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Abstract 
Principal Component Analysis (PCA) is a widely used technique for data 
analysis and dimensionality reduction, but its sensitivity to feature scale and 
outliers limits its applicability. Robust Principal Component Analysis (RPCA) 
addresses these limitations by decomposing data into a low-rank matrix cap-
turing the underlying structure and a sparse matrix identifying outliers, en-
hancing robustness against noise and outliers. This paper introduces a novel 
RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). 
Each prior targets a specific aspect of the data’s underlying structure and their 
combination allows for a more nuanced and accurate separation of the main 
data components from outliers and noise. Then RPCA-SL is solved by em-
ploying a proximal gradient algorithm for improved anomaly detection and 
data decomposition. Experimental results on simulation and real data dem-
onstrate significant advancements. 
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1. Introduction 

Principal Component Analysis (PCA) is a statistical procedure that uses an or-
thogonal transformation to convert a set of observations of possibly correlated 
variables into a set of values of linearly uncorrelated variables called principal 
components. The number of principal components is less than or equal to the 
number of original variables. This transformation is defined in such a way that 
the first principal component has the largest possible variance, accounting for as 
much of the variability in the data as possible. Each succeeding component, in 
turn, has the highest variance possible under the constraint that it is orthogonal 
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to the preceding components. The resulting vectors (principal components) 
form an uncorrelated orthogonal basis set [1] [2] [3]. PCA has been widely used 
in data analysis and dimensionality reduction [4]. However, it has several draw-
backs that limit its application in certain scenarios. For instance, it is sensitive to 
the scale of the features, where variables with larger scales can dominate the 
outcome, leading to a biased representation of the data unless the data is prop-
erly normalized. Furthermore, PCA is sensitive to outliers in the data, which can 
significantly influence the direction of the first principal components and skew 
the analysis [5]. 

Robust Principal Component Analysis (RPCA) [6] [7] is an extension of tra-
ditional PCA designed to overcome some of the inherent limitations of PCA, 
particularly its sensitivity to outliers and noise. RPCA seeks to decompose a data 
matrix into a low-rank matrix and a sparse matrix, where the low-rank matrix 
captures the data’s underlying structure, and the sparse matrix captures the out-
liers or anomalies [8] [9]. This decomposition allows for a more robust analysis 
of data, especially in scenarios where the data is corrupted by noise or contains 
outliers that would otherwise skew the results of traditional PCA [10]. 

The characteristics of sparse and low-rank play crucial roles in the efficacy of 
RPCA, significantly enhancing its ability to extract meaningful information from 
complex data sets. Each characteristic targets specific aspects of the data, allow-
ing RPCA to address a broad range of challenges in data analysis, particularly in 
the presence of outliers, noise, and complex underlying structures. 

The sparse prior in Robust Principal Component Analysis (RPCA) is a fun-
damental concept that enables the effective separation of outliers and anomalies 
from the predominant data structure [11]. This prior assumes that anomalies or 
outliers in a dataset are not pervasive but occur sparsely across the data. The 
sparse prior allows RPCA to robustly identify and isolate these irregular com-
ponents, ensuring they do not influence the extraction of the main low-rank 
structure, which represents the data’s underlying patterns and relationships. The 
literature applies RPCA with a focus on the sparse prior for detecting moving 
objects in videos [12], showcasing the practical application of the sparse prior in 
separating dynamic foreground elements from a static background. Variations of 
RPCA incorporate a weighted approach to nuclear norm minimization, hig-
hlighting the role of the sparse prior in image denoising applications [13]. Fur-
thermore, discussions on scalable optimization techniques for RPCA underline 
the importance of the sparse prior in making the problem tractable for large da-
tasets. 

The low-rank prior in RPCA underpins the assumption that the data’s intrin-
sic structure can be captured by a matrix of significantly lower rank compared to 
the original data dimensions. This principle is crucial for applications like back-
ground subtraction in video surveillance, image denoising [14] [15], and data 
compression, where the essence of the data can be distilled into a simpler form 
without losing critical information. 

Thus, integrating sparse and smooth priors can address a comprehensive 
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range of challenges in data decomposition and anomaly detection, enhancing the 
method’s versatility and effectiveness across various applications. Each prior tar-
gets a specific aspect of the data’s underlying structure and their combination 
allows for a more nuanced and accurate separation of the main data components 
from outliers or noise. In this paper, we propose a novel RPCA variant called 
Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL) and employ a 
proximal gradient algorithm to solve the RPCA-SL. Furthermore, a comparative 
evaluation shows the performance of our algorithm. 

The rest of the paper is organized as follows: Section 2 reviews the related 
RPCA model. In Section 3, we propose a novel model, RPCA-SL, and its corres-
ponding optimization algorithm. Section 4 illustrates the experiments for syn-
thetic problems and multispectral imaging. 

2. Related Work 

Mathematically, RPCA via decomposition into low-rank and sparse matrices can 
be directly formulated as: 

( ), 0min s.t.L S rank L S D L Sλ+ = + .               (1) 

In this model, the m nD ×∈  represents the observed matrix, which is the 
sum of a low-rank matrix m nL ×∈  and a sparse matrix m nS ×∈ , where the 
sparse matrix captures the outliers or anomalies present in the data. The model 
goal is to decompose X into its low-rank L and sparse S components. The cardi-
nality 

0S  represents the number of non-zero elements in S, which is a meas-
ure of its sparseness [16]. 

The direct approach to achieving this decomposition involves solving an op-
timization problem that minimizes the rank and the cardinality. However, this 
problem is computationally intractable because the rank function and the L0-norm 
are non-convex and, in the case of rank, also discrete. 

To overcome this computational challenge, the problem is reformulated by 
substituting the rank function with the nuclear norm (the sum of the singular 
values of the matrix), and the L0-norm with the L1-norm (the sum of the abso-
lute values of the matrix elements). This substitution results in a convex relaxa-
tion of the original problem, making it computationally feasible to solve: 

, 1min s.t.L S L S D L Sλ
∗
+ = + .                 (2) 

Furthermore, the [17] extends RPCA to projected robust PCA (PRPCA): 
2

, 1 2 1

1min
2X S F

D PXQ S X Sλ λ
∗

− − + + .            (3) 

where P and Q are respectively certain row-smoother and column-smoother. 

3. Proposed Model and Algorithm 

3.1. Robust PCA Integrating Sparse and Low-Rank Priors 

To further purse low rank prior, we extend the nuclear norm in PRPCA to trun-
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cated nuclear norm [18] [19]. The truncated nuclear norm is a variation of the 
nuclear norm used to enhance the performance of low-rank matrix recovery in 
various signal processing and machine learning tasks. However, the nuclear 
norm treats all singular values equally, which may not always be ideal, especially 
when some singular values are significantly larger than others, indicating the 
presence of important structural information in the matrix that should be pre-
served. The truncated nuclear norm is defined as 

( )( )min ,
1
m n

ii rrX Xσ
= +

=∑ .                     (4) 

This approach aims to focus on the lower part of the spectrum of singular 
values, under the premise that the smallest singular values contribute more to 
the noise or redundancy in the data, whereas the largest singular values carry the 
most significant structural information about the matrix. By truncating, or omit-
ting, a certain number of the largest singular values from the summation, the 
truncated nuclear norm attempts to provide a more refined approximation of the 
matrix rank, which can lead to better recovery of the low-rank component by re-
ducing the influence of the largest singular values that are assumed to represent 
essential features of the data. 

On another hand, we extend the L1-norm in PRPCA to non-convex regulari-
zation, called half-quadratic function (HQF), for achieving robustness and spar-
sity. The scalar half-quadratic function is defined by 

( )
( )22

2

,
2

,
2

t
t

g t

t
δ

δ δ
δ

δ δ

 − −
 <= 
 ≥

.                   (5) 

As shown in Figure 1, ( )g tδ  is quadratic at interval [ ],δ δ− , and a constant 
t δ≥ . 
 

 
Figure 1. The function values at δ = 1 and 0.5. The L1 norm is also displayed. 
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From Figure 1, one can see that the parameter δ can be tuned for approx-
imating L1 norm. At last, we integrating the half-quadratic function and trun-
cated nuclear and propos our model, Robust PCA Integrating Sparse and 
Low-rank Priors (RPCA-SL), as following: 

2
, 1 2

1min
2L S F r gD L S L S

δ
λ λ− − + +                 (6) 

3.2. Optimization Algorithm 

In (6) optimizing the L and S simultaneously is tractable, thus we optimize (6) by 
employing alternating minimization. Alternating minimization is an optimiza-
tion technique used to solve problems that involve minimizing a function with 
respect to two (or more) sets of variables, by alternately fixing one set of va-
riables and optimizing over the other. This approach is particularly useful in 
scenarios where the optimization problem can be simplified or becomes more 
tractable when one set of variables is held constant. The Alternating minimiza-
tion for (6) involves two main steps that are repeated iteratively: 

Step One: Keep S constant and minimize the objective function with respect to 
the other variable L. Thus we have sub-problem: 

2
1

1min
2L F rD L S Lλ− − + .                   (7) 

Step Two: Keep L constant and minimize S by following sub-problem: 

2
2

1min
2S F gD L S S

δ
λ− − + .                  (8) 

Firstly, the (8) can be solved by employing Lemma 1: 
Lemma 1. For any given matrix 

m nX ×∈  [20], we have 

( ) 21arg min
2S F gP X X S S

δ
= − + .                (9) 

where ( )P r  is defined by 

( )
0,

,

r e
P r

r r e

 <= 
≥

.                       (10) 

By Lemma 1, we can obtain the optima ( )
2

1P D L
λ

 
−  

 
. 

Now we return to solve (7), before that we give following lemma: 
Lemma 2. For any given matrix m nX ×∈  [18], and matrices r mA ×∈ , 

r nB ×∈ , that TAA I= , TBB I= , where ( )min ,r m n≤ , we have 

( ) ( )T
1

r
iiTr AXB Xσ

=
≤∑ .                    (11) 

By Lemma 2, we have 

( )T T
T

,
maxr AA I BB I

L L Tr ALB
∗ = =

= − .               (12) 

Thus, the (7) can be rewritten as follows: 

https://doi.org/10.4236/jcc.2024.124001


W. Zhai, F. L. Zhang 
 

 

DOI: 10.4236/jcc.2024.124001 6 Journal of Computer and Communications 
 

( )( )T T
2 T

1 ,

1min max
2L F AA I BB I

D L S L Tr ALBλ
∗ = =

− − + − .       (13) 

Then two-step approach for solving (13) can be given by Algorithm 1: 
 
Algorithm 1. Two-step approach for (13). 

Input: 1, ,S Dλ , tolerance   

Initialize: ( )0L D=  
Repeat: 

Step 1. Given ( )kL , ( ) ( ) ( ) ( )( ), ,k k k kU V svd L Σ =  , then let ( )kA , ( )kB  being the first r 

columns’ transpose of ( )kU  and ( )kV  respectively. 
Step 2, solve 

( ) ( ) ( )( )( )T21
1

1arg min
2

k k k
FL

L D L S L Tr A LBλ+

∗
= − − + −             (14) 

Until ( ) ( )1k k

F
L L+ − ≤   

Output ( )1kL +  

 
The (14) can be solved by Accelerated Proximal Gradient method (APG). The 

APG method, also known as Accelerated Proximal Gradient Descent or FISTA 
(Fast Iterative Shrinkage-Thresholding Algorithm), is an optimization algorithm 
designed to efficiently solve problems of the sum of two functions, where one is 
not necessarily differentiable. The details can be found in [18] [21] [22], and 
omitted here for simplicity. 

The whole optimization procedure is summarized in Algorithm 2. 
 

Algorithm 2. Alternating minimization for (6). 

Input: 1 2 ,, Dλ λ , tolerance  , parameter δ  

Initialize: ( )1 0S =  
Repeat 
Step 1. Obtain ( )1kL +  by Algorithm 1. 

Step 2, Obtain ( )1kS +  by ( )( )1

2

1 kP D L
λ

+
 

−  
 

 

Until ( ) ( )1k k

F
L L+ − ≤   

Output ( )1kL + , ( )1kS +  

4. Experiments 

The proposed algorithm is compared with four state-of-the-art RPCA algo-
rithms, namely, RPCA-HQF [9], accelerated alternating projections (Ac-
cAltProj) [23], TNNR-APGL [18] and RCPA-CUR [20]. In our experiments, the 
parameters of algorithms are tuned to achieve the best performance. It includes 
synthetic examples where target matrices are generated and various algorith-
msare used to recover low rank part. Furthermore applications to computational 
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multispectral imaging are also discussed. 

4.1. Synthetic Data 

Two random matrices 400 rU ×∈ , 300 rV ×∈  whose entries satisfy the stan-
dard Gaussian distribution, are generated to construct the synthetic matrix 

TD UV= . For verify robustness, we add white Gaussian noise to D with differ-
ent signal-to-noise ratios (SNR) 5, 10, 15, 20, 25. The noise matrix is denoted as 
X. The recovery matrix by various algorithm on X is denoted as M. To test the 
performance of all algorithms, the relative error is employed, given by 

relError F

F

D M
D

=
−

                      (15) 

The relative error relErrors are shown in Figure 2 when r = 20. As Figure 2 
showing, all the algorithms show a performance decrease as the SNR increases. 
The performance of all algorithms converges at the SNR = 25 db. RPCA-SL 
starts off with the highest metric value at the smallest SNR but shows a signifi-
cant improvement as SNR increases. RPCA-CUR appears to have the best per-
formance across all SNRs, starting at the lowest point and maintaining this rela-
tive position. 

Furthermore, we vary rank r = 5, 10, 15, 20, 25. The relative error at 10 dB 
noise is shown in Figure 3. In contrast to the previous graph, as r increases, the 
performance metric also increases for all algorithms. This suggests that a higher 
r correlates with a higher recovery error. RPCA-SL and RPCA-HQF start with 
the lowest error at r = 5, indicating better initial performance, and their perfor-
mance degrades more slowly compared to the others as r increases. TNNR-APGL 
and ACCAItProg begin with slightly higher error values at r = 5 but follow a 
similar trend as RPCA-SL and RPCA-HQF as r increases. 
 

 
Figure 2. The relative recovery error of algorithms at varying SNR. 
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4.2. Computational Hyperspectral Imaging 

Multispectral imaging captures a broad spectrum, generating spectral response 
vectors at each pixel, thereby acquiring information in the form of a third-order 
tensor. Low-rank models play a crucial role in multispectral imaging through the 
form of a linear spectral mixing model, which posits that the spectral response of 
an imaging scene can be well approximated as a linear combination of spectral 
responses of a few core materials, known as endmember. Hence, the low-rank 
structure can be exploited by computational imaging systems, which acquire 
images in a compressed format and employ computational methods to recon-
struct high-resolution images [24]. However, when different materials are closely 
situated, the resulting spectra might be a highly nonlinear combination of the 
endmembers, leading to model anomalies. Herein, we propose low-rank plus 
sparse matrix recovery as a method to model spectral anomalies within the 
low-rank structure. 
 

 
Figure 3. The relative recovery error of algorithms at varying rank. 

 

 
Figure 4. The RGB rendering of hyperspectral image. 
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(a)                                                    (b) 

  
(c)                                                    (d) 

 
(e) 

Figure 5. The RGB renderings of recovery HSIs by various algorithms. (a) RPCA-SL, (b) RPCA-HQF, (c) TNNR-APGL, (d) Ac-
cAltProj, (e) RPCA-CUR. 
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(a)                                                    (b) 

  
(c)                                                    (d) 

 
(e) 

Figure 6. The spatial PSNRs of recovery HSIs by various algorithms. (a)RPCA-SL, (b) RPCA-HQF, (c) TNNR-APGL, (d) Ac-
cAltProj, (e) RPCA-CUR. 
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A 512 × 512 × 31 hyperspectral image from the CAVE dataset [25] is rear-
ranged into a matrix of size 262,144 × 31, denoted as D. The RGB rendering us-
ing wavelengths 700 nm (red channel), 550 nm (green channel), 440 nm (blue 
channel) is shown in Figure 4. Then algorithms are employed for D, the Peak 
Signal-to-Noise Ratio (PSNR) value is a widely used criterion to evaluate the 
quality of an image. We use the PSNR value of the recovered image to evaluate 
the performance of different methods. The corresponding mean PSNRs at all 
spectral band is RPCA-SL 46.1977, RPCA-HQF 44.6328, TNNR-APGL 40.4962, 
AccAltProj 39.4791, and RPCA-CUR 30.4724. 

In Figure 5 each rendering shows the result of the image recovery by the re-
spective algorithm. The quality of the image recovery can be assessed visually by 
how well the details and colors are preserved or restored in comparison to an 
original image. All images display a stuffed toy and a color chart, which are 
commonly used to evaluate color accuracy and the preservation of spatial details. 
Subfigures (a) RPCA-SL and (e) RPCA-CUR seem to have more vibrant colors 
and greater contrast, which suggest better performance in terms of color recov-
ery. Subfigures (b) RPCA-HQF, (c) TNNR-APGL, and (d) AccAltProj show im-
ages with varying degrees of color fidelity and brightness, which can be indica-
tors of how each algorithm handles the recovery process. 

Furthermore, Figure 6 demonstrated spatial PSNRs. On the right side of each 
heatmap, there is a color scale with values ranging from 15 to 35. These numbers 
correspond to the PSNR values, which quantify the quality of the reconstructed 
images. Higher PSNR values typically indicate better image quality, with less 
distortion or noise. The heatmaps for algorithms (a) RPCA-SL and (b) RPCA-HQF 
have predominantly blue colors, indicating higher PSNR values throughout most 
of the images, which suggests higher image quality compared to the others. 

In contrast, heatmaps (c) TNNR-APGL, (d) AccAltProj, and (e) RPCA-CUR 
show areas of yellow and red, particularly in the central square, indicating lower 
PSNR values and presumably worse reconstruction quality in these regions. Al-
gorithm (e) RPCA-CUR displays the most extensive areas of yellow and red, 
which implies it has the lowest PSNR values across the most significant portion 
of the image, suggesting it performs the worst among the algorithms in terms of 
image recovery quality. It’s important to note that the central squares on the 
heatmaps are noticeably different in color compared to the surrounding areas, 
indicating that the algorithms perform differently in this region. 

5. Conclusion 

In conclusion, this paper presents a comprehensive analysis of Principal Com-
ponent Analysis (PCA) and its robust counterpart, Robust Principal Component 
Analysis (RPCA), emphasizing their pivotal roles in data analysis and dimen-
sionality reduction. While PCA is instrumental in transforming correlated va-
riables into a set of uncorrelated principal components, its limitations, such as 
sensitivity to feature scale and outliers, are significantly addressed by RPCA. 
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RPCA enhances data analysis robustness by decomposing data into low-rank 
and sparse matrices, effectively isolating outliers and capturing the underlying 
data structure. The introduction of a novel RPCA variant, Robust PCA Inte-
grating Sparse and Low-rank Priors (RPCA-SL), which employs a proximal gra-
dient algorithm, marks a significant advancement in anomaly detection and data 
decomposition. This work underscores the importance of integrating sparse and 
low-rank priors in overcoming the challenges presented by complex data sets, 
thereby enhancing the versatility and effectiveness of data analysis techniques 
across various applications. 
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