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Abstract

When grown on agar surfaces, microbes can produce distinct multicellular spatial structures

called colonies, which contain characteristic sizes, shapes, edges, textures, and degrees of

opacity and color. For over one hundred years, researchers have used these morphology

cues to classify bacteria and guide more targeted treatment of pathogens. Advances in

genome sequencing technology have revolutionized our ability to classify bacterial isolates

and while genomic methods are in the ascendancy, morphological characterization of bacte-

rial species has made a resurgence due to increased computing capacities and widespread

application of machine learning tools. In this paper, we revisit the topic of colony morphotype

on the within-species scale and apply concepts from image processing, computer vision, and

deep learning to a dataset of 69 environmental and clinical Pseudomonas aeruginosa strains.

We find that colony morphology and complexity under common laboratory conditions is a

robust, repeatable phenotype on the level of individual strains, and therefore forms a potential

basis for strain classification. We then use a deep convolutional neural network approach

with a combination of data augmentation and transfer learning to overcome the typical data

starvation problem in biological applications of deep learning. Using a train/validation/test

split, our results achieve an average validation accuracy of 92.9% and an average test accu-

racy of 90.7% for the classification of individual strains. These results indicate that bacterial

strains have characteristic visual ‘fingerprints’ that can serve as the basis of classification on

a sub-species level. Our work illustrates the potential of image-based classification of bacte-

rial pathogens and highlights the potential to use similar approaches to predict medically rele-

vant strain characteristics like antibiotic resistance and virulence from colony data.
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Author summary

Since the birth of microbiology, scientists have looked at the patterns of bacterial growth

on agar (colony morphology) as a key tool for identifying bacterial species. We return to

this traditional approach with modern tools of computer vision and deep learning and

show that we can achieve high levels of classification accuracy on a within-species scale,

despite what is considered a ‘data-starved’ dataset. Our results show that strains of the

environmental generalist and opportunistic pathogen Pseudomonas aeruginosa have a

characteristic morphological ‘fingerprint’ that enables accurate strain classification via a

custom deep convolutional neural network. Our work points to extensions towards pre-

dicting phenotypes of interest (e.g. antibiotic resistance, virulence), and suggests that sam-

ple size limitations may be less restrictive than previously thought for deep learning

applications in biology, given appropriate use of data augmentation and transfer-learning

tools.

Introduction

Since Semmelweis, Lister, and Koch began studying pure cultures of microorganisms, scien-

tists have tried to organize the immense diversity of bacteria into orderly categories to under-

stand their behavior, including pathogenesis. In particular, Koch pioneered the method of

determining how specific microorganisms cause distinct diseases and highlighted the impor-

tance of laboratory culture for the identification and targeted treatment of pathogenic bacteria

[1]. By identifying the specific bacterial cause of disease, we can better manage and eradicate

the infection. When a sample from an environment or clinical source is plated on solid media

at sufficient dilution, individual colonies can be observed, where each colony grows from a sin-

gle founding bacterial cell (Fig 1A). These clonal groups have characteristic sizes, shapes,

Fig 1. Bacterial colony morphology varies across and within species. A) Morphological identification of bacterial

species from a mixed culture plated on Chocolate Agar: Rothia mucilaginosa (smallest white circles), Neisseria subflava
(larger tan round circles), and Streptococcus mitis (large bullseye circles). B) A common example of 2D colony

morphology features include the appearance of the colony edges. C) Morphological identification of bacterial strains,

in this case called “smooth”, “wrinkly spreader”, and “fuzzy spreader” [4], from a culture containing only Pseudomonas
fluorescens plated on King’s Medium B Agar.

https://doi.org/10.1371/journal.pcbi.1011699.g001
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edges, textures, and degrees of opacity and color (Fig 1B) [2]. These characteristics describe

the morphology of a single colony and formed the basis for the earliest attempts at categoriza-

tion. In modern clinical laboratories, morphological tests play a role but are increasingly

replaced by biochemical and genomic methods of classification [3].

While initial classification was morphology based, advances in genome sequencing technol-

ogy have revolutionized our ability to classify bacterial isolates. Widespread use of 16S rRNA

amplicon sequencing not only allows for robust taxon identification to the genus scale [5,6],

but also fosters phylogenetic organization of bacterial taxa [7,8]. Marker gene or whole

genome sequencing provides finer scale strain identification and allows specific focus on

markers of pathogenicity (via identification of virulence factors), drug resistance or other char-

acteristics of interest. Transcriptomic sequencing provides a more direct window into the

behavior of pathogens, to assay for example whether virulence factor or drug resistance genes

are actually being expressed [9].

While genomic methods are in the ascendancy, morphological characterization of bacterial

species has made a resurgence. How a population of bacteria grow is a direct result of the inter-

play between their genotype, phenotype, and environment [10] and a priori contains critical

phenotypic information on the behavior of individual microbes. For example, colony morpho-

type can indicate specific mutations in a bacteria, e.g. small colony variants and cyclic di-GMP

regulation [11] or rugosity and phenazine production [12]. Morphological characterization

and data science have collided to provide insights into image-based prediction of microbial

taxa [13–18]. The earliest attempts introduced light-scattering for presence-absence detection

of microorganisms on surfaces [19,20], which paved the way for image-based identification of

Listeria species from light scattering patterns of Listeria colonies [13]. This developed into an

automated light scattering sensor called BARDOT (BActerial Rapid Detection using Optical

scattering Technology) that produced scatter patterns sensitive enough to distinguish between

Escherichia coli serotypes [14], virulence mutants [15], and industrial Staphylococcus contami-

nants [16]. At the same time, imaged-based prediction diversified to use more accessible stan-

dard light microscopes instead of specialized equipment, putting the focus on new analysis

methods like colony morphology ontology [18] and deep learning [17,21].

Deep learning algorithms have gained popularity [17,21,22] as machine learning becomes

ubiquitous across fields. Several supervised deep learning models have demonstrated near

human accuracy in classification of various image datasets [23] and in the case of bacterial bio-

films, deep learning has outperformed human characterization of single and mixed species

biofilms [24]. Zielinksi et al. [17] investigate several models for colony classification utilizing a

deep convolutional neural network (D-CNN) on a rich dataset pre-trained on the ImageNet

[25] dataset, achieving a very high validation accuracy of ~ 97%. However, existing work using

a D-CNN approach has focused on classification across species, not across strains within a spe-

cies. Additionally, a ubiquitous challenge in many biology applications (including the one in

this paper) is the limited number of samples. For example, the hallmark ImageNet image-

based dataset [26–28] contains more than 14 million images across 1000 classes. Outside a col-

loquial ‘rule of thumb’ that you need at least 1000 samples per class, there is no absolute way to

determine a ‘minimum’ sample size [29].

We focus on within species classification of Pseudomonas aeruginosa, a gram-negative bac-

terium capable of causing severe chronic illness and a major cause of acute hospital-acquired

infections [30–33]. While it is widely viewed as a generalist and can be isolated from a wide

number of environments including water and soil, it is frequently found in human/animal-

impacted environments [30]. P. aeruginosa has large variety of mechanisms that allow it to

respond to its environment [34–36]. There are frequently differences in behavior across

strains, like type and production of secreted products [37,38], which can result in observable
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morphological diversity when cultured on agar surfaces [39–43]. Classic examples of morpho-

logical variation in P. aeruginosa caused by underlying genetic differences include small colony

variants related to cyclic di-GMP regulation [11], rugosity related to phenazine production

[12], and mucoidy related to secreted polymer production [44].

In this paper, we use a collection of 69 clinical and environmental P. aeruginosa isolates

which present a range of phenotypic features (e.g. exopolysaccharide production, virulence

gene expression, and antibiotic resistance profiles) that have been previously described in [45–

47]. From these 69 isolates we generate a library of 266 P. aeruginosa colony images in a train-

ing / validation dataset, plus a separately generated 69-image test dataset. As expected, we doc-

ument a high level of variation in the physical appearance of colonies across strains.

Additionally, we see that strain morphology in P. aeruginosa is consistent across replicates. We

then use a D-CNN approach and a combination of data augmentation [48,49] and transfer

learning [50] to classify strains of P. aeruginosa and achieve an average validation accuracy of

92.9% and an average test accuracy of 90.7%.

Results

Morphological variation across strains and replicates

Individual isolates from our 69-strain collection were spotted onto Luria-Bertani (LB) agar

plates supplemented with Congo Red, a dye commonly used in microbiology to stain the bio-

film matrix and extracellular polysaccharides (Fig 2). This was done in quadruplicate and gen-

erated a training and validation library of 266 colonies after quality control (10 colonies were

removed due to debris or writing obscuring part of the image). Colonies were grown for 72

hours, which was determined during the pilot experiment to be enough time to reveal major

morphological differences while minimizing outward expansion. This resulted in an imaged

library of image colonies that ranged in size from 12M (approximately 0.74cm x 0.74cm) to

183M pixels (approximately 2.8cm x 2.8cm).

In our first approach to characterizing morphological diversity, we use 8 simple descriptive

metrics (Fig 3A). Classic morphological descriptive variables include area, radius, perimeter,

centroid (the point in which the three medians of the triangle imposed within the image inter-

sect), eccentricity (the ratio of the distance between the foci of the ellipse and its major axis

length), circularity (deviation of the perimeter from a superimposed perfect circle), bounding

disk center (center of mass of the brightest pixels), and caliper diameter (the caliper dimension

obtained by averaging over all orientations).

To expand on these classic descriptive variables, we next introduce complexity metrics (Fig

3B) used in image processing and computer vision [51,52]. Compression ratio is a single vari-

able that describes how repetitive an image is, i.e. how repetitive are certain patterns in the

pixel distribution and how many times do they occur? Specifically, it is a measurement of the

reduction in size of pixel data produced by, in our case, the traditional JPEG compression algo-

rithm. An alternate approach to quantifying image complexity is using the Sobel–Feldman

operator, a popular method to detect edges in images due to its ability to detect gradients. At

every pixel in an image, it calculates the pixel intensity of the vertical and horizontal adjacent

pixels and expresses the results as vectors. You can then plot these gradient vectors creating a

unique profile for every colony. These profiles can then be summarized by describing their dis-

tribution (mean, median, standard deviation, skew, root mean square, and kurtosis). Unsur-

prisingly, we find that many of these metrics are highly correlated (S1 Fig).

Fig 3 summarizes variation in our metrics across both strains and replicates. In Fig 4, we

assess the extent of variation using coefficients of variation (CV = mean / standard deviation),

across replicates (black bars) and across strains (grey bars). With the exception of the
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eccentricity and circularity metrics, we see coefficients of variation across replicates are low

(standard deviation << mean), and less than the coefficient of variation across strains. This

pattern of variation indicates that colony morphology under common laboratory conditions is

a robust, repeatable phenotype on the level of individual strains, and therefore forms a poten-

tial basis for strain classification.

Classifying strain identity from image data

Considering our initial results indicating robust morphological traits for each strain, we reasoned

that morphological data could be used to classify colonies via a deep learning approach. Deep con-

volutional neural networks (D-CNNs) typically require larger datasets than those found in biol-

ogy- usually a minimum of thousands of examples to train properly [53]. To address this issue, we

applied various transfer learning [50] and data augmentation techniques [48,49] (see methods for

details). This initial dataset was split into 90% training and 10% validation sets.

High performance on our validation dataset provides some confidence that the CNN

approach can successfully classify previously unseen strain images. Yet validation results merit

caution, as the validation images were all generated on the same agar plate, imaged on the

same day and from the same overnight culture. These shared features raise the risk that a CNN

is detecting technical batch effects of the experimental environment (e.g. variations in the

Fig 2. Random sample of the P. aeruginosa train/validation strain colony dataset. 10 strains (in four-fold replication) were selected randomly without

replacement from a complete list of 69 strains via the native sample() command in R. From top to bottom: (left) strain 25, strain, 38, strain 52, strain 113, strain

1; (right) strain 127, strain 316, strain 298, strain 121, strain 174. Colony size has been adjusted for viewing purposes.

https://doi.org/10.1371/journal.pcbi.1011699.g002
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lighting conditions) rather than strain-specific features of interest. To address this concern we

generated a separate 69-image test dataset (1 image per strain) using distinct overnight cultures

and produced by a different experimenter on a different day (following the same protocol).

In a first round of computational experiments, we sought to compare the performance of

four transfer learning models (Fig 5 and S1 Table), using our standard data preprocessing and

augmentation choices (normalized pixel intensities; shear / zoom / flip / rotation / brightness /

scaling data augmentation–see methods). To determine the best approach for our dataset, our

performance metrics are accuracy (the number of correct predictions divided by the total

number of predictions x100) and loss (a summation of the errors, calculated via cross-entropy,

made for each sample). We chose to use cross-entropy for loss instead of negative log-likeli-

hood since it automatically transforms the raw outputs of the neural network into probabilities

(via a softmax activation).

Fig 5 illustrates that model performance varies significantly between transfer learning mod-

els (e.g. for test accuracy: ANOVA, F = 124.2, df = 3, p< 0.05. See Table B in S1 Table).

MobileNetV2 performs significantly worse than the other transfer learning models on both

accuracy and loss metrics (Tukey HSD, p< 0.05 on all comparisons, see Tables C-F in S1

Table), while VGG-19 performs significantly worse than ResNet and Xception on test loss

(Table D in S1 Table). ResNet and Xception do not show significantly different performance

in posthoc tests (Tables C-F in S1 Table). In terms of best individual model run performance,

both the top accuracy and top loss was achieved by the ResNet model (Fig 5), so we use this as

our baseline in our subsequent analyses.

Fig 3. Diversity of P. aeruginosa strains in both classic morphological descriptive variables and derived complexity descriptive variables across 69 strains

and 266 colonies. Histograms are built from all replicates of all strains. A) classic metrics used to describe colony appearance. B) Derived metrics from image

processing and computer vision to describe colony complexity including compression ratio (relative reduction in size of data) and 6 descriptive statistics

derived from the Sobel–Feldman operator.

https://doi.org/10.1371/journal.pcbi.1011699.g003
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In a second round of experiments, we take the best-performing model from Fig 5 (Resnet-

50), and assess the contribution of data pre-processing, augmentation and training steps in

generating the high levels of performance illustrated in Fig 5. Table 1 illustrates that removing

each component of data augmentation leads to a significant drop in model accuracy (Tukey

HSD, p < 0.05 on all comparisons, see Tables B-E in S2 Table), and the loss of all augmenta-

tion leads to a substantial drop in performance (38.4 +/- 7.4% validation accuracy, 34.7 +/-

7.4% test accuracy). The removal of pre-trained weights results in a similar drop in perfor-

mance. Parameters for all models are detailed in S3 Table.

The performance of our best performing ResNet-50 model (Fig 5) indicates that while most

classification calls are accurate, there remain a number of mistaken calls in our validation tests. To

look more closely at these errors, we present in Fig 6 a reduced confusion matrix showing all clas-

sification errors across our five replicate runs of the ResNet-50 model. Of the 69 strains considered

in this study, only 5 were not classified with perfect precision. Strains 2 and 84 were the most chal-

lenging for our model, attaining the lowest test accuracies of 40% and 20% respectively. In con-

trast, 64 out 69 strains were classified with perfect accuracy across 5 independent model runs.

Our results in Tables 1 and 2 show that D-CNN models are capable of effective bacterial

colony classification down to the sub-species (strain) level, and that performance is dependent

Fig 4. Morphological metrics are generally stable across replicates. Coefficient of variation (mean / standard deviation) across replicates (black) and

across strains (grey). With the exception of the eccentricity and circularity metrics, coefficients of variation across replicates are low (standard deviation

<<mean), and less than the coefficient of variation across strains.

https://doi.org/10.1371/journal.pcbi.1011699.g004
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on details of data pre-processing and augmentation. This success does not rule out that other

simpler models can also effectively classify strains. To establish simple model benchmarks, we

next evaluate the performance of ‘shallow learning’ classification models (support vector

machines, SVMs), trained on our colony metric features (Figs 3 and 4), or on features

extracted by our deep learning ResNet 50 model (Table 2). These benchmarking results

Fig 5. Performance comparison of transfer learning methods. The performance of four trained transfer learning

models (ResNet-50, VGG-19, MobileNetV2 and Xception, see methods) were evaluated on both validation (blue circles)

and test (orange triangles) datasets. Each computational experiment was replicated five-fold (five separate training runs

for each model), allowing statistical comparison of approaches. (A) Accuracy scores (the number of correct predictions

divided by the total number of predictions x100). (B) Loss scores (a summation of the errors made for each sample).

Statistical comparisons are summarized in S1 Table.

https://doi.org/10.1371/journal.pcbi.1011699.g005
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highlight that SVM tools cannot match the performance of our D-CNN models (Fig 5),

whether they are trained on a priori identified colony metric features (Figs 3 and 4) or on fea-

tures extracted from our successful D-CNN models.

Discussion

Our results show that P. aeruginosa strains have a characteristic morphological ‘fingerprint’

(Figs 2–4) that enables accurate strain classification via a custom deep convolutional neural

network (Fig 5). When trained on morphological data, our most successful model can classify

strain identity with a test accuracy that exceeds 90% despite what is considered a “data starved”

dataset. Our work points to extensions towards predicting phenotypes of interest (e.g. antibi-

otic resistance, virulence), and suggests that sample size limitations may be less restrictive than

previously thought for deep learning applications in biology. In the following paragraphs we

will review these implications, while addressing caveats and next steps for this research.

The existence of a morphological ‘fingerprint’ that can be classified via machine learning

architecture opens the potential to relate strain identity to key phenotypes of interest, such as

antimicrobial resistance (AMR) or virulence. While species differ in their levels and types of

virulence [54], there are also significant differences in virulence between strains of the same

species [55,56]. In so far as AMR or virulence is a stable and repeatable property of a strain,

our classification model could simply “look up” the recorded values in a dataset based on the

strain prediction. Yet this “look up” approach is vulnerable to variation within strains due for

instance to gain or loss in virulence factor and AMR genes, or mutations in the regulatory con-

trol of these genes.

To address the challenge of predicting phenotypes such as virulence or AMR, a future direc-

tion would be to extend our deep learning approach to directly predict phenotypes of interest,

either through a classification (qualitative trait) or regression (quantitative trait) framework.

Our current analysis shows that morphological ‘fingerprints’ are sufficient to identify individ-

ual strains, but this does not directly imply that we can use image data to successfully predict

disease traits (analogously, human fingerprints are sufficient to identify individuals, but are

not considered predictive of human disease traits). We speculate that colony ‘fingerprints’ are

likely to allow for trait prediction, due to paths of common causality from bacterial modes of

growth to colony morphology and disease phenotypes. Given the established connection

between biofilm growth and antibiotic tolerance [57], it is possible that our default growth set-

tings (Fig 2) will reveal differences in patterning that correlate with differences in antibiotic

Table 1. Performance contribution of data pre-processing, augmentation, and training. To assess contributions, we took the trained ResNet-50 model (Fig 5) as a

baseline method and assessed the impact of removing components of our methods pipeline. Each computational experiment was replicated five-fold (five separate training

runs for each model), allowing statistical comparison of approaches. Across replicates we report average (+/- standard deviation) accuracy (the number of correct predic-

tions divided by the total number of predictions x100) and loss (a summation of the errors made for each sample). Statistical comparisons are summarized in S2 Table.

Modification to baseline (ResNet) Validation accuracy Validation loss Test accuracy Test loss

Remove rotation augmentation 76.83 ± 7.061 0.667 ± 0.368 72.12 ± 7.061 0.707 ± 0.408

Remove brightness augmentation 78.33 ± 6.982 0.618 ± 0.346 52.17 ± 7.038 1.622 ± 0.456

Remove shift augmentation 69.27 ± 7.716 0.789 ± 0.429 65.13 ± 7.716 0.829 ± 0.469

Remove shear augmentation 70.84 ± 7.431 0.761 ± 0.416 66.25 ± 7.431 0.801 ± 0.456

Remove horizontal flip augmentation 72.58 ± 7.287 0.735 ± 0.403 67.85 ± 7.287 0.775 ± 0.443

Remove zoom augmentation 71.92 ± 7.415 0.754 ± 0.413 67.08 ± 7.415 0.794 ± 0.453

Remove all augmentation 38.42 ± 7.360 2.302 ± 0.468 34.75 ± 7.360 2.372 ± 0.508

No pre-trained weights 32.81 ± 6.822 2.302 ± 0.368 29.08 ± 7.234 2.742 ± 0.541

Remove image normalization 73.52 ± 7.534 0.722 ± 0.397 68.39 ± 7.534 0.762 ± 0.437

https://doi.org/10.1371/journal.pcbi.1011699.t001

PLOS COMPUTATIONAL BIOLOGY Machine learning identification of P. aeruginosa strains from colony image data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011699 December 13, 2023 9 / 21

https://doi.org/10.1371/journal.pcbi.1011699.t001
https://doi.org/10.1371/journal.pcbi.1011699


resistance (and/or tolerance). We further anticipate that our approach would become more

discriminatory if imaging data was also collected in the presence/absence of relevant stressors

of interest (e.g. antibiotics or immune effectors).

Fig 6. Reduced confusion matrix, aggregating all test data errors across five iterations of the ResNet-50 model. Of

the 69 strains in this study, only 5 strains were not classified with 100% precision (the 5 rows). For brevity, this matrix

includes only the strains that were misclassified by our model instead of the whole 69 x 69 confusion matrix.

https://doi.org/10.1371/journal.pcbi.1011699.g006

Table 2. Performance comparison with shallow learning (SVM) models. We contrast validation and test accuracy

for our trained ResNet model (see also Fig 5 and S1 Table) with accuracy metrics for radial basis function (RBF) SVMs

trained on colony metric data (Figs 3 and 4) and on features extracted from the trained ResNet model. See methods for

details of SVM models and feature extraction. Statistical comparisons are summarized in S4 Table.

model Validation accuracy (%) Test accuracy (%)

ResNet 50 92.93 ± 4.831 90.73 ± 5.073

Colony metric data, RBF SVM 46.73 ± 7.532 33.43 ± 6.341

ResNet 50 feature extraction and RBF SVM 65.29 ± 1.754 62.75 ± 1.931

https://doi.org/10.1371/journal.pcbi.1011699.t002
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Deep learning methods are commonly described as ‘black box’ methodologies [58], pre-

senting challenges for model interrogation and mathematical justification for sample size

requirements. Even when classification through deep learning has a monotonically increasing

prediction accuracy, the nature of the image collection process in biological research will limit

the total size of the dataset. This is a contrast to machine learning applications in other fields

that have continually and often exponentially increasing datasets (e.g., spending habits and

surveillance cameras). Considering these challenges, arguably our best alternatives for increas-

ing the size of biological datasets for image-based prediction in microbiology are data augmen-

tation and transfer learning, which we combined in this study. Our algorithm transfers

learning from the canonical ImageNet dataset while also using standard data augmentation

techniques (rotations, shifts, zooms, shears, flips, reflections, brightness.). Future tests to

explore the amount of data needed for accurate classification could be run by reducing the size

of the dataset by decreasing the amount of data augmentation performed or by reducing the

number of replicate colonies used. Moving forward, generative adversarial networks, a class of

machine learning frameworks that learns to generate new data by competing two neural net-

works, is promising technique that could supplement current data augmentation efforts

[59,60].

Prior to our data augmentation, we downsampled the original dataset in order to match the

image dimensions of the ImageNet dataset which we pretrained on and to minimize computa-

tional time. The original dataset contains colony images of 12 million to 183 million pixels

(depending on colony size) while our downsized colony images each contained a standardized

60 thousand pixels. The success of strain classification based on these heavily down-sampled

images suggests that classification is possible based only on more ‘macro’ scale morphological

features that are still discriminable at this resolution. Yet this down-sampling is essentially

throwing away a rich array of more micro-scale image features (Fig 7), and so opens the possi-

bility for future analyses to explore these features. The inset panels in Fig 7 illustrate striking

local and finer-scale features that are present across strains. These panels suggest an additional

Fig 7. Avenues for finer scale image segmentation and augmentation. Insets reveal finer-scale features at smaller

spatial scales.

https://doi.org/10.1371/journal.pcbi.1011699.g007
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data augmentation option, where each colony image is processed into multiple 60K chunks,

sampling at different locations within the image and at different spatial scales. Comparing

model performance using 60K images taken at different spatial scales could provide valuable

information on what are the most diagnostic spatial scales.

Our analysis to date implicitly assumes that our image data represent independent samples

of P. aeruginosa morphology, which due to phylogenetic relationships among these strains is

not the case. A simple null expectation given these phylogenetic relationships is that strains

that are most morphologically similar (i.e., similar morphological metrics, Fig 3; and more

commonly confused in classification, Fig 6) will tend to have a shorter phylogenetic distance.

Under this phylogenetic null model, strains with minimal phylogenetic differences will have

overlapping morphological metrics and will not provide dependable classification results. We

do not expect this pattern to hold uniformly, as we know that single-gene changes can generate

large-scale changes to colony morphology [11,12,44]. Future work can systematically explore

the impacts of single gene mutations through automated screening of transposon mutagenesis

libraries [61], potentially aiding in the discovery of previously unrecognized genes involved in

colony / biofilm formation. We also encourage future work applying our general methodology

to sets of strains in other species, as we expect our approach will generalize beyond the model

organism P. aeruginosa. In summary, the level of classification accuracy achieved in this work

illustrates the potential of image-based prediction tools, deep learning, transfer learning, and

data augmentation in the characterization of bacterial strains.

Methods

Strain culturing

This study uses a collection of 69 clinical and environmental P. aeruginosa isolates [45–47],

each grown and imaged in quadruplicate. We used Luria-Bertani (LB) agar (1.5%) plates sup-

plemented with 0.08% Congo Red, a dye commonly used to characterize biofilm formation

which binds to compounds in the extracellular biofilm matrix. In an effort to minimize varia-

tion in plate preparation and the age of the plates, 20ml volume plates were made 24 hours

before each experiment with a large, motorized pipette and kept in a sealed plastic sleeve at 4C.

Strains were inoculated into LB broth and incubated shaking overnight at 37C. The day of the

experiment, each plate was then sliced into 4 sections using a sterilized razor and tweezers,

which both limited colony outgrowth and prevented the diffusion of small molecules between

colonies. 5μl of the overnight culture was then spotted onto pre-prepared, sectioned LB agar

Congo Red plates. After the spots dried, plates were parafilmed to retain moisture and placed

in a 37C static incubator. All strains were incubated at 37C for 72 hours, which was deter-

mined during the pilot experiment to be enough time to reveal major morphological differ-

ences while minimizing outward expansion.

Colony imaging

After 72 hours, strains were imaged on a Nikon Eclipse Ti inverted microscope at 4X using the

DS-Fi2 colored camera. This results in a pixel-to-size ratio is 2.07uM per pixel. Large, stitched

images were required to scan an entire colony and were generated with Nikon’s built-in soft-

ware. Some replicate colonies had to be excluded from analysis due to error (strains 13, 47, 78,

86, 122, 124, 132, 210 have 3 replicates and strain 329 has 2 replicates). This resulted in a data-

set of 266 P. aeruginosa colony images that ranged in size from 12,644,652 pixels (approxi-

mately 0.74cm x 0.74cm) to 183,329,280 pixels (approximately 2.8cm x 2.8cm). The downsized

images used in the manuscript can be found at https://github.com/GaTechBrownLab/Rattray-

2023-PLOSCompBio/.
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Morphological and complexity metrics

For the morphological and complexity measurements, colony images were analyzed in Mathe-

matica. Images were scaled down by a factor of four, to make computations timelier, and the

backgrounds were cropped out by using a watershed transformation, binarization, and selec-

tion of the contiguous non-zero area surrounding the colony. The morphological metrics

(Area, EquivalentDiskRadius, PerimeterLength, MeanCentroidDistance, Eccentricity, Circu-

larity, BoundingDiskCenter, and MeanCaliperDiameter) were all calculated using the native

Mathematica commands. For the complexity metrics, CompRatio was calculated by compar-

ing the number of bytes in the uncompressed and compressed (using the native Mathematica

command) colony images. A Sobel-Freidman operator was applied in both x and y dimensions

and Sobel histograms were generated. MeanSobel, MedianSobel, SDSobel, RootMSSobel,

SkewSobel, and KurtosisSobel were all then calculated using the native Mathematica

commands.

Data pre-processing for machine learning

Our experimental pipeline is an integration of several steps: preprocessing, transfer learning,

and data augmentation techniques, all aimed at maximizing the predictive performance of our

deep learning model. In the preprocessing phase, all images are first downsampled to a uni-

form size of 224x224 pixels, consistent with the image dimensions used in the pretrained Ima-

geNet database. To preserve the original aspect ratio and minimize distortions during the

resizing process, we employed inter-area interpolation.

In addition to resizing, another important step in our preprocessing is image normaliza-

tion. This includes two primary aspects. The first is the correction of image backgrounds: the

algorithm iterates over the images and replaces any black pixels with white ones. This process

aids in standardizing the image backgrounds across our dataset, ensuring that the model does

not get biased by variations in the background and thus enhancing its robustness to different

imaging conditions.

The second aspect of image normalization involves rescaling the pixel intensities. Raw

images are composed of pixels with intensity values that usually fall within a range of 0 to 255.

These large values may slow down the learning process and make the model more susceptible

to suboptimal solutions. To mitigate this, we applied a transformation to rescale the pixel val-

ues to a 0–1 range. This process, often termed pixel normalization, can help improve the effi-

ciency of the learning process by preventing large input values from causing numerical

instability and by ensuring that the input features have a similar data distribution, thus assist-

ing the optimization algorithm to converge more quickly [62].

Overall, these preprocessing steps serve as an integral part of the pipeline, shaping the data

into a more suitable form for the model to learn effectively and efficiently, while ensuring

robustness to potential sources of variation.

Data augmentation

In order to further optimize our model’s performance and ensure its robustness, we utilized

various data augmentation techniques. This approach, known to improve the generalization

capability of deep learning models by artificially expanding the training dataset [63], involves

making stochastic transformations to the training images, thereby mimicking variations likely

to be seen in the real-world application of the model. One such transformation was brightness

augmentation, where the brightness of the image is varied randomly within a range. Specifi-

cally, the brightness was altered by factors between 0.2 and 0.8, effectively simulating various

lighting conditions that the images might be subjected to in real-world scenarios [64]. This
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rescaling process not only aids in normalizing the data but also helps in mitigating the risk of

gradient explosion, a phenomenon that can hinder the learning process [65]. Random rota-

tions within a range of -20 to 20 degrees and random shifts in image width and height by up to

20% of the original size are also used. These techniques simulate changes in the object’s orien-

tation and position within the frame, thus allowing our model to learn invariance to such alter-

ations [66]. The application of shear transformations and zoom operations, both by up to 20%,

mimic the effects of perspective distortion and changes in the object-camera distance respec-

tively. These techniques enhance the model’s ability to recognize the subject regardless of vari-

ations in the camera perspective or object scale [49]. Finally, we also incorporated horizontal

flipping of images, a transformation especially useful for our dataset since it does not possess

any inherent left-right bias. This method doubles the size of the dataset and helps the model

generalize better by learning symmetrical features [67].

Train/validation/test split

Images from the initial 4 replicate imaging experiment were divided (following augmentation)

into a 90–10 train/validation split. The imaging protocol was repeated by a separate experi-

menter to generate an independent test sample.

Transfer learning models

In our study, we employed four deep learning models to classify bacterial strains, leveraging

the advantages of both transfer learning and architectural diversity. Each model used was pre-

trained on the ImageNet dataset and further fine-tuned to our specific task. This section details

the deep learning models used, the modifications we made, and our rationale for these choices.

Parameters for all models are detailed in S3 Table. The code can be accessed at https://github.

com/GaTechBrownLab/Rattray-2023-PLOSCompBio/.

Before the training of any models, the topmost layer of each pre-trained model was

removed, and replaced by a new flatten layer. This was followed by two pairs of dense and

dropout layers, and finally, a softmax dense output layer. The dense layers were designed using

Rectified Linear Unit (ReLU) activations [68], while the final dense layer employs a softmax

activation function. This transforms the output into a probability distribution across 69 neu-

rons, each corresponding to a unique strain identification within our dataset. The resulting

confidence vector is obtained when the output layer is activated.

The decision to downsize the new dense layers from the original size (e.g., from 2048 to

1024 in ResNet-50) was influenced by the size of our dataset in contrast to ImageNet. Dropout

layers were also incorporated to prevent overfitting, following the transfer learning research

conducted by [69].

ResNet-50

ResNet-50 [70] is known for its residual blocks, which mitigate the vanishing and exploding

gradient issues common in deep learning models. In our application, the weights of the pre-

existing layers were frozen, and only the newly added dense layers were trained—a method

known as ’feature extraction.’ This method exploits the pre-trained model’s ability to extract

generalized features, while the added layers learn to make predictions based on these features.

The use of ResNet-50 in bacterial strain identification tasks is well-documented. A study

[71] employed a ResNet-based approach to classify three species of gram-positive bacteria,

achieving an accuracy of 81%. Another study [72] compared the performance of various deep

learning models, including ResNet, for bacilli detection, demonstrating the efficacy of these
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architectures in bacterial identification tasks. These previous successful uses of ResNet-50 pro-

vide a robust motivation for its selection in our study.

MobileNetV2

We employed the MobileNetV2 model for its compactness and efficiency, making it suitable

for mobile and embedded vision applications [73]. Similar to ResNet-50, we used the feature

extraction approach with this model.

VGG-19

The VGG-19 model [53] was also utilized in our study due to its proven efficacy in various

classification tasks. We implemented the feature extraction strategy, leveraging the learned fea-

tures from the model and fine-tuning our custom layers for our specific task.

Xception

The Xception model was incorporated due to its unique architecture, designed to recognize

nuanced patterns [74]. For Xception, we adopted a ’fine-tuning’ strategy, training all layers of

the network with a smaller learning rate. This allowed the model to adjust the learned weights

more accurately to our problem.

Benchmark models

For comparison, two ’shallow learning’ methods were used as benchmarks. First, a Radial

Basis Function (RBF) Support Vector Machine (SVM) was employed for strain classification

using colony metric data (Fig 3), following the successful application demonstrated by Chen

et al. [75] in bacterial classification.

Additionally, a hybrid approach was adopted to exploit the strengths of both deep and shal-

low learning. Here, we extracted feature vectors from our top-performing deep learning

model, ResNet-50, which were then used as input for a RBF SVM. This process of feature

extraction involves using ResNet-50’s pre-trained weights to generate a representative vector

of the input image. These vectors essentially encapsulate the critical visual patterns recognized

by the model, thus serving as robust predictors in the SVM. This hybrid approach involves

loading the pre-trained ResNet-50 model with weights trained on the ImageNet dataset and

setting the ’include_top’ parameter to False. This configuration returns a model that does not

include the final dense layer, making it suitable for feature extraction. An image is loaded and

preprocessed to match the input requirements of ResNet-50, and the model’s ’predict’ function

is then used to generate the feature vector. This feature vector is then used as input to the SVM

for classification. This transfer learning strategy has been successfully applied in numerous

studies, including Rahmayuna et al. [76], who achieved a remarkable classification accuracy of

90.33%.

Supporting information

S1 Fig. Correlation matrix for all morphological and complexity metrics. Morphological

(green) and complexity (orange) metrics.

(DOCX)

S1 Table. Statistical comparisons of transfer learning methods (Fig 5). The performance of

four trained transfer learning models (ResNet-50, VGG-19, MobileNetV2 and Xception, see

methods) were evaluated on both validation and test datasets. Each computational experiment

was replicated five-fold (five separate training runs for each model), allowing statistical
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comparison of approaches. Table A. Summary statistics. Across replicates we report average

(+/- standard deviation) accuracy (the number of correct predictions divided by the total num-

ber of predictions x100) and loss (a summation of the errors made for each sample). Table B.

ANOVA table. Tables C-F. Post-hoc pairwise tests (Tukey HSD with alpha = 0.05).

(DOCX)

S2 Table. Performance contribution of data pre-processing, augmentation and training.

To assess contributions we took the trained ResNet-50 model (Fig 5 and Table A in S1 Table)

as a baseline method, and assessed the impact of removing components of our methods pipe-

line. Five-fold replicated results are summarized in Table 1. Table A. ANOVA table of data in

Table 1. Tables B-E. Post-hoc pairwise tests (Tukey HSD with alpha = 0.05).

(DOCX)

S3 Table. Parameters for all models.

(DOCX)

S4 Table. Performance comparison with shallow learning (SVM) models. We contrast vali-

dation and test accuracy for our trained ResNet model (see also Table 1) with accuracy metrics

for radial basis function (RBF) SVMs trained on colony metric data (Fig 3 and 4) and on fea-

tures extracted from the trained ResNet model. See methods for details of SVM models and

feature extraction. Table A. ANOVA of Table 2. Tables B-C. Post-hoc pairwise tests (Tukey

HSD with alpha = 0.05).

(DOCX)
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