
__

++ IEEE Senior Member;

*Corresponding author: Email: prachi.arizona@gmail.com;

Cite as: Gupta, Prachi. 2024. “A Deep Analysis of Performance Metrics and Comparative Assessment of Network Telemetry Tools in Linux

Environments”. Journal of Advances in Mathematics and Computer Science 39 (6):80-90. https://doi.org/10.9734/jamcs/2024/v39i61903.

Journal of Advances in Mathematics and Computer Science

Volume 39, Issue 6, Page 80-90, 2024; Article no.JAMCS.117751
ISSN: 2456-9968

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

A Deep Analysis of Performance Metrics

and Comparative Assessment of Network

Telemetry Tools in Linux Environments

Prachi Gupta a++*

a Azure Security, Microsoft, Peoria, AZ, USA.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: https://doi.org/10.9734/jamcs/2024/v39i61903

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review
comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/117751

Received: 18/03/2024

Accepted: 22/05/2024

Published: 29/05/2024

__

Abstract

As cyber-attacks targeting public cloud infrastructure increase in severity, it is essential to have strong

network security measures for Linux machines. [1] Recent statistics underscore the severity of the situation,

with a significant 39% of businesses experiencing security breaches within their cloud environments in 2022.

This data shows a notable 35% increase in security attacks from the previous year. These breaches affected

around 400 million individuals, emphasizing the urgent need for action.

As organizations increasingly migrate their operations to the cloud, addressing security risks is paramount.

This needs a comprehensive approach to cloud security, focusing on monitoring and surveillance of cloud

infrastructure usage by customers. Effective security observability requires deploying monitoring and alerting

systems capable of promptly detecting and mitigating potential threats in real-time. [2] The Linux community

has embraced Berkeley Packet Filter (BPF) technology as a cornerstone in this effort. BPF's flexibility and

extensibility have led to the development of sophisticated tools, offering unparalleled capabilities in

Original Research Article

https://doi.org/10.9734/jamcs/2024/v39i61903
https://www.sdiarticle5.com/review-history/117751

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

81

enhancing security observability and response mechanisms. This study begins by examining legacy solutions

like auditd, which help auditing of all aspects of Linux machines. It also explores the origins and evolution of

BPF within the Linux ecosystem, highlighting its transformative impact.

The study further delves into BPF-based monitoring tools tailored for scrutinizing Linux system processes. It

elucidates their functionalities and meticulously assesses the performance of select tools and technologies.

Rigorous experimental method, involving virtual machines with identical specifications subjected to network

load simulations, ensures reliable and unbiased performance evaluations. Through this experimentation,

valuable insights into resource consumption patterns for each tool are gleaned, aiding informed decision-

making in tool selection and deployment strategies.

Keywords: Challenges with auditd in network monitoring; bpftrace implementations in real-world scenarios;

ebpf evolution and use cases; linux network monitoring; performance comparison of bpf based

network monitoring tools; security in public cloud.

1 Introduction

The paradigm shift towards cloud computing continues to accelerate, heralding a new era of technological

innovation and enterprise transformation. As cloud technologies enable organizations to achieve more

flexibility, growth, and performance, the digital environment becomes a place for both creating new solutions

and fighting cyber- attacks. The proliferation of cloud-based infrastructures has unleashed a torrent of

opportunities, yet it has also exposed a vulnerable underbelly susceptible to malicious exploits and cyber-

attacks.

In cyber warfare annals, the year 2022 stands as a stark reminder of the perils that lurk in the digital abyss.

Network intrusion, the specter haunting enterprises and organizations across the United States has appeared as a

preeminent threat vector, accounting for 45% of all security incidents. Against this backdrop of escalating cyber

threats, fortifying the bastions of network security within cloud infrastructures is of paramount importance.

Network security demands more attention and action than ever before, reverberating in the virtual pathways of

cyberspace. As adversaries deploy increasingly sophisticated attack vectors to breach the sanctity of digital

fortresses, it has become imperative to erect formidable defenses. Safeguarding the integrity and confidentiality

of data traversing cloud networks requires a multifaceted approach that integrating innovative technologies,

robust policies, and vigilant monitoring mechanisms.

The tripartite framework of security orchestration, encompassing the realms of collection, detection, and

response, emerges as lodestar - guiding enterprises through the labyrinthine corridors of cybersecurity. In the

crucible of digital warfare, data emerge as lifeblood coursing through the veins of network defenses, providing

raw material for threat intelligence and situational awareness.

The pantheon of network security monitoring, a bastion of resilience amidst the tempest of cyber threats, stands

as the vanguard of organizational defenses. Powered by a panoply of open-source and commercial tools, the

armory of network defenders’ bristles with the arsenal of threat detection, analysis, and mitigation capabilities.

Yet, amidst the cacophony of tools and techniques, discerning the proverbial wheat from the chaff emerges as an

arduous endeavor, demanding judicious choice and meticulous integration.

[2] BPF, a huge change that sparked a new era of network monitoring and analysis, is a key part of Linux

development. BPF lets developers create custom networks - monitoring solutions in a secure and isolated

environment. The ascendance of BPF-based tools, epitomized by stalwarts such as tcpdump, bcc, and bpftrace,

augurs a new dawn in network telemetry, replete with insights and capabilities hitherto unimaginable.

In the crucible of technological innovation, this paper endeavors to unravel the labyrinthine corridors of network

security monitoring, traversing the trodden paths of legacy solutions while charting the uncharted territories of

BPF-based innovations. [3] Through a prism of inquiry and introspection, we shall dissect the nuances of

network monitoring tools, navigating the turbulent seas of implementation challenges and performance

bottlenecks.

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

82

[4] In conclusion, as the maelstrom of digital transformation continues to sweep across the global landscape, the

clarion call for network security vigilance reverberates with undiminished fervor. [5] By embracing the ethos of

continuous innovation and adaptive resilience, organizations can fortify their digital citadels against the ravages

of cyber threats, ensuring the sanctity of their networks and the integrity of their data.

2 Network Monitoring with Tcpdump

Reference [7] introduces the tcpdump utility as an influential and adaptable tool intrinsic to the Linux command

line environment. Its primary function revolves around the capture and analysis of bidirectional network traffic,

thereby offering users indispensable insights into network performance and security paradigms. A clear benefit

of tcpdump is that it comes pre- installed with most Linux distributions for free, making deployment faster and

avoiding manual installation steps. This helps rapid initiation of network analysis endeavors by users with

requisite privileges.

[8] Tcpdump affords users granular control over packet capture operations through the specification of network

interfaces and packet count limitations, as exemplified by the "interface" argument and packet count flag "-c 5."

By adjusting these parameters, one can create capture settings that suit specific analysis goals. Moreover, the

tcpdump offers an array of filtering mechanisms encompassing hostname, port number, and protocol type,

augmenting the precision and relevance of captured data. The "x" flag helps packet content inspection in ASCII

and Hexadecimal formats, enhancing data interpretability and facilitating nuanced analysis.

A scrutiny of tcpdump's implementation at scale reveals its facile integration across diverse computing

environments facilitated by its inclusion within standard Linux distributions. This versatile tool makes it easy to

record and save network traffic data for later examinations by creating .pcap files. These files serve as

repositories of captured data amenable to analysis by tcpdump itself or compatible tools such as Wireshark. [9]

The latter, distinguished by its intuitive user interface and robust filtering capabilities, emerges as an

indispensable adjunct for network administrators and analysts in dissecting the intricacies of network traffic.

[10] Pros:

1. Pre-installed Ubiquity: One of tcpdump's most lauded attributes is its ubiquity, as it comes pre-installed

with most major Linux distributions. This ensures seamless integration into operational workflows,

obviating the need for arduous installation rituals and facilitating rapid deployment across diverse network

environments.

2. Detailed Network Interface Selection: Tcpdump allows users to control network interfaces in detail,
enabling accurate Packet capture from specific sources. Through the judicious use of interface arguments,

users can tailor their analysis to specific network segments, thereby enhancing the fidelity and relevance of

captured data.

3. Sophisticated Filtering Capabilities: Tcpdump offers a pantheon of filtering mechanisms, encompassing

hostname, port number, and protocol type, among others. This affords users the flexibility to sculpt their

analysis according to bespoke criteria, facilitating targeted investigation and elucidation of pertinent

network anomalies.

4. Flexible Output Options: Tcpdump facilitates the seamless exportation of captured network traffic to .pcap

files, ensuring the preservation and portability of captured data for later analysis. This versatile output

format is compatible with a plethora of analysis tools, including the widely acclaimed Wireshark, thereby

enhancing interoperability and facilitating collaborative analysis endeavors.

Cons:

1. Absence of HTTP Session Displays: A notable limitation of tcpdump is the absence of dedicated displays

for HTTP sessions. Consequently, users are compelled to manually sift through voluminous packets to

discern individual sessions, a laborious and time-intensive endeavor that can impede workflow efficiency

and detract from the overall user experience.

2. Processing Overhead: Tcpdump's efficacy in capturing network traffic at scale may be marred by

processing overhead, particularly in scenarios characterized by high throughput and data volume. This can

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

83

manifest as latency in packet capture and analysis, potentially impeding real-time responsiveness and

compromising the timeliness of threat detection and mitigation efforts.

3 Network Monitoring with Auditd

[11] The Linux Audit system provides a robust framework for logging events within Linux environments. At its

core, auditd facilitates comprehensive auditing capabilities, including monitoring filesystems, processes, and

network activities. Notably, auditd comes pre- installed with most major Linux distributions, simplifying

deployment and eliminating the need for manual setup.

The audit system includes two key components: Audit.rules and Audit.conf, located within the /etc/audit/

directory. Audit.rules allows for the configuration of auditing rules, while Audit.conf defines essential

parameters such as log file location and buffer size.

You can start auditd easily with the auditctl command. However, it's important to note that initial network

tracing may yield extraneous socket-related calls. To focus on IPv4 and IPv6 network connections, specific

audit rules are configured accordingly.

In terms of scalability, installing auditd across various systems is standardized, with later configuration managed

through auditctl. This ease of deployment and management is a significant advantage, particularly for

organizations with diverse computing environments.

There are also utilities like ausearch and augenrules that complement auditd, which help with searching audit

logs and applying durable audit rules, respectively. Additionally, tools like aulast and aulastlog provide insights

into user login activities.

Despite its utility, auditd is not without scalability challenges. While installation and configuration are

standardized, managing audit rules across many systems can become cumbersome. Furthermore, performance

overhead, particularly during context switching and information transfer between kernel and user space, can be

significant, impacting scalability in high-volume environments.

In conclusion, while auditd is a valuable part of network monitoring, organizations should consider its

scalability limitations and complement it with appropriate tools to effectively navigate modern security

landscapes.

[12] The growing challenge that practitioners face is how to manage the enormous amount of data generated by

auditd effectively. ausearch is a useful tool for event analysis, but it becomes less effective when faced with the

huge challenge of searching large data sets, especially in the context of vast infrastructures with millions of

linked machines. In response to this exigency, a slew of sophisticated tools, exemplified by AuditBeat, has

emerged within the market landscape. These solutions specialize in the aggregation of logs emanating from

disparate nodes scattered across the organizational infrastructure. Using the features offered by such tools,

administrators can create user- friendly dashboards, set up alerting systems, and design intelligent detection

algorithms, thus strengthening their alertness against security threats and compliance requirements.

The audit framework has made some substantial progress in clarifying the complex routes taken by network

packets, but it also has some inherent limitations. The main one is the noticeable slowness of auditd in data

collection. This slowness is caused by the complicated process of switching and moving data from kernel space

to user space, which affects auditd's performance profile. On the other hand, Berkeley Packet Filter (BPF) has

an advantage by mostly doing computational tasks within kernel space, giving it a faster operational speed under

certain operational contexts.

Another salient deficiency intrinsic to auditd pertains to its restricted concurrency model, wherein only a single

program can be accommodated at any given instance.

Therefore, after event records are received, they are permanently lost, preventing the preservation of a complete

audit trail that shows system events. While dealing with these challenges, these limitations should be carefully

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

84

considered when designing the security monitoring strategy and choosing appropriate tools that fit the specific

needs of the organizational infrastructure.

4 Network Monitoring with BCC

[13] The Berkeley Packet Filter Compiler (BCC) represents a potent toolkit engineered to facilitate the

development of efficient kernel tracing and manipulation programs, harnessing the capabilities conferred by the

extended Berkeley Packet Filter (eBPF) paradigm. Noteworthy for its versatility, BCC streamlines the process

of crafting BPF programs by affording developers the flexibility to express kernel instructions in C and

construct a user-friendly front-end utilizing Python scripting. This discourse will concentrate on the utilization

of BCC for network tracing endeavors.

A Python-scripted BCC program can attach kernel entry or exit points and get socket information and reveal

complex details about network events. For comprehensive insights into authoring BCC programs or perusal of

sample implementations, refer to the iovisor/bcc repository available at:

Tools for BPF-based Linux IO analysis, networking, monitoring, and more (github.com)

You can find many tools in the BCC framework in the bin directory.

4.1 Examining the challenges and trade-offs with BCC: evaluating advantages and

drawbacks

The utilization of BCC hinges on a unique approach, wherein the compilation of Berkeley Packet Filter (BPF)

code happens dynamically. However, this method engenders a spectrum of considerations warranting thorough

scrutiny before embarking on its adoption:

1. Scalability Conundrums: While BCC stands as an invaluable asset for crafting intricate applications, its

scalability is contingent upon the installation of kernel header packages on host machines. This requisite

presents formidable hurdles when trying to deploy BCC across expansive networks comprising millions

of interconnected machines. Additionally, the inherent intricacies of building a robust network tracing

tool at scale pose formidable challenges, needing meticulous planning and resource allocation.

2. Problems with Clang Front-End Integration: BCC programs use the Clang front-end to update BPF

programs that users create. This link adds complexity, making it hard to find the root causes of problems.

Troubleshooting becomes slow and costly, hurting the developer experience and slowing down

operations.

3. Performance Quandaries: Notwithstanding its utility, the performance of BCC programs lags alternative

BPF-based technologies, precipitating suboptimal outcomes, particularly in projects where performance

optimization assumes paramount significance. This performance difference requires careful evaluation

before using BCC for certain operational situations, to avoid reducing operational effectiveness.

4. Compromised Compilation Workflow: The compilation process inherent to BCC causes redundancy

when deployed across a fleet of machines, engendering superfluous resource consumption, and escalating

operational costs. This redundancy underscores the imperative of streamlining the compilation workflow

to mitigate inefficiencies and enhance deployment agility in large-scale operational environments.

Given the many difficulties mentioned before, the effectiveness of BCC as a universal solution for large-scale

and scalable BPF- based programs is questionable. Wise decision-making requires a careful balance of the

advantages and disadvantages, making sure they fit with the needs of specific operational models and strategic

goals.

5 Network Monitoring with Bpftrace: A Comprehensive Guide to Effective

Network Tracing

[14] Bpftrace is a complex and advanced tracing language that was created specifically for eBPF (extended

Berkeley Packet Filter) and works well with most Linux distributions. Crafted as an invaluable tool for system

administrators and developers alike, its robust capabilities aid in system monitoring and troubleshooting

endeavors. Leveraging LLVM as its backend compiler, Bpftrace seamlessly transcribes scripts into BPF

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

85

bytecode, thereby ensuring optimal efficiency and performance, particularly in the realm of network monitoring.

The bpftrace language combines powerful features with a syntax that is like awk and C and builds on earlier

tools such as DTrace and System Tap.

Accessible through Linux package managers or compilation from open-source repositories, Bpftrace exhibits a

tendency towards compatibility issues with certain Linux kernel versions when obtained directly from package

managers, as per firsthand experiences. To mitigate such concerns, it is advisable to obtain the latest compiled

version from the open-source repository, ensuring seamless functionality and compatibility. The repository link

can be accessed here: iovisor/bpftrace: High-level tracing language for Linux eBPF (github.com).

Focusing on network tracing, we delve into select scripts within bpftrace tailored for TCP passive and active

connections. These scripts give invaluable insights into network behavior, helping the identification of

bottlenecks, diagnosis of issues, and optimization of performance. Links to pertinent scripts can be found below:

• Script for TCP passive connections: bpftrace/tools/tcpaccept.bt at master · iovisor/bpftrace (github.com)

• Script for TCP active connections: bpftrace/tools/tcpconnect.bt at master · iovisor/bpftrace (github.com)

[15] To start the scripts, the binary must be downloaded from the following link: Release v0.19.1 ·

iovisor/bpftrace (github.com).

This command initiates monitoring of active TCP connections and outputs pertinent details including process

ID, time, command executing the TCP connection, source and destination IP addresses, and ports.

Preliminary tests show minimal CPU usage and memory consumption, even on medium- sized virtual machines.

Detailed results will be expounded later in this discourse.

Bpftrace stands out for its small installation size, having only 1 KB for the program itself and a compact binary.

With an extensive repository of pre-made tracing tools, facile one-liner scripting capabilities, and broad support

across various distributions, it emerges as a stalwart tool for scaling network observability. However, it's

noteworthy that bpftrace remains in the BETA release phase for ARM 64 processors, signifying an area for

potential improvement. We will explain later how to implement bpftrace effectively for network monitoring

purposes.

5.1 BPFTrace implementation at scale: overcoming challenges for linux distributions

Implementing bpftrace based logging was quite simple since it supports writing one liner programs. This

simplicity greatly benefits developers when creating and maintaining their code.

There are a couple of things to note when starting to build scalable solutions for Linux machines. Since Linux

supports various distributions and versions, finding the binary that’s statically built becomes more important

than ever. We will investigate the concepts of statically linked binaries shortly.

Until now, we have talked about the official binary release on bpftrace repository artifact release page. Here is

the link: Releases · iovisor/bpftrace (github.com)

As of this writing, the binary provided on the above page is a dynamically linked binary, which means the

dependencies will be pulled at runtime on the respective distributions. This becomes a challenge when building

a widespread solution for various distributions. To support various distributions with this solution, we must

build this binary using each distro and use that executable with the respective distros and kernel versions.

Obviously, this solution is not going to scale with new Linux kernel versions and distributions growing rapidly

over time. Hence, the need for a solution to create a statically linked binary became clear. This solution was

designed separately to solve the portability issues with Linux.

Bpftrace also supports this solution and is explained in more detail over here:

bpftrace/INSTALL.md at master · iovisor/bpftrace (github.com)

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

86

However, I would like to delve deeper into the Appimage tooling, as it is open source and is needed for

implementing bpftrace on a larger scale. The Appimage team provides various tools and utilities to simplify the

shipping and packaging process. One of the most used tools in Appimage is linuxdeploy. Linuxdeploy is an

AppDir maintenance tool.

In the case of any modern build system such as CMake, you can use the regular make install commands to

create a directory-like structure which will then be used by linuxdeploy for packaging. CMake also comes with

an inbuilt parameter to specify where the files should be installed instead of the root directory, called DESTDIR.

This feature allows developers to have more control over the installation process and support a cleaner system

structure.

For our use case, we logged tcp connect events and it required us to attach our bpftrace script to tcpconnect

kernel probe. It also required us to listen to the socket object to fetch the connection details. Tcpconnect script is

available in the bpftrace open-source project and most of it can be used as-is. Once the script is ready, we can

place it in some folder in our VM.

This will start recording all the events and printing them on Linux terminal. As I already mentioned the

downside of using Linux terminal as consumer, we can also write these events into a file, but that will increase

CPU consumption because of I/O operations.

To trace the UDP connections, there is no example script available in bpftrace. But we can write our own script

and listen to the “udp_sendmsg” and “udp_recvmsg” probe to trace the outgoing and incoming UDP

connections respectively.

Deploying bpftrace-based logging solutions presents a straightforward process, owing to its support for writing

concise one-liner programs. This inherent simplicity significantly streamlines code creation and maintenance

efforts, enhancing developer productivity and codebase manageability.

However, as we embark on building scalable solutions for Linux environments, several considerations come

into play. Given the diverse landscape of Linux distributions and versions, the importance of statically linked

binaries cannot be overstated. The quest for statically built binaries, which encapsulate all dependencies within

the executable itself, becomes imperative to ensure seamless deployment across heterogeneous environments.

Presently, the official binary release available on the bpftrace repository artifact release page is dynamically

linked, causing runtime dependency resolution on respective distributions. This dynamic linkage poses a

formidable challenge when orchestrating widespread deployments across diverse Linux ecosystems. To address

this challenge effectively, a solution must be devised to create statically linked binaries, thereby obviating the

need for dependency resolution at runtime.

Bpftrace, acknowledging the significance of this challenge, extends support for creating statically linked

binaries, as elaborated in detail in the documentation available at: bpftrace/INSTALL.md. However, I advocate

for a deeper exploration into the use of the Appimage tooling, an open-source initiative crucial for implementing

bpftrace at scale. The Appimage ecosystem offers an array of tools and utilities geared towards simplifying the

packaging and shipping processes. Notably, “linuxdeploy” appears as a pivotal tool within the Appimage

toolkit, facilitating the maintenance of “AppDir” structures.

Incorporating modern build systems such as CMake enables developers to use conventional install commands to

generate directory-like structures, which are later utilized by “linuxdeploy” for packaging.

Furthermore, “CMake” offers the flexibility of specifying the installation destination via the DESTDIR

parameter, empowering developers to exert greater control over the installation process and maintain an

organized system structure.

In our specific use case, wherein we logged TCP connect events, integration required attaching our bpftrace

script to the “tcpconnect” kernel probe and monitoring socket objects to fetch connection details. Leveraging the

readily available “tcpconnect” script from the bpftrace open-source project sped up this process. Upon script

preparation, deployment entailed placing it in a designated folder within the virtual machine.

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

87

This command initiates event recording and displays outputs on the Linux terminal.

Recognizing the limitations of terminal-based consumption, an alternative approach involves directing event

outputs to a file, albeit at the expense of increased CPU consumption due to heightened I/O operations.

While bpftrace offers extensive capabilities for tracing TCP connections, a similar out-of-the- box solution for

UDP connections is absent. However, developers can craft custom scripts using “udp_sendmsg” and

“udp_recvmsg” probes to monitor outbound and inbound UDP connections, respectively.

6 Performance Comparison between Audit and bpf Based Programs

[16] In our relentless pursuit of network data insights, we embark on a meticulous examination of performance

between two stalwart tools: BPFTrace and Auditd. Our endeavor revolves around network-based logging, with a

keen focus on scrutinizing CPU and memory consumption to unravel the depths of efficacy and efficiency.

Leveraging standard TCP kernel probes as our benchmark, we embark on a journey to record events, delving

into the comparative performance of these tools. Using the built-in file output features of both BPFTrace and

Auditd, our analysis keeps a sharp focus, making sure a careful evaluation without unnecessary factors [17].

For our experimentation, we deploy a virtual machine endowed with robust specifications— an Intel Xeon

processor boasting 4 cores and 16 GB of RAM. This judicious allocation of resources ensures an environment

ripe for exhaustive performance analysis. Noteworthy is the adherence to standard operating system

configurations, enhancing the universality of our findings [18].

Fig. 1. Average memory usage with bpftrace

Fig. 2. Average CPU utilization with bpftrace

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

88

Fig. 1 and Fig. 2 shows the graphs showing the average cpu and memory utilization when running bpftrace

tracing 1000 connections/sec, which is huge for Linux machines. With peak load, it is seen that the CPU

utilization went up to 11%, which is expected. Average memory usage was 60M, but this is a runtime memory

usage. This doesn’t include the memory used by bpftrace process to perform dynamic compilation using LLVM,

which is approx [19].

150M. This makes bpftrace difficult to use for very small workloads. However, as part of last year’s conference,

it looks like the bpftrace is coming up with options to mitigate the dynamic compilation issue.

On the other hand, with the same load auditd were not able to perform such. Average CPU use for auditd with

1000 connections/sec was above 24%. The memory use was variable ranging from 150 to 300 MB.

Our investigation unfolds against a backdrop of concrete metrics:

• CPU and Memory Utilization with BPFTrace: Graphical representations unveil the intricate interplay of

CPU and memory during BPFTrace's execution. With an imposing load of 1000 connections/sec, the

CPU's use peaks at a modest 11%, a testament to its efficiency. However, the snapshot of memory

usage—averaging 60M—barely scratches the surface, as it excludes the overhead incurred by dynamic

compilation processes, pegged at approximately 150M. This nuance underscores the necessity of nuanced

optimization efforts, especially considering the tool's unsuitability for minute workloads. Notably, sample

sizes of 1000 connections/sec were rigorously selected to mirror real- world scenarios.

• Comparison with Auditd: In stark contrast, Auditd grapples with performance under identical loads.

Bearing witness to CPU use exceeding 24% with 1000 connections/sec, coupled with a volatile memory

footprint ranging from 150 to 300 MB, Auditd struggles to attain resource efficiency.

Amidst BPFTrace's commendable CPU performance, a labyrinth of limitations beckons:

• Script Complexity and Tooling Support: While BPFTrace excels in one-liner scripts, the specter of

complexity looms large over intricate tasks. The absence of robust tooling support presents a bottleneck,

hindering seamless integration with high-performance systems. Even though file-based output is a viable

option, the risk of increased CPU usage because of more I/O operations requires urgent attention.

• Terminal Processing Limitations: The confines of the Linux terminal's print buffer impede concurrent

print statement processing, fostering an environment ripe for data loss amidst surging event volumes.

• Memory Usage Issues: In the tough conditions of production environments, LLVM compilation and

runtime memory usage cause problems for workloads with optimization efforts.

• Executable Compatibility: BPFTrace's flirtation with compatibility across Linux distributions presents a

hidden danger to portability. Though recent efforts towards Appimage adoption show some promise,

significant obstacles remain.

Despite Auditd's valiant efforts, particularly in terms of elevated CPU consumption, BPFTrace appears as the

paragon of choice for constructing high-performance observability tools. However, a clear comprehension of

BPFTrace's drawbacks guides the focused optimization efforts to unlock its full ability in creating effective and

reliable observability solutions.

7 Conclusion

After trying out various tools, bpftrace stands out as the clear winner in terms of performance—a crucial factor

in tool assessment for network observability, especially in the domain of the newest Linux kernel versions.

To set up an observability framework on a scale, both bpftrace and auditd necessitate added functionalities to be

developed around them, optimizing their performance and ensuring event preservation without loss.

Auditd, as a conventional logging system, lacks kernel name spacing, resulting in a deficiency of crucial details

about the container that triggered network or system calls, making it less suitable for containerized

environments. Furthermore, contemporary applications often encrypt network traffic, making packet capture

prohibitively expensive and diminishing the efficacy of auditd in cloud-native settings.

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

89

While bpftrace and auditd were thoroughly evaluated, numerous other tools stay unexplored within this article's

purview. When selecting the right tool for a specific use case, performance stays paramount. Additionally, the

investigation primarily focused on monitoring virtual machines, while commercial products cater to containers

and Kubernetes workload monitoring—a topic left unaddressed.

Integration ease with existing infrastructure, the learning curve associated with tool adoption, security,

scalability, and customizability are crucial factors in tool choice for network observability. Keeping up with the

latest trends, changes, and recommendations in network inspection tools helps to make smart choices that suit an

organization's specific needs and infrastructure, as the field of network inspection tools is constantly changing.

Competing Interests

Author has declared that no competing interests exist.

References

[1] 39% of businesses faced a cloud environment data breach last year, Security Magazine.

Available:https://www.securitymagazine.com/articles/950 44-of-businesses-faced-a-cloud-environment-

data-breach-last-year. [Accessed: 01-May- 2024].

[2] C Humbe. eBPF — a new Swiss army knife in the system, Medium.

Available: https://medium.com/@chivierhumber/ebpf-a- new-swiss-army-knife-in-the-system-

8964ad280eab. [Accessed: 01-May-2024].

[3] Getting Started with BPFtrace: The Simple Guide by Michael Arvanitopoulos. [Accessed: 01-May-2024]

[4] eBPF: Past, Present, and Future by Thomas Graf. [Accessed: 01-May-2024]

[5] D Calavera, L Fontana. Linux Observability with BPF; 2020. [Accessed: 01- May-2024]

[6] Introduction to BPF: A New Type of Software by Jessie Frazelle. [Accessed: 30- Apr-2024]

[7] How to Capture Network Traffic in Linux with tcpdump, MakeUseOf.

Available:https://www.makeuseof.com/tag/capture- network-traffic-linux-tcpdump/. [Accessed: 01- May-

2024].

[8] Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems by Chris Sanders.

[Accessed: 30- Apr-2024]

[9] Packet Analysis with Wireshark & Tcpdump Cheat Sheet by SANS Institute [Accessed: 01-May-2024].

[10] TCPdump Tutorial: How to Sniff Network Traffic by Laura Chappell [Accessed: 01-May- 2024]

[11] Linux Audit System: Anatomy of a System Call by Michael Boelen [Accessed: 30-Apr-2024]

[12] Auditing with Linux Auditd by Red Hat. [Accessed: 30-Apr-2024]

[13] iovisor, "bcc," GitHub.

Available: https://github.com/iovisor/bcc. [Accessed: 01- May-2024].

[14] iovisor, "bpftrace," GitHub.

Available: https://github.com/iovisor/bpftrace. [Accessed: 01-May-2024].

[15] Introduction to BPFtrace: Dynamic Tracing for Linux by Julia Evans. [Accessed: 01-May-2024]

[16] BPF Performance Tools by Brendan Gregg. [Accessed: 01-May-2024]

Gupta; J. Adv. Math. Com. Sci., vol. 39, no. 6, pp. 80-90, 2024; Article no.JAMCS.117751

90

[17] Iwasokun GB, Akinyokun OC, Alawode SJ, Omomule TG. An RSA algorithm for securing financial data

on the cloud. J. Adv. Math. Com. Sci. 2019, Nov 25;34(3):1-11. [cited 2024 May 17]

Available:https://journaljamcs.com/index.php/JAMCS/article/view/1428

[18] Cinar B, Bharadiya JP. Cloud computing forensics; challenges and future perspectives: A review. Asian

J. Res. Com. Sci. 2023, May 24;16(1):1-14. [cited 2024 May 17]

Available: https://journalajrcos.com/index.php/AJRCOS/article/view/330

[19] Centofanti C, Santos J, Gudepu V, Kondepu K. Impact of power consumption in containerized clouds: A

comprehensive analysis of open-source power measurement tools. Computer Networks. 2024, May

1;245:110371.

__
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the

Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your

browser address bar)

https://www.sdiarticle5.com/review-history/117751

https://www.sdiarticle5.com/review-history/117751

