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Abstract 
 

In this work, we proposed a linear multi-step method for solution of second order Initial Value Problems 
(IVP), using power series function as the trail solution for the approximation via collocation techniques. 
The resulting scheme is self-starting, consistent, zero-stable, convergent with good region of absolute 
stability. Numerical and graphical results are presented tabularly. 
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1 Introduction 

 
Consider the second order initial value problems in ordinary differential equation of the form 

 

                                                                         (1) 

 

Where f is continuous and satisfies Lipschitz condition. The solution of (1) is applicable in areas such as: 
Models of Chemical reaction, deflection and deformation of beam, heat transmission among others. Many 
authors such as [1-5,6] among others, extensively contributes for the solution of (1) without reducing it to 
system of first order initial value problems. Recently, [7] derived a new hybrid block method of order five 
with three off-step points for solving second order ODE directly via collocation and interpolation techniques. 
[8]. Make used of Legendre Polynomial as the basis function of the approximation for direct solution of 
initial value problems. In this paper, we make us of power series as the basis function for the approximation, 
which simultaneously generate numerical result for the solution of (1), without reducing to system of first 
order ODEs. 

 

2 Derivation of the Method 

 
In this section, our objective is to derived a Linear Multi-step Method (LMM) in the form 
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where α = 1,β 6= 0 and  ��, ��  are both not zero. α and β are real and continuous functions . In order to 
obtain (2), we seek an approximation y(x) of the form 
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Where aj are coefficients to be determine r and s are interpolating and collocating points. Imposing the 
following conditions 
 

                                                                                                         (4) 

 

                                                                               (5) 

 

From equation (4) and (5) the system of k + 9 equations and k + 9 unknowns is obtained. By Gaussian 
elimination method the coefficients of ��  are obtained, and then substituting the values of  ��   into equation 
(3), yield the continuous method below   
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For  We express ��(�) and 

��(�) as continuous coefficients, written as continuous function of z, by letting the following 

parameter are obtained as 

 
 

Solving (6) independently gives the continuous hybrid block method by imposing the condition δj(x) =  
��(�)  written in the form 
 

  (7) 
 

where coefficient of fn+k give 
 

 

Evaluating (7) and its first derivatives at 1 yields the discrete schemes below 
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Equation (8) is the desired hybrid block method. 
 

3 Analysis of the Method 
 
In this section, the basic properties of the proposed method such as: order, error constants, consistency, zero-
stability, convergence and region of absolute stability of the method will be discussed, to know the 
existence, order of accuracy, behavior and if the proposed method will give reasonable results. 
 

3.1 Order and error constant of the proposed method 
 
Let the linear difference operator L associated with the LMM Method (8) be defined as 
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where y(x) is an arbitrary test function continuously differential on [a, b]. Expanding y(xn+jh), y’(xn + jh) and 
y’’(xn + jh) of (8) in Taylor series in the form, 
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= ijm . If we assume that y(x) has many higher derivatives 

and collecting the terms we have. 

 

L(y(x) : h) = C0y(x) + C1hy0(x) + C2h
2y00(x) + ... + Cph

pyp(x) + Cp+2h
p+2yp(x)         (11) 

 

According to Henrici [9], equation (10) has order p if C0 = C1 = ...CP = Cp+1 = 0,Cp+2 6= 0. 

 

The proposed method is of order p = (7,7,7,7,7,7) with error constant 

 

 
 
3.2 Zero-stability and consistency of the proposed method 
 
The block method (8) is said to be zero-stable as h → 0, if the roots of the first characteristics polynomial 
defined by 

 

ρ(r) = det[rA0 − A0]                                                                                                                           (12) 

 

satisfies |rs| ≤ 1 and every root of |rs| = 1 has multiplicity not exceeding the order of the differential equation. 
(see [10]). 

 

 
 

We have ρ(r) = r5(r − 1) = 0,r = 0,0,0,0,0,1. The sufficient condition for linear k-step method (8) to be 
consistent if it has order p ≥ 1 [11]. Thus, the proposed method is consistent. 

 

3.3 Convergence of the proposed method 
 
The two sufficient conditions for a linear hybrid multi-step methods to be convergent is for it to be zero-
stable and consistent [12]. Our proposed method converges since it satisfies the two conditions. 
 

3.4 Region of absolute stability of the proposed method 
 
Definition 1. A linear multi-step method is said to be A-stable if its region of absolute stability, contains the 
whole of the left-hand complex half-plane R(hλ) < 0. [13] It is important to investigate the performance of 
the method in the case of h > 0 fixed. We formulated the stability matrix as follows 

 

M(z) = η(A − Cz − Dz2) − B                                                                                                             (13) 

 

where z = λh, A, B, C, D are obtained from interpolating and collocating points of the method as 
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, 
 
The stability polynomial of the hybrid block methods is obtain as 
 

 
 

Fig. 1. Showing the region of absolute stability for (8) 
 

 
 

It’s first derivatives is obtained as 
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plotting N(z) via matlab environment displays the region of absolute stability in Fig. 1. 
 

4 Implementation of the Method 
 
In this section, we implement the proposed block method in solving initial value problems in ordinary 
differential equations. The proposed method is tested on some problems to determine the performance of the 
new proposed schemes and compared the results with other authors in the literature. The following problem 
below are tested. 
 
Problem 1. 
 
Consider a non linear differential equation (Source: [14]) 
 

���(�) − �(��)� = 0, �(0) = 1, ��(0) = 0.5, ℎ = 0.1 
 
Exact Solution 
 

 
 

Table 1. Numerical and error results for problem 1 
 

x Exact Numerical Result Error Result k=1, 
p=7 

[14], k=3, p=8 

0.1 1.05004172927849126820 1.05004172927849085624 4.1196000E − 16 1.957046E – 13 

0.2 1.10033534773107558060 1.10033534773107466662 9.1398000E − 16 6.039897E – 13 

0.3 1.15114043593646680530 1.15114043593646517581 1.6294900E − 15 1.261598E – 12 

0.4 1.20273255405408219100 1.20273255405407942497 2.7660300E − 15 3.715303E – 12 

0.5 1.25541281188299534160 1.25541281188299062840 4.7132000E − 15 7.918892E – 12 

0.6 1.30951960420311171550 1.309519604203103463134 8.252370E − 15 1.416178E – 11 

0.7 1.36544375427139616910 1.36544375427138112957 1.503953E − 14 3.616015E – 11 

0.8 1.42364893019360180680 1.42364893019357301828 2.878852E − 14 7.472525E – 11 

0.9 1.48470027859405174160 1.48470027859399336945 5.837215E − 14 1.335141E – 10 

1.0 1.54930614433405484570 1.54930614433392823951 1.2660619E − 13 4.316861E – 10 

 
Problem 2. 
 

Consider a system of equation of the form (Source: [7]) 
 
���(�) = −�����, ��(0) = 1, ��(0) = 0, ℎ = 0.1, ���(�) = 2����

�
, y2(0) = 1,y2

’ (0) = 1, 
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Exact Solution 
 

y1(x) = cos(x),y2(x) = ex cos(x) 
 

Table 2. Numerical and Error Results for Problem 2 of y1 

 

x Exact Numerical Result of y1 Error Result k=1,p=7 of 
y1 

[6], k=1,p=5 of y1 

0.2 0.980066577841241630 0.980066577841242099 4.6900E − 16 3.348466E − 09 

0.4 0.921060994002884990 0.921060994002887760 2.7700E − 15 3.276545E − 08 

0.6 0.825335614909678110 0.825335614909685644 7.5340E − 15 1.332214E − 07 

0.8 0.69670670934716505 0.696706709347180047 1.4997E − 14 3.546280E − 07 

1.0 0.540302305868139210 0.540302305868163875 2.4665E − 14 7.355177E − 07 

 

 
Fig. 2. Showing the Maximum errors of problem 1 

 
Table 3. Numerical and Error Results for Problem 2 of y2 

 

x Exact Numerical Result of y2 Error Result k=1,p=7 of y2 [7], k=1,p=5 of y2 

0.2 1.197056021355891400 1.19705602135584996 4.144000E − 14 6.304139E − 07 

0.4 1.374061538887522100 1.37406153888744350 7.860000E − 14 2.521669E − 06 

0.6 1.503859540558786200 1.50385954055868131 1.048900E − 13 5.429593E − 06 

0.8 1.550549296807422400 1.55054929680731085 1.115500E − 13 8.852781E − 08 

1.0 1.468693939915884900 1.46869393991579831 8.659000E − 14 1.194695E − 08 

 
Problem 3. 
 

Consider an oscillatory non-linear system of initial value problems (Source: [14]) 
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Exact Solution 
 

y1(x) = cos(x2), y2(x) = sin(x2) 
 

Table 4. Numerical and Error Results for Problem 3 
 

− Maximum error of y1 Minimum error of y1 Maximum error of y2 Minimum error of y2 

H 4.461721215E – 12 1.145493E − 15 1.17577969E – 12 6.28692460E − 14 

x 0.875 0.125 0.875 0.125 

 

 
 

Fig. 3. Showing the Maximum and Minimum errors of problem 2 
 

5 Discussion and Conclusion 
 
The linear multi-step method (8) proposed in this paper, was analyzed and found to be of order p = 7, 
consistent, zero-stable, convergent with good region of absolute stability. From Fig. 1, it is observed that the 
region of absolute stability has negative real number, which implies that the roots λ < 0. This therefore make 
the numerical results in Tables 1 and 3 to decay faster for h > 0 in linear and non linear IVPs when 
compared to that of [14], even thought their method is of order p = 8 with step number k = 3 against ours. 
The region of absolute stability of their method contained both negative and positive real part, this decay for 
sufficiently small value of h and converge faster for only linear IVP. While, in Table 2, our method still 
compete with that of [7], even though both methods are of the same step number but different order and their 
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region of absolute stability contained all positive real part. Figs. 2-3 shows the maximum errors of the 
proposed method. 
 
In conclusion, we have derived one-step hybrid block method for solution of second order initial value 
problems without reducing to system of first order ordinary differential equation. The numerical and 
graphical results shows that the proposed method perform better than the compared methods 
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