝜔)𝑒௜ఠ௧ dωஶିஶ . Then, for a particular 𝑥௟(𝜔), Equation (29) becomes (−𝑚ଵ𝜔ଶ + 𝑘ଵ + 𝑖𝜔(𝑐 + 𝑘௔𝑅 + 𝑖𝜔𝐿)𝑥ଵ(𝜔) + (−𝑘ଵ − 𝑖𝜔(𝑐 + 𝑘௔𝑅 + 𝑖𝜔𝐿)𝑥ଶ(𝜔) = 0 

(−𝑘ଵ − 𝑖𝜔 ൬𝑐 + 𝑘௔𝑅 + 𝑖𝜔𝐿൰ 𝑥ଵ(𝜔) + (−𝑚ଶ𝜔ଶ + 𝑘ଵ + 𝑘ଶ + 𝑖𝜔(𝑐 + 𝑘௔𝑅 + 𝑖𝜔𝐿)𝑥ଶ(𝜔) = 𝑘ଶ𝑥௟(𝜔) 
(30)

After defining 𝛼ଵ = −𝑚ଵ𝜔ଶ; 𝛼ଶ = −𝑚ଶ𝜔ଶ + 𝑘ଶ; 𝛽 = 𝑘ଵ + 𝑖𝜔(𝑐 + ௞ೌோା௜ఠ௅) 
Equation (30) can be rewritten as (𝛼ଵ + 𝛽)𝑥ଵ(𝜔) − 𝛽𝑥ଶ(𝜔) = 0 −𝛽𝑥ଵ(𝜔) + (𝛼ଶ + 𝛽)𝑥ଶ(𝜔) = 𝑘ଶ𝑥௟(𝜔) 

(31) 

The solutions are 𝑥ଵ(𝜔) = 𝑘ଶ𝛽(𝛼ଵ + 𝛽)(𝛼ଶ + 𝛽) − 𝛽ଶ 𝑥௟(𝜔) 

𝑥ଶ(𝜔) = 𝑘ଶ(𝛼ଵ + 𝛽)(𝛼ଵ + 𝛽)(𝛼ଶ + 𝛽) − 𝛽ଶ 𝑥௟(𝜔) 

(32) 

Equation (30) leads to the following relationship 𝑥´ଵ − 𝑥´ଶ = 𝑖𝜔 𝑚ଵ𝜔ଶ𝑘ଶ𝑚ଵ𝑚ଶ𝜔ସ −𝑚ଵ𝑘ଶ𝜔ଶ + (𝑘ଶ − 𝑚ଵ𝜔ଶ −𝑚ଶ𝜔ଶ)ቆ𝑘ଵ + 𝑖𝜔 ቀ𝑐 + 𝑘௔𝑅 + 𝑖𝜔𝐿ቁቇ𝑥௟ (33)

By assuming the term ωL to be negligible respect to R, it can be written as 𝑥´ଵ − 𝑥´ଶ = 𝑅𝑚ଵ𝜔ଷ𝑘ଶ൫𝜔(𝑘ଶ − 𝑚ଵ𝜔ଶ − 𝑚ଶ𝜔ଶ)(𝑐𝑅 + 𝑘௔)൯ − 𝑖𝑅(𝑚ଵ𝑚ଶ𝜔ସ − 𝑚ଵ𝑘ଶ𝜔ଶ + (𝑘ଶ − 𝑚ଵ𝜔ଶ − 𝑚ଶ𝜔ଶ)𝑘ଵ) 𝑥௟ (34) 

The amplitude of the electromagnetic power harvested during a cycle by the motion 
of the system is, according to Equation (22), given by 
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𝑃 = 𝐾௔ଶ𝑅 |𝑥´ଵ − 𝑥´ଶ|ଶ (35) 

That according to (34) yields 𝑃 = 𝑘௔ଶ𝑅(𝑚ଵ𝜔ଷ𝑘ଶ)ଶ൫𝜔(𝑘ଶ −𝑚ଵ𝜔ଶ − 𝑚ଶ𝜔ଶ)(𝑐𝑅 + 𝑘௔)൯ଶ + (𝑅(𝑚ଵ𝑚ଶ𝜔ସ −𝑚ଵ𝑘ଶ𝜔ଶ + (𝑘ଶ − 𝑚ଵ𝜔ଶ−𝑚ଶ𝜔ଶ)𝑘ଵ)ଶ 𝑥௟ଶ (36) 

Figure 5 depicts the power absorbed as a function of frequency, when the calculation 
was performed for the following parameters: m1 = 2 kg; m2 = 4.2 kg; k1 = 5 × 103 N/m; k2 = 
3 × 103 N/m; R = 20 Ω; C = 16 N.s/m; ka = 34 T.m., those values have been considered 
before by Jiang et al. [24]. It was also considered xl = 1 mm. 

 
Figure 5. Average power as a function of 𝜔 with specific parameters. 

The observed maximum corresponds to the resonant frequencies that are those for 

which one of the terms of the denominator in Equation (31) vanishes., i.e., 𝜔ଵ = ට ௞మ௠భା௠మ ≈21 Hz and 𝜔ଶ = ඨ௞భା௞మଶ௠మ + ௞భଶ௠భ ± ටቀ௞భା௞మଶ௠మ + ௞భଶ௠భቁଶ − ௞భ௞మ௠భ௠మ ≈ 69 Hz. 

5. Soft Magnetic Nucleus within the Pick-Up Coil 
A possible way to increase the harvested electromagnetic power is to wind the pick-

up coil around a soft magnetic nucleus that could act as flux multiplier [25]. In the expres-
sions written above, in which appears the average magnetic field strength over the surface 
closed by the coil, B, it is assumed that the coil has been wound around air. In this case, B 
can be expressed as 𝐵 = µ଴𝐻,  where H is the magnetic field strength in Am−1 and µ଴ the 
vacuum magnetic permeability that takes the value 4𝜋10ି଻ Hm−1. However, when the coil 
is wound around a soft magnetic nucleus, the expression of B changes to the following 
one: 𝐵 = µ଴(𝐻 + 𝑀) = µ଴(𝐻௔ + 𝐻ௗ + 𝑀) (37) 

H being now the sum of both applied 𝐻௔  and demagnetizing 𝐻ௗ  fields. By using 
the demagnetizing factor approximation, the following relationship for the demagnetiz-
ing field is obtained: 𝐻ௗ = −𝑁𝑀. 

The magnetization of the nucleus is formally related to the applied field according to 𝑀 = 𝜒𝐻 that, after taking into account the two above mentioned H components, leads to 
the relation 𝑀 = 𝜒1 + 𝜒𝑁𝐻௔   (38) 

This last expression indicates that the magnetization of the soft material induced by 
the action of the field created via the magnet decreases as the demagnetizing factor of the 
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soft nucleus increases. This decrease is more remarkable as the soft material susceptibility 
is higher. 

Figure 6 shows the scheme of the magnet and the coil. In order to estimate the orders 
of magnitude of the involved physical properties, let us consider a cylindrical magnet with 
radius r and a cylindrical coil with the same radius. The nucleus is a cylinder also with a 
radius r and thickness h, as illustrated in Figure 6. The thickness must be conditioned by 
the thickness of the coil, otherwise a large volume must be required to accommodate the 
system. 

In the model of soft material core, hysteresis has been neglected in order to provide 
an analytical solution, making such a model just to be approximated (i.e., the core is con-
sidered to be an ideal soft ferromagnet). 

 
Figure 6. Magnet at a distance d from the coil with also cylindrical-shaped nucleus. 

The demagnetizing factor of a cylinder along its axis depends on the aspect ratio, k, 
which is the ratio of length to diameter, k = ℎ 2𝑟⁄ . For k = 1, N is 0.27 and for k = 2, N = 0.14 
[26]. If we call d the minimum distance between the magnet surface and the nucleus sur-
face (see Figure 6), the magnetic field strength produced by the magnet, 𝐻௔, must be av-
eraged between d and d + h. As d increases, 𝐻௔ also does as its average decreases, but the 
demagnetizing field in the nucleus also decreases when 𝐻௔ < 𝑁𝑀௦. According to these 
qualitative changes depicted by Expression (38), the nucleus magnetization shows a com-
petitive influence of both effects. 

Notice that the maximum efficiency of the nucleus is achieved when 𝐻௔ > 𝑁𝑀௦ (as-
suming that the coercive field of the soft material is negligible), 𝑁𝑀௦ being the maximum 
demagnetizing field, where 𝑀௦ holds for the nucleus saturation magnetization. Under 
this condition, the average B across the coil is roughly given by 𝐵 = (𝑁 + 1)𝑀௦. The max-
imum B is then comprised between 𝑀௦ and 2𝑀௦. Let us consider r = 1 cm and k = 2 and 
the saturation magnetization of the soft nucleus 1 T. The maximum demagnetizing field 
is then 0.14 T. The field produced by the magnet must be µ଴𝐻௔ > 0.14 T. As k = 2, the 
distance of the basis of the soft magnetic cylinder to the magnet surface cannot be smaller 
than 4 cm (case of d = 0). For this distance, the field produced by the magnet is lower than 
0.1 T for any magnet with a saturation magnetization of the order of 1.5 T. 

If the aspect ratio k is 1 then h = 2 cm and the maximum demagnetizing field becomes 
0.28 T. But the field produced by the magnet at 2 cm is of the order of 1.5 T. It can be 
concluded that for the scheme depicted by Figure 6, which is the more often used in an 
energy harvesting system, filling the coil with a soft ferromagnetic nucleus can only 
weakly increase the magnetic flux and thereby the harvested power. In any case, the over-
all increase cannot be higher than the corresponding to a factor two. 

It is obvious that when the system is not restricted to the conditions fixed by the 
scheme illustrated in Figure 6, the effect of the magnetic nucleus may be noticeable, as has 
been studied for a different configuration [22,25]. 



Mathematics 2024, 12, 1004 13 of 16 
 

 

6. Conclusions 
In conclusion, this investigation into the non-linear dynamics of magnetic flux in re-

lation to displacement has not only highlighted a significant gap in current research but 
has also provided a robust mathematical framework to address this challenge. The em-
ployment of Taylor expansion and Fourier analysis has proven to be a pivotal approach 
in understanding and optimizing the correlation between oscillation and electromagnetic 
damping. This has enabled us to develop a comprehensive model that accurately calcu-
lates the average power per cycle and unit mass, a crucial step in quantifying the efficiency 
of energy harvesting in suspension systems. 

Relationships as those described by (24), (26) or (36) enable the ideal design of the 
electrical circuit according to the oscillator conditions. The use of these expressions leads 
to deep information about the possible energy fractions that can be harvested and offers 
the ability to control this percentage through tuning the corresponding impedance match-
ing. These expressions also describe the behavior of the system, concerning power absorp-
tion at the neighborhood of the impedance matching. 

Our findings not only reaffirm the potential of integrating advanced mathematical 
techniques in automotive engineering but also open new perspectives for future research. 
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Appendix A 
Figure 2 shows the case of a rectangular magnet with a square cross section glued to 

the free end of a cantilever that oscillates around its equilibrium position. In that position, 
the poles of the magnet are in front of a square coil surface with the same dimensions, in 
such a way that the flux through the coil surface is at its maximum, i.e., 𝛷(0) in (8) is the 
maximum. After again assuming that the magnetic field lines, B, are restricted to the mag-
net surface, the flux through the n-turns coil becomes nBS(x), where S(x) is given by 𝑆(𝑥) = 𝑎(𝑎 − |𝑥|), 𝑎 being the square side. 

In this case, Equation (18) changes to 𝑥´´ + ቆ𝛾 + 𝑛ଶ𝐵ଶ𝑚(𝑅 + 𝑅∗)𝑎ଶቇ 𝑥´ + 𝜔଴ଶ𝑥 =  න 𝐹(𝜔)𝑐𝑜𝑠𝜔𝑡 𝑑𝜔ஶ
ିஶ   (A1) 

This equation is analytical, and its solution is the standard one corresponding to a 
harmonic oscillator. 

Appendix B 
In this article, in Figure 3 for example, the solutions to two differential equations are 

compared: the original Equation (19) and the linear approximation (20). These solutions 
are obtained using the Runge–Kutta ode89 method, included in Matlab: 
- Original equation, nonlinear 𝑥ᇱᇱ + ቈ𝛾 + 𝑛ଶ𝐵ଶ𝑚(𝑅 + 𝑅∗) (4𝑟ଶ − 𝑥ଶ)቉ 𝑥ᇱ + 𝜔଴ଶ𝑥 = 𝐹଴ cos𝜔𝑡                             (𝑥 ≤ 2𝑟) (A2) 

𝑥ᇱᇱ + 𝛾𝑥ᇱ + 𝜔଴ଶ𝑥 = 𝐹଴ cos𝜔𝑡                                                                                 (𝑥 > 2𝑟) (A3) 
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- Approximated equation, linear 𝑥ᇱᇱ + ቈ𝛾 + 𝑛ଶ𝐵ଶ𝑚(𝑅 + 𝑅∗) (4𝑟ଶ)቉ 𝑥ᇱ + 𝜔଴ଶ𝑥 = 𝐹଴ 𝑐𝑜𝑠 𝜔𝑡                                      (𝑥 ≤ 2𝑟) (A4) 

𝑥ᇱᇱ + 𝛾𝑥ᇱ + 𝜔଴ଶ𝑥 = 𝐹଴ cos𝜔𝑡                                                                                 (𝑥 > 2𝑟) (A5) 

Using the parameters: 
r = 0.005 m 
n = 1000 
B = 1 T 
M = 2 kg 
R + R* = 20 Ω 
γ = 4 N·s/kg·m 𝜔଴ = 2π × 20 [rad/s] 𝐹(𝜔) = 𝜔଴ଶ𝑥௟,ఠ = (2𝜋 ൈ 20)2 × 0.005 

In all cases x(0) = x’(0) = 0 as initial conditions 
The value for the fit parameter α mentioned in the article is 4. 

• Overlapping approximate and original solutions for ω = 0.1 Hz (Figures A1 and A2): 

 
Figure A1. Comparison between approximation and original solution to the equation for ω = 0.1 Hz 
between 0 and 20 s. 

 
Figure A2. Comparison between approximation and original solution to the equation for ω = 0.1 Hz 
between 0 and 2 s (more zoom than in the previous figure). 
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As we are far and below 𝜔଴ , the amplitude is close to 1 cm (2r). Closer to the 𝜔଴ (20 Hz), the amplitude grows a lot for the same applied force, and then decreases to-
wards 0 with 𝜔. If we plot sweeps of 𝜔: 
- Maximum difference between both solutions in stationary state: 

• From 5 Hz up to 100 Hz (Figure A3): 

 
Figure A3. Difference in amplitude between approximation equation and original equation of solu-
tion in stationary state, from 5 Hz up to 100 Hz. 

• From 10 to 30 Hz (Figure A4): 

 
Figure A4. Difference in amplitude between approximation equation and original equation of solu-
tion in stationary state, from 10Hz up to 30Hz. 

As can be seen in the previous graphs, the maximum difference in amplitude between 
the original solution and the approximate solution does not reach 4%, so it can be con-
cluded that it is a good simplification, being valid and representative of the original solu-
tion. 
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