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ABSTRACT 
 

Intrusion is an important issue in computer networks especially in cloud computing where all the 
services are served using the internet. The fully distributed and open structure of cloud computing 
and services has made it an even more attractive target for potential intruders. The more 
sophisticated hackers and attackers get, the more there is work for the defense to prevent such 
attacks. A cloud computing system can be exposed to threats which include the integrity, 
confidentiality, and availability of its resources, its data, and the virtualized infrastructure can be 
vulnerable. The problem becomes bigger when an internal intruder misuses a cloud with massive 
computing power and storage capacity as a malicious party. This research developed an enhanced 
model for intrusion detection that monitors and analyzes data in a cloud environment and detects 
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intrusion in the system or network. The model can detect intrusions from external and malicious 
internal (authorized and unauthorized) users by normalizing and classifying all data packets using 
machine learning techniques. The developed system is an enhanced model of Zhang by combining 
it with two machine learning techniques: Support vector machine and Bayesian network to aid in the 
classification of normal data and intrusion data to detect intrusions. The developed model is 
evaluated and found to be able to make strong predictions, detect attacks, and still maintain the 
efficiency of the network. The system, when implemented, can detect intruders by classification of 
data packets and also improve the existing system in terms of providing more accurate and more 
efficient intrusion detection. It also provides worthwhile information about malicious network traffic, 
helping to identify the source of the incoming probes or attacks, collecting forensic evidence that 
can be used to identify intruders, and alerting security personnel that a network invasion may be in 
progress. 
 

 

Keywords: Intrusion detection; machine learning technique; support vector machine; bayesian 
network; cloud computing. 

 
1. INTRODUCTION 
 
Cyber security industry is one of the most 
growing industries today. Trends such as cloud 
computing, virtualization, and IoT (Internet of 
Things) have made data not only the most 
lucrative asset but also the most vulnerable and 
easy-to-attack asset. As networks get larger, the 
attack surface and facilities become more prone 
to attacks from hackers thereby increasing cyber 
risk which is a prevalent problem.  As hackers 
and attacks get sophisticated, the defense to 
prevent such attacks must be sophisticated as 
well. Many common cyber solutions exist today. 
The initial line of defense against a cyberattack is 
comprised of programmes like firewalls and 
honeypots. Conversely, firewalls that filter 
network traffic using a set of rules stop hosts 
from connecting from outside the internal 
network to a secure end system. A persistent 
attacker can easily get past a firewall and 
penetrate the company network because of its 
inability to preserve state. Honeypots work as a 
kind of trap for hackers; by indicating that they 
might contain sensitive data, they draw them in 
and force them to try to access the honeypot 
before being barred from the network. However, 
honeypots are only successful if they can bait the 
attacker. Honeypots, however, are only effective 
if they can draw in the attacker. If the attacker 
learns that the honeypot is trying to trick them, 
they can ignore it and continue to attack the 
network. Thus, a demand has been developed 
for a system that can learn the structure of 
network data and discriminate regular from 
anomalous network traffic. In order to accomplish 
this, an improved model for cloud computing 
environment intrusion detection has been 
created. A system that monitors and analyses 
data to find any intrusions into a system or 

network is called an intrusion detection system 
(IDS). There are two types of IDS: network-
based IDS (NIDS) and host-based IDS (HIDS). A 
HIDS is a piece of software that operates on a 
host computer or a centralized controller to track 
file system access, confirm system call chains, 
etc. A NIDS, on the other hand, often operates 
on edge routers or switches and analyses traffic 
as it moves through a network. Trying to simulate 
the behaviour of both regular and aberrant traffic 
is the biggest obstacle that network-based 
detection systems have to overcome. The 
biggest development in technology today is 
machine learning. With the use of an ML model, 
complex issues without apparent solutions can 
be solved. In order for the model to produce 
accurate predictions, it will acquire the features 
of a dataset. Modern IDS research uses a wide 
range of ML approaches to investigate whether 
they may be applied in an IDS to secure 
enterprise networks. 
 

2. RELATED WORKS 
 

Sudhanshu and Bichitrananda [1] discussed 
intrusion detection system using machine 
learning techniques using the KDD CUP ‘99’ 
Intrusion detection dataset for training and 
validating machine learning models. 
 

Alamin et al. [2] the authors introduced a hybrid 
machine learning model to enhance network 
intrusion detection by combining machine 
learning and deep learning to increase detection 
rates while securing dependability. Synthetic 
minority oversampling technology (SMOTE was 
used for data balancing and XGBoost for feature 
selection. 
 

PanelChunying Zhang et al. [3] The authors 
summarizes the application and research of 
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machine learning in network intrusion detection 
systems from three categories: traditional 
machine learning, ensemble learning, and deep 
learning by comparing and analyzing some 
common machine learning algorithms in intrusion 
detection field in recent years. The current model 
has the challenges of how to preprocess when 
faced with different datasets. 

 
Abdallah.E., et al. [4] investigated the subject of 
intrusion detection using supervised machine 
learning algorithms methods based on a study of 
four popular data sets KDD’99, NSL-KDD, 
CICIDS2017, and UNSW-NB15 and a taxonomy 
for linked intrusion detection system was 
provided. However, data imbalance is still a 
major concern. 
 
Adel et al. [5] identified the power of various 
machaine learning (ML) algorithms and analysed 
the effect of ML algorithms for intrusion 
detection. 
 

Stephen et al. [6] the authors presented a review 
of hybrid deep learning models for network 
intrusion detection, its concepts, characteristics 
and A taxonomy of deep learning approaches 
was presented taking into account the deep 
networks for discriminative or supervised 
learning, generative or unsupervised learning, 
and finally hybrid learning that can be used to 
design a variety of Network intrusion detection 
systems.  

 
Ayesha and Manivannan. [7] presented a 
comprehensive survey of machine learning 
based approaches as presented in literatures for 
ten years which would serve as a supplement to 
other general surveys on intrusion detection as 
well as reference to recent work done in the area 
for researchers working in Machine Learning-
based intrusion detection systems.  

 
Kathryn et al. [8] The authors presented an 
extensive overview, implementation, and cross 
comparison of state of the art machine learning 
based methods available for intrusion detection, 
analyzes some of the current state of the art 
intrusion detection methods and discusses their 
advantages and disadvantages. Four Machine 
learning algorithm was used to classify attacks to 
detect if traffic are benign or an attack. 

 
Zeeshan et al. [9] discussed the cyber security 
technology trends in intrusion detection utilizing 
ML (Machine Learning) and DL (Deep Learning) 
methods. However, the present work does not 

cover all the methods in the intrusion detection 
domain; furthermore, the authors use few 
benchmark datasets for the model, and the 
analysis is not uniform. None of the work covers 
a deep and insightful analysis of the performance 
of the model. 
 

Zhang et al. [10]. Proposed a system to detect 
intrusion using Deep Generative Neural Network 
(DGNN) that performs Adversarial learning with 
Data Augmentation in intrusion detection. With 
the use of data augmentation in intrusion 
detection, the detection rate and precision was 
better. But when there is not enough test data for 
the system to train with, the system experiences 
data scarcity and imbalance. 
 

Enamul et al. [11] proposes a novel approach for 
intrusion detection system based on sampling 
with Least Square Support Vector Machine (LS-
SVM). The authors discussed a new algorithm of 
the optimum allocation-based least square 
support vector machine (OA-LS-SVM) for IDS 
that can be used both for static and incremental 
data. 
 

3. MATERIALS AND METHODS  
 

3.1 Data Source and Collection 
 

The dataset used in this paper was obtained by 
the use of a data packet receiver, indicating the 
time, source, destination, protocol length of the 
packet and other information and this was used 
for the analysis. This dataset consists of features 
and instances. The features i.e., class values are 
Normal Data (ND) or Intrusion Data (ID). 
 

3.2 Experimental Set up 
 

Data were collected and moved to the Data pre-
processing stage, where they were normalized, 
to reduce the height and volume of the data, and 
then they were classified into Normal Data (ND) 
or Intrusion Data (ID) using the two machine 
learning techniques (support vector machine and 
Bayesian network). Both the Normal Data and 
Intrusion data are sent to the next stage which is 
the Data Partition where the Normal Data were 
now classified as Normal Network Request while 
the Intrusion data were classified as Network 
Intrusion. The Normal Network request was sent 
through the Date management and Data 
aggregation process to the shadow learning, 
while the Network Intrusion (Intrusion Data) went 
through the Data Augmentation process of 
Zhang [10] and finally to the Deep Learning 
Training Model. The above description 
constitutes the Training Phase for the models. 
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3.3 Experimental Tools 
 

All the experiments carried out are computed 
using an open-source python library and Python 
programming language with Jupyter Notebook 
IDE. PHP (PreHypertext Processor), JavaScript, 
HTML and CSS (Cascading Style Sheet) was 
used to code. A text editor called notepad++ and 
WAMP Server 2.1 which runs on Apache Server 
2.2.17, MySQL 5.5.8 and PHP 5.3.5 interpreter 
was employed to execute incremental 
development while actual coding was done on 
Notepad++, local deployment of code 
functionality was carried out on WAMP Server 
2.1. 
 

3.4 Model Selection 
 

Zhang, [10] model was adopted and enhanced 
by combining two machine learning techniques 
(support vector machine and Bayesian network) 
to aid in the classification of normal data and 
intrusion data. 
 

3.5 System Design 
 

The new system adopted the Zhang model and 
enhanced it by combining two machine learning 
techniques (support vector machine and 
Bayesian network) to aid in the classification of 

normal data and intrusion data. From Fig. 1. Data 
are collected and moved to the Data pre-
processing stage, where they are normalized, to 
reduce the height and volume of the data, and 
then they are classified into Normal Data (ND) or 
Intrusion Data (ID) using the two machine 
learning technique (support vector machine and 
Bayesian network). Both the Normal Data and 
Intrusion data are sent to the next stage which is 
the Data Partition where the Normal Data are 
now classified as Normal Network Request while 
the Intrusion data are classified as Network 
Intrusion. The Normal Network request are sent 
through the Date management and Data 
aggregation process to the shadow                    
learning, while the Network Intrusion                 
(Intrusion Data) go through Data Augmentation 
process of Zhang [10] and finally to the Deep 
learning Training Model. The above              
description constitute the Training Phase for the 
models. 

 
The testing phase include feeding the model with 
test data, which are then normalize and classified 
and a result of weather they are intrusion Data 
(ID) or Normal Data (ND) is made based on the 
result from the shadow learning process or Deep 
learning process of the trained model. 

 

3.5.1 Model of the system 
 

 
 

Fig. 1. Model view of the new system 
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Fig. 2. High level Model view of the new system 
 

3.6 High Level Model of the New System 
  
The high level model explains the                        
architecture that would be used for developing 
the automated system. The high level diagram 
shown in Fig. 2 provides an overview of the 
entire system, identifying the main                     
components that would be developed and their 
interfaces. 
 

4. RESULTS AND DISCUSSION 
 
A test data was obtained with the use of data 
packet receiver and classification of the 
intrusions as shown in Table 1. The result gotten 

from the classification of the intrusions was used 
to test for true positive and true negative as 
shown in Table 2. And from this, a 
comparison/performance evaluation was                        
done to ascertain if the enhanced                          
intrusion detection model was better and why it 
was better than the existing one as shown in 
Table 3. 
 

4.1 Performance Evaluation 
 
From Table 3 It shows that the new enhanced 
intrusion detection system was more reliable 
than that of Zhang, as seen in the high rate of 
true positive and true negative value. 

 
Table 1. Classification of the intrusions used to test for true positive and true negative 

 

TRUE POSITVE FALSE POSITVE 

Reality: An intrusion Attack occurs Reality:   No intrusion Attack occurs 
Enhanced IDS:  Detects an Attack occurs Enhanced IDS:  Detects an Attack occurs 
Output:       Record the attack as TP Output:      Record the attack as FP 

FALSE NEGATIVE TRUE NEGATIVE 

Reality:   An intrusion Attack occurs Reality:   No intrusion Attack occurs 
Enhanced IDS:  Does not Detects an Attack Enhanced IDS:  Does not Detects an Attack 
Output:    Record the attack as FN Output: Record the attack as TN 
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Table 2. Analysis of each frame for true positive and true negative 
 

ID Frame Byte Results 

1 Frame 1: 208 2.05807365439093 
2 Frame 2: 42 1 
3 Frame 3: 42 1 
4 Frame 4: 208 2.05807365439093 
5 Frame 5: 208 2.05807365439093 
6 Frame 6: 208 2.05807365439093 
7 Frame 7: 208 2.05807365439093 
8 Frame 8: 208 2.05807365439093 
9 Frame 9: 208 2.05807365439093 
10 Frame 10: 208 2.05807365439093 
11 Frame 11: 208 2.05807365439093 
12 Frame 12: 92 1.31869688385269 
13 Frame 13: 92 1.31869688385269 
14 Frame 14: 208 2.05807365439093 
15 Frame 15: 92 1.31869688385269 
16 Frame 16: 80 1.24220963172805 
17 Frame 17: 158 1.73937677053824 
18 Frame 18: 66 1.15297450424929 
19 Frame 19: 66 1.15297450424929 
20 Frame 20: 54 1.07648725212465 
21 Frame 21: 54 1.07648725212465 
22 Frame 22: 72 1.19121813031161 

 
Table 3. Performance evaluation carried out on the system 

 

Number of Packet Frame Analyzed Number of True Positive No of True Negative 

12362 1908 10454 
6120 954 5166 
12240 1908 10332 
6006 945 5061 
5945 945 5000 
5823 943 4880 
11829 1888 9941 

 

Table 4. Results from the analysis presenting the TPR and FPR 
 

Sum of Number of True Positive Column Label 

Row labels Grand total  TPR=TP/(TP+FN) FPR=FP/(FP+TN) 

4880 943 0.161944 0.838056 
5000 945 0.158957 0.841043 
5061 945 0.157343 0.842657 
5166 954 0.155882 0.844118 
9941 1888 0.159608 0.840392 
10332 1908 0.155882 0.844118 
10454 1908 0.154344 0.845656 

Grand Total 9491   

 

5. CONCLUSION 
 

Networks security problems vary widely and can 
affect different security requirements                        
including authentication, integrity, authorization, 
and availability. Intruders can cause different 
types of attacks on systems in an                       

organization. These attacks need to be detected 
as soon as possible to prevent further                        
damages to organizations sensitive data which 
may cause financial loss.  This model brought 
about a new method of detecting intruders by 
adopting the Zhang model and enhancing                      
with the combination of two machine learning 
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techniques to aid in the classification of normal 
and intrusion data. The hybridaztion of these 
models enhanced the system by                             
providing a better result in terms of                           
accuracy for intrusion detection. It also                      
provided worthwhile information about malicious 
network traffic; helping to identify the source of 
the incoming probes or attacks; collecting 
forensic evidence that can be used                                     
to identify intruders and alerting security 
personnel that a network invasion may be in 
progress.   
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