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ABSTRACT 
 

In varietal selection field trials, spatial variation and genotype by environment (GxE) interaction are 
frequent and present a major challenge to plant breeders comparing the genetic potential of several 
cultivars. To consistently select superior cultivars that increase agricultural production, bread wheat 
breeding studies must be evaluated using efficient statistical techniques. By modeling the 
interactions of geographical field trends and genotypes by environment interaction, this work aimed 
to forecast the genetic potential of bread wheat varieties across settings and improve selection 
tactics. The dataset utilized in this investigation consisted of sixteen multi-environment trials (MET) 
that were carried out using a randomized complete block design (RCBD), with two replications 
arranged in plot arrays of rows and columns. The findings showed that the factor analytical and 
spatial models were effective ways to analyze the data for this study under the linear mixed model. 
By ranking average Best Linear Unbiased Predictions (BLUPs) within clusters, the 16 bread wheat 
environments were grouped into three mega environments (C1, C2, and C3) based on yield. This 
served as a selection indicator. Ranking average BLUPs helped in the selection of superior and 
stable genotypes. The first cluster (C1)'s mean BLUP values were used to score the genotypes' 
performance; C2 and C3 were excluded because of their limited genetic variety and low genetic 
connection with the other trials. The genotypes with the highest potential based on this cluster were 
EBW192346 and EBW192347, chosen for a subsequent verification study to release a variety. The 
estimates for variance component parameters ranged from 0.013 to 3.024 for genetic variance and 
from 0.072 to 0.37 for error variance.  Hence, scaling up the use of this efficient analysis method will 
improve the selection of superior bread wheat varieties. 
 

 
Keywords: Average yield; BLUPs; cluster; factor analytic; genetic variation; spatial; target 

environment. 
 

1. INTRODUCTION 
 
Wheat (Triticum aestivum L.) is grown in an 
extensive range of agroecosystems, and Ethiopia 
has enormous potential and ideal 
agroecosystems for growth [1]. The majority of 
Ethiopia's wheat-growing regions are located 
between mid-altitude (1900-2300 m a.s.l) and 
high altitude (2300-2700 m.a.s.l), where rainfall is 
ample and consistent [2].  Both studies, like 
Abebe et al. [3], and Gadisa et al. [4] found that 
Ethiopia's highlands and mid-altitudes are key 
wheat producers. Wheat provides more nutrition 
globally [5,6], and is used as a key source of 
calories [7]. Wheat's popularity is due to the wide 
variety of culinary products that can be made 
from it, which helps to explain why it is now being 
grown in places where it was not previously 
grown [5,8]. 
 

Global yield per unit area has increased 
significantly as a result of new wheat varieties 
[9]. Researchers are now working on crop 
breeding that combines stability with yield to 
develop stable and high-yield genotypes in which 
both yield and stability traits are examined 
concurrently in addition to lowering genotype 
interaction [10]. High-yield genotypes should be 
chosen in the environment [11]. Because the 
production of new cultivars and the endorsement 

of newly released varieties necessitate a greater 
variety of Candidate genotypes, evaluating 
genotypic values is crucial to every breeding 
endeavor [10].  
 
Plant breeders face a great deal of difficulty in 
assessing the genetic potential of various 
cultivars because of the prevalence of spatial 
variation and GxE interaction in varietal selection 
field trials. Efficient techniques that account for 
more complicated environmental variation 
necessitate the use of appropriate models of 
analysis        [12,13]. Spatial analysis is a type of 
analysis in which the variance of each trial is 
investigated and a suitable structure is utilized to 
estimate the effects of the trial. This method, 
rather than eliminating the requirement for proper 
experimental design, increases it because once 
a treatment effect is confused with an ambient 
effect, the two cannot be separated [14]. Smith et 
al. [15,16] extended the GGE                  analysis 
using factor-analytic multiplicative mixed models. 
Its importance in estimating the related variance 
structure for GxE effects is an important 
component of the factor analytic model for multi-
environment trial data, because it provides a 
good and sparse approximation to the 
unstructured form and is generally more 
computationally robust [17].  



 
 
 
 

Alemu et al.; Asian J. Res. Agric. Forestry, vol. 10, no. 4, pp. 67-79, 2024; Article no.AJRAF.113469 
 
 

 
69 

 

The breeding values of genotypes evaluated 
across multiple environments, estimated by best 
linear unbiased prediction (BLUPs) from mixed 
models can be employed in the selection process 
[18]. Bernardo [19] stated the two advantages of 
BLUPs: they allow the comparison of genotypes 
evaluated in different sets of environments and 
they allow the use of information on relatives. 
The environment in which a breeding line 
completes its life cycle determines whether it can 
realize the full potential of its genotype [20]. The 
application of efficient statistical models to 
provide accurate and enlightening findings has 
enhanced MET data analysis, which has a long 
history with older statistical approaches like as 
the analysis of variance [16,21,22].  As a result, 
it's critical to assess bread wheat genotypes 
using more efficient statistical methods and 
mixed model approaches. The primary goal of 
this work was to predict bread wheat genetic 
potential across environments and enhance 
selection strategies by modeling the interactions 
of spatial field trends and GEI. 
 

2. MATERIALS AND METHODS 
 

2.1 Description of Eco-Location and 
Genotypes 

 

A study was undertaken by using germplasm of 
different genetic backgrounds to determine their 
level of GE in their biological yield responses. 90 
bread wheat advanced breeding genotypes 
including check varieties were evaluated each 
over two seasons between 2020 and 2021 at 8 
(Adet, Asasa, Bekoji, Holeta, Sinana, Robe Arsi, 
Dabra Markos, and Dabra Zeit) locations 
resulting in 16 environments (environment was 

considered as the combination of years and 
locations). The test genotypes were derived from 
the National Variety Trial (NVT) tested at 
potential environments. The trial was carried out 
by randomized complete block design (RCBD) 
laid out in a rectangular (row x column) array of 
plots with two replications. In row-column 
designs the experimental units were grouped in 
two directions, i.e., two blocking factors were 
used with one factor representing the rows of the 
design and the other factor representing 
columns.  Each genotype was planted on six 
rows of 2.5m long in 20cm between row spacing. 
The trial was included in this study with their 
respective row, column, and genotypes in each 
trial (Table 1). Production was all under rain-fed 
conditions. The geographic information of testing 
sites is presented in Table 1. 

 
2.2 Statistical Analysis 
 
For the statistical analysis, the matrix structure of 
the mixed linear model was applied using the R 
software. In multi-environment trial (MET) data 
analysis, there are many possible forms of 
genetic variance matrix structures while using a 
linear mixed model and the standard structure. 
While fitting a linear mixed model in this study, 
spatial field trend fitted first for each environment 
and tested for the potential existence of field 
trend between the neighbor plots. The 
comparison of means was carried out using the 
BLUP predictors (best linear unbiased prediction) 
that represent the predicted value for each 
genotype concerning the general mean [23]. The 
BLUP pair grain yields were ordered in 
descending order to identify the genotypes or

 

Table 1. List of test environments, number of genotypes used, and their respective geographic 
information 

 

Site Environment No 
Genotype 

Row Column  No 
Rep 

Latitude Longitude Altitude 

Arsi Robe 20BWNL1RA 90 18 10 2 07o53'02"N 39o37'40"E 2420 
Arsi Robe 20BWNL2RA 90 18 10 2 07o53'02"N 39o37'40"E 2420 
Asasa 20BWNL1AA 90 18 10 2 07o07'09"N 39o11'50"E 2340 
Asasa 20BWNL2AA 90 18 10 2 07o07'09"N 39o11'50"E 2340 
Bekoji 20BWNL2BE 90 18 10 2 07o32'37"N 39o15'21"E 2780 
Bekoji 20BWNL1BE 90 18 10 2 07o32'37"N 39o15'21"E 2780 
Dabra Markos 20BWNL1DM 90 18 10 2 10° 19′59″N 37°44′53″E 2450 
Dabra Markos 20BWNL2DM 90 18 10 2 10° 19′59″N 37°44′53″E 2450 
Dabra Zeit 20BWNL1DZ 90 18 10 2 08°38'N 38°30'E 1900 
Dabra Zeit 20BWNL2DZ 90 18 10 2 08°38'N 38°30'E 1900 
Holeta 20BWNL1HL 90 18 10 2 09°03′41′′N 38°30′44′′E 2400 
Holeta 20BWNL2HL 90 18 10 2 09°03′41′′N 38°30′44′′E 2400 
Kulumsa 20BWNL1KU 90 18 10 2 08o01'10"N 39o09'11"E 2200 
Kulumsa 20BWNL2KU 90 18 10 2 08o01'10"N 39o09'11"E 2200 
Sinana 20BWNL1SN 90 18 10 2 7°7’N 39°49'E 2450 
Sinana 20BWNL2SN 90 18 10 2 7°7’N 39°49'E 2450 
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superior lines. This methodology allowed 
comparing free genetic values of environmental 
effects and not the phenotypic means to improve 
genetic gain in the subsequent selection cycle. 
 

3. RESULTS AND DISCUSSION  
 
This study identified the relative genetic merits of 
different lines or genotypes where trials were 
correlated. According to the summarized data 
(Table 4), the average performance of all 
genotypes at the 20BWNL1AA environment was 
greater (5.64 t/ha) than in all other trials. In 
contrast, the potential of the 20BWNL2BE 
environment trial was the lowest (1.28 t/ha). 
Looking at the performance of each genotype 
and the rank change across testing conditions is 
critical for selecting a multi-environmental 
breeding program. When trials are correlated 
(similar response of genotypes in one 
environment), choosing the best material in one 
environment is the same as choosing the best 
material in another. The information from 
numerous environments may then be integrated 
to increase the accuracy of genetic gains in 
specific experiments. In this scenario, MET 
analysis can also aid in comprehending the wide 
and narrow adaptation of genotypes across a 
variety of target environments. As a result, the 
reaction of these genotypes in their various 
environments is used to decide genotype 
selection for the next trial or release.  The 
predicted GxE variance may be used to identify 
correlated environments, and breeders can 
choose genotypes using BLUPs averaged over 
associated environments [24].  
 

3.1 Factor Analysis 
 
MET data analysis revealed that modeling GE 
interactions with FA models in conjunction with 
models for geographical variations resulted in a 
considerable increase in genetic parameter 
estimations. Not only the FA models were 
effective for estimating and forecasting GEI 
effects, but they also were beneficial for 
calculating GEI variance and doing bi-plot 
analysis. The findings of the factor analysis are 
shown in Table 2. It comprises the total 
percentage of (GEI) variance explained by the 
model's factor components for each trial as well 
as the overall percentage of variance explained 
by the model's factor components for all trials. 
The FA models fit virtually all trials well, apart 
from 20BWNL1DZ, 20BWNL2DZ, 20BWNL1SN, 
20BWNL2DM, and 20BWNL2AA, and the two-
factor components well described the genetic 

variation. Overall, the factor analytic models' two 
multiplicative factors accounted for over 70% of 
the GxE variance, with the first multiplicative term 
accounting for about 72.79 percent. The 
inadequate fit of 20BWNL1DZ, 20BWNL2DZ, 
20BWNL1SN, 20BWNL2DM, and 20BWNL2AA 
with the FA model implies that the trial is not as 
well correlated as some of the other trials [25].  
 
A cluster analysis using a dendrogram, as shown 
in Fig. 1, was another important conclusion of 
component analysis, clustering trials based on 
genetic correlation. The dendrogram revealed 
that genotype rating was virtually the same for all 
trials detected inside these established clusters, 
but that trials discovered in other clusters had a 
separate genotype ranking [24]. As Diriba and 
Mekuria [26] reported when trials are correlated, 
the ranking of genotypes is similar so that the 
one best-performing genotype/s in a specific 
environment has similar performance with the 
one highly correlated environment. Using the 
dendrogram generated at the dissimilarity matrix 
we discovered three groups of correlated 
environments, which contributed to the selection 
of excellent bread wheat genotypes within each 
cluster. Assuming that the formed clusters were 
sufficiently justified for carrying out genotype 
selection separately for each of the clusters, 
genotype selection was carried out 
independently for each of the clusters using 
average BLUPs as a selection indicator. This is 
also reported by Tesfaye et al. [24] on finger 
millet and Diriba and mekuria [26]   on durum 
wheat. Because it formed with a relatively high 
correlation and covered more environments, just 
one cluster was chosen for the complete variety 
selection. The second and third clusters, on the 
other hand, have been found with fewer 
environments. 
 
Aside from the dendrogram, additional popular 
factor analysis summaries a heatmap of the 
genetic relationships between all trials. The 
correlations between environments varied from -
1 to 1. Correlations of -1 show that the 
performance of the environments falls in the 
opposite direction (the angle between the two 
environments is more than 90 degrees), meaning 
that the top-performing genotypes in one 
environment were the lowest-performing 
genotypes in the other. A correlation of +1 
indicates a full correlation between two 
environments; hence, selecting superior 
genotypes based on one environment is the 
same as selecting another. This is seen in Fig. 2, 
which depicts the various correlation patterns 
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between trials. The heatmap shows that most of 
the trials were highly correlated. This showed 
that genotype selection may be achieved by 
averaging genotype means over almost all trials 
in the first red cluster. There were also some 
trials with negative genetic correlations, such as 
20BWN1HL having a negative correlation with 
20BWN2AR and 20BWN2SN and 20BWN1DM 
having a negative correlation with 20BWNL2BE 
(Table 3), suggesting that there may have been a 
reversal effect in genotype ranks among these 
negatively associated trials.  Generally, 
correlations ranged from negative to positive on 
both sides. Based on the closeness in terms of 

discriminating the genotypes, the 16-bread wheat 
environments were clustered into three mega 
environments (C1, C2 and C3) for yield, where 
20BWNL1AA, 20BWNL2KU, 20BWNL1RA, 
20BWNL2RA, 20BWNL2SN, 20BWNL1BE, 
20BWNL2BE, 20BWNL1SN, 20BWNL1KU, 
20BWNL2HL, 20BWNL2DM, 20BWNL2AA and 
20BWNL1DZ were in C1; 20BWNL1DM in C2; 
and 20BWNL1HL and 20BWNL2DZ were in C3 
using a dendrogram (Fig. 1) and heat-map (Fig. 
2) as well as the genetic correlation from Table 3. 
To choose superior and stable types, an average 
of BLUPs was utilized as a selection indicator by 
ranking average BLUPs within clusters.

 
Table 2. Results from fitting the FA model 

 
Environments Factor1 Factor2 Factor3 Factor4 Factor5 Total 

20BWNL1AA 97.78 0.01 0.03 2.15 0.03 100 
20BWNL1BE 86.51 1.6 10.73 0.16 1 100 
20BWNL1DM 4.21 75.43 13.68 0.64 6.03 100 
20BWNL1DZ 35.34 0.5 3.35 14.45 2.63 56.27 
20BWNL1HL 0.11 80.06 1.05 1.46 0.34 83.03 
20BWNL1KU 69.61 24.48 0.49 5 0.42 100 
20BWNL1RA 80.87 0.1 0.74 1.08 4.45 87.24 
20BWNL1SN 65.59 0.41 1.16 0 1.32 68.48 
20BWNL2AA 69.07 0.64 19.23 4.36 6.71 100 
20BWNL2BE 70.57 2.22 11.1 4.53 0.71 89.13 
20BWNL2DM 50.37 14.24 16.46 1.03 3.13 85.23 
20BWNL2DZ 4.99 2.71 2.01 32.51 15.22 57.43 
20BWNL2HL 66.43 30.63 0.01 2.63 0.3 100 
20BWNL2KU 85.95 0.54 0.01 0.47 0.47 87.43 
20BWNL2RA 85.99 4.31 0.55 2.99 6.17 100 
20BWNL2SN 67.44 10.92 1.82 0.96 1.49 82.63 

 

 
  

Fig. 1. Dendrogram of the dissimilarity matrix 
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Table 3. Genetic Correlation Between Environments 
  

20 AA 20 BE 20DM 20 DZ 20 HL 20 KU 20 RA 20 SN 21 AA 21 BE 21 DM 21 DZ 21 HL 21 KU 21 RA 21 SN 

20AA 
 

               
20BE 0.91 

 
              

20DM 0.22 -0.07 
 

             
20DZ 0.54 0.53 0.06 

 
            

20HL 0.02 -0.05 0.75 -0.03 
 

           
20KU 0.86 0.72 0.61 0.35 0.45 

 
          

20RA 0.90 0.84 0.19 0.45 0.01 0.78 
 

         
20SN 0.81 0.74 0.12 0.52 -0.05 0.63 0.70          
21AA 0.80 0.65 0.32 0.69 0.06 0.64 0.63 0.74 

 
       

21BE 0.79 0.93 -0.12 0.54 -0.05 0.60 0.75 0.66 0.61        
21DM 0.72 0.46 0.68 0.40 0.32 0.78 0.64 0.58 0.73 0.37 

 
     

21DZ 0.32 0.16 0.19 -0.01 0.05 0.36 0.16 0.23 0.24 0.03 0.27      
21HL 0.79 0.70 0.62 0.52 0.54 0.91 0.69 0.63 0.77 0.64 0.76 0.20 

 
   

21KU 0.93 0.84 0.28 0.51 0.09 0.83 0.85 0.74 0.75 0.74 0.71 0.23 0.78    
21RA 0.89 0.85 0.08 0.61 -0.13 0.64 0.87 0.74 0.76 0.80 0.64 -0.01 0.66 0.85 

 
 

21SN 0.80 0.75 -0.05 0.55 -0.26 0.50 0.75 0.69 0.70 0.71 0.53 0.05 0.50 0.74 0.89 
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Fig. 2. Heat map representation of the genetic correlation matrix 
 

Table 4. Variance component results in MET analysis using spatial and FA models 
 
Environments  Mean GYLD Genetic Variance Error Variance 

20BWNL1AA 5.64 3.024 0.294 
20BWNL1BE 2.131 1.327 0.266 
20BWNL1DM 2.77 0.133 0.37 
20BWNL1DZ 1.58 0.013 0.109 
20BWNL1HL 2.541 1.057 0.167 
20BWNL1KU 3.176 0.502 0.213 
20BWNL1RA 1.557 0.299 0.105 
20BWNL1SN 1.768 0.783 0.118 
20BWNL2AA 3.424 0.811 0.122 
20BWNL2BE 1.268 0.801 0.072 
20BWNL2DM 5.16 0.116 0.223 
20BWNL2DZ 2.187 0.127 0.175 
20BWNL2HL 2.4 0.772 0.11 
20BWNL2KU 4.76 1.493 0.186 
20BWNL2RA 3.006 0.848 0.245 
20BWNL2SN 3.411 1.322 0.173 

 
3.2 Variance Components 

 
The genetic variance and error variance for each 
trial from the final fitted Spatial +FA              
models are presented in Table 4. The estimates 
for variance component parameters ranged from 
0.013 to 3.024 for genetic variance and from 
0.072 to 0.37 for error variance. except for five 
trials, all trials had a higher genetic variance for 
yield. This indicated that these testing locations 
had relatively high discriminating power for 
genotypes. Five of the sixteen trials had higher 
genetic variance for yield (20BWNL1AA, 
20BWNL1BE, 20BWNL1HL, 20BWNL2SN, and 
20BWNL2KU). This might be related to much 
greater rainfall levels and dispersion for Asasa, 
Bekoji, and Holeta in 2020, and Kulumsa and 
Sinana in 2021. This also highlighted the need to 

use meteorological data from a certain cropping 
season when proposing the optimal genotype for 
a given cropping season, as well as its wider use 
throughout the country's diverse agroecologies. 
Furthermore, the trials 20BWNL1KU, 
20BWNL1RA, 20BWNL1DM, 20BWNL2DZ, and 
20BWNL2DM were determined to be poor trials 
with little genetic variation, which might be 
related to low rainfall or drought in these 
environments. As a result, while averaging 
across trials for picking better genotypes, we 
excluded the BLUPs from these trials. In general, 
using spatial and FA models to analyze MET 
data improved genotype evolution precision and 
accuracy by capturing non-genetic variation 
associated with agricultural field experiments and 
appropriately exploiting the information stored in 
the MET dataset [25,27]. 
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Table 5. BLUPs for genotype means across cluster 1 (C1) of correlated environments 
 

Genotype 20AA 20BE 20DZ 20KU 20RA 20SN 21AA 21BE 21DM 21HL 21KU 21RA 21SN Mean 

Danda'a 5.36 2.27 1.59 2.96 1.61 1.06 3.04 1.09 4.93 2.12 4.87 3.09 3.47 2.88 
EBW120002 5.60 1.89 1.49 3.92 1.53 1.41 3.31 1.16 5.34 3.36 5.08 2.63 2.35 3.01 
EBW120004 5.19 1.60 1.46 3.49 1.32 1.84 3.05 0.65 5.26 2.69 4.31 2.64 2.27 2.75 
EBW120011 3.97 1.23 1.58 2.75 1.06 1.53 3.14 1.02 5.13 2.38 3.53 2.50 2.36 2.48 
EBW120014 5.38 1.57 1.55 3.23 1.53 1.93 3.49 0.59 5.34 2.49 4.83 3.02 3.10 2.93 
EBW120039 4.31 1.25 1.54 2.43 1.18 1.30 3.37 0.55 4.92 1.74 3.38 2.48 2.90 2.41 
EBW120041 1.93 0.29 1.40 2.20 0.43 0.47 1.74 0.25 4.50 1.40 1.89 0.78 0.73 1.39 
EBW120042 4.05 1.70 1.54 3.21 1.01 1.37 3.13 1.03 4.92 3.05 3.50 1.70 1.44 2.43 
EBW120044 2.50 0.90 1.48 2.21 0.76 0.52 1.65 0.76 4.63 1.41 2.83 1.81 2.19 1.82 
EBW120052 1.25 0.02 1.43 1.36 0.23 0.33 1.54 -0.02 4.29 0.39 1.26 0.87 1.22 1.09 
EBW120053 6.51 2.44 1.59 4.04 1.70 1.47 3.88 1.38 5.51 3.56 5.80 3.21 3.31 3.42 
EBW120054 6.19 2.81 1.59 4.07 1.81 1.29 3.51 1.65 5.32 3.75 5.25 3.08 2.89 3.32 
EBW120056 1.22 0.26 1.41 1.63 0.31 -0.11 0.90 0.21 4.23 0.53 2.12 0.89 1.26 1.14 
EBW120060 4.56 1.20 1.50 3.24 1.35 1.62 2.71 0.71 5.13 2.37 4.43 2.44 3.14 2.65 
EBW120063 5.26 2.09 1.55 2.74 1.49 1.66 3.06 1.33 4.96 1.80 4.32 3.21 3.66 2.86 
EBW172056 3.97 0.98 1.43 2.49 1.29 0.84 2.26 0.27 4.82 1.11 3.03 1.87 1.95 2.02 
EBW172082 5.14 1.52 1.55 2.62 1.45 1.40 3.56 0.93 5.17 1.77 4.05 3.14 4.58 2.84 
EBW172088 8.19 3.72 1.66 4.25 2.57 3.38 4.21 2.63 5.69 3.70 6.65 4.83 5.53 4.39 
EBW172093 8.37 4.09 1.58 4.07 2.85 2.30 3.72 2.89 5.41 2.99 6.14 4.40 4.41 4.09 
EBW172105 7.22 2.58 1.64 3.92 1.85 2.24 4.31 1.35 5.66 3.25 5.90 3.73 3.96 3.66 
EBW172319 5.60 1.33 1.41 3.71 1.65 1.50 2.76 0.47 5.38 2.36 4.74 2.46 3.10 2.81 
EBW172393 3.74 0.46 1.62 2.14 0.93 1.12 3.72 0.29 5.19 1.63 3.62 2.55 3.34 2.33 
EBW172440 6.41 2.83 1.57 3.38 1.72 1.59 3.52 1.96 5.20 2.53 5.58 3.34 3.64 3.33 
EBW172474 7.57 3.93 1.62 4.06 2.22 1.94 3.41 2.39 5.12 3.14 5.67 3.53 4.15 3.75 
EBW172862 7.74 3.76 1.63 3.51 2.55 2.59 4.14 2.57 5.35 2.84 6.50 4.73 6.02 4.15 
EBW172864 7.98 4.54 1.72 3.69 2.00 2.17 4.42 3.62 5.20 3.41 6.72 4.53 4.68 4.21 
EBW172872 5.31 1.97 1.51 3.04 1.43 1.36 2.97 0.95 5.03 1.99 4.36 2.67 2.65 2.71 
EBW172936 6.92 3.26 1.61 3.27 2.15 2.77 3.56 2.07 5.07 2.18 5.34 3.44 4.28 3.53 
EBW172996 2.15 0.17 1.50 1.73 0.84 0.07 2.16 0.28 4.74 1.01 2.04 2.04 2.58 1.64 
EBW173001 6.37 2.09 1.54 3.38 1.70 2.12 3.86 1.05 5.32 2.40 5.57 3.05 4.04 3.27 
EBW173004 3.20 0.75 1.54 1.84 0.79 0.50 3.02 1.15 4.77 1.24 3.86 2.45 2.62 2.13 
EBW173006 2.42 0.22 1.46 1.73 0.68 0.53 2.12 0.18 4.70 0.69 2.61 1.70 1.94 1.61 
EBW173031 6.17 2.73 1.59 3.15 1.90 0.73 3.10 1.54 5.08 2.08 4.95 3.49 4.22 3.13 
EBW173207 5.92 2.34 1.56 3.11 1.75 2.26 3.55 1.19 5.10 2.23 4.68 3.01 3.77 3.11 
EBW173261 3.05 0.47 1.56 1.75 0.74 0.98 3.01 0.30 4.75 0.98 2.67 2.00 3.20 1.96 
EBW173263 4.91 1.26 1.58 2.48 1.25 1.62 3.69 0.67 5.09 1.66 4.43 2.99 4.55 2.78 
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Genotype 20AA 20BE 20DZ 20KU 20RA 20SN 21AA 21BE 21DM 21HL 21KU 21RA 21SN Mean 

EBW173270 5.55 1.78 1.63 3.19 1.33 2.35 3.82 0.96 5.26 2.56 4.79 2.83 3.63 3.05 
EBW173288 6.74 2.44 1.55 4.32 2.03 1.10 3.57 1.42 5.59 3.59 6.04 3.13 3.04 3.43 
EBW173292 7.44 3.24 1.63 4.20 1.93 1.84 4.46 2.14 5.52 3.95 6.34 3.85 4.45 3.92 
EBW173332 5.66 2.80 1.60 2.72 1.92 1.27 3.31 2.31 5.08 2.13 4.63 4.07 4.53 3.23 
EBW173353 8.67 4.61 1.71 4.45 2.59 4.39 4.39 3.82 5.55 4.17 7.39 4.92 4.66 4.72 
EBW173366 5.71 1.95 1.53 4.13 1.74 1.95 3.18 0.97 5.44 3.57 5.09 2.79 3.15 3.17 
EBW173378 5.97 2.89 1.57 3.25 1.62 1.58 3.10 1.86 5.00 2.42 4.87 3.20 3.32 3.13 
EBW173380 6.80 1.89 1.55 4.11 2.09 1.47 3.75 0.80 5.78 3.20 5.50 3.60 3.56 3.39 
EBW174116 7.23 3.55 1.57 3.58 1.79 2.63 3.46 2.16 5.10 2.41 5.54 3.11 3.16 3.48 
EBW174170 2.61 0.70 1.36 1.97 0.78 0.56 1.71 0.33 4.43 0.77 2.13 1.40 1.27 1.54 
EBW174187 4.80 2.03 1.49 2.74 1.15 1.97 2.86 0.99 4.83 1.85 3.96 2.50 2.75 2.61 
EBW174456 4.00 0.94 1.45 2.61 1.11 0.84 2.12 0.33 4.82 1.18 3.98 1.95 2.04 2.11 
EBW182052 7.57 3.56 1.49 3.61 2.24 3.12 3.39 1.93 5.21 2.36 5.81 3.96 5.54 3.83 
EBW182122 4.93 1.45 1.56 2.66 1.47 1.77 3.31 0.84 5.11 1.81 4.02 3.14 4.05 2.78 
EBW182146 5.77 2.75 1.61 2.77 1.82 0.92 2.91 1.84 4.94 1.76 5.18 3.79 3.73 3.06 
EBW192318 6.46 2.56 1.61 3.12 1.77 1.93 3.58 1.51 5.22 2.03 5.46 3.45 3.79 3.27 
EBW192319 6.72 2.92 1.62 3.69 1.75 1.92 4.14 1.94 5.40 3.29 5.59 3.52 3.98 3.58 
EBW192320 6.99 2.23 1.70 3.75 1.73 2.65 5.16 1.21 5.72 3.56 5.73 3.63 3.74 3.68 
EBW192321 6.44 2.33 1.58 3.46 1.57 2.12 4.08 1.30 5.25 2.74 5.39 3.13 3.48 3.30 
EBW192322 6.47 2.25 1.68 3.66 1.73 3.04 4.42 1.51 5.49 3.35 5.50 3.58 3.89 3.58 
EBW192323 6.61 2.85 1.69 3.30 1.69 2.51 4.37 1.72 5.28 2.90 5.57 3.67 4.23 3.57 
EBW192324 5.71 2.17 1.67 2.88 1.37 1.97 4.39 1.74 5.19 2.55 4.75 3.15 3.04 3.12 
EBW192325 5.50 2.24 1.64 2.69 1.29 1.95 3.88 1.56 4.99 2.15 4.73 3.24 3.83 3.05 
EBW192326 5.75 2.23 1.63 2.91 1.56 2.00 3.81 1.25 5.12 2.21 4.37 3.13 3.75 3.06 
EBW192327 6.27 3.06 1.59 2.83 1.62 2.53 3.54 1.87 4.88 1.93 5.03 3.50 4.97 3.36 
EBW192328 6.40 2.45 1.58 3.09 1.67 2.24 3.90 1.18 5.10 2.16 5.00 3.29 4.21 3.25 
EBW192330 6.51 2.52 1.66 3.88 1.78 2.10 4.44 1.43 5.44 3.69 5.29 3.10 3.38 3.48 
EBW192331 6.38 2.70 1.68 3.16 1.41 2.01 4.41 1.45 5.18 2.75 5.38 3.35 4.50 3.41 
EBW192332 6.28 2.14 1.64 3.21 1.51 1.93 4.59 1.27 5.41 2.77 5.33 3.24 4.02 3.33 
EBW192333 5.77 1.98 1.66 3.02 1.48 2.18 4.25 0.99 5.23 2.58 4.95 3.25 3.85 3.17 
EBW192335 4.41 0.94 1.53 2.62 1.28 1.07 3.16 0.34 5.04 1.58 3.83 2.12 2.07 2.31 
EBW192336 5.66 1.50 1.50 3.75 1.30 0.92 3.90 0.46 5.41 3.05 4.25 1.90 1.72 2.72 
EBW192337 5.12 1.06 1.49 3.69 1.15 0.88 3.32 0.52 5.41 2.83 4.00 1.93 2.38 2.60 
EBW192339 3.44 0.52 1.45 2.47 0.83 0.69 2.36 0.10 4.98 1.33 2.87 1.71 1.75 1.88 
EBW192341 5.12 1.75 1.56 3.12 1.25 1.75 3.58 0.95 5.03 2.54 4.38 2.49 2.65 2.78 
EBW192343 8.07 3.84 1.65 3.70 2.61 2.66 4.24 2.49 5.44 2.91 5.88 4.51 5.23 4.09 
EBW192346 9.20 5.07 1.80 4.12 2.51 3.75 5.71 4.25 5.41 4.26 6.87 4.81 5.40 4.86 
EBW192347 9.16 5.13 1.71 4.30 2.39 3.25 5.05 3.85 5.35 4.01 6.65 4.25 5.25 4.64 
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Genotype 20AA 20BE 20DZ 20KU 20RA 20SN 21AA 21BE 21DM 21HL 21KU 21RA 21SN Mean 

EBW192348 6.04 1.39 1.58 3.23 1.28 2.79 4.37 0.67 5.58 2.46 5.05 3.09 4.31 3.22 
EBW192991 6.78 2.18 1.61 3.50 1.96 2.55 4.25 0.96 5.47 2.75 5.76 3.85 4.56 3.55 
EBW192992 6.93 2.73 1.53 3.86 1.97 2.36 3.36 1.37 5.37 2.66 5.46 3.05 3.66 3.41 
ETBW9077 7.78 3.45 1.50 3.44 1.91 3.09 3.43 1.67 5.18 1.87 5.89 3.91 5.06 3.71 
ETBW9080 7.15 2.63 1.71 3.76 1.82 2.99 4.95 1.40 5.57 3.43 5.34 3.47 3.89 3.70 
ETBW9128 4.91 1.72 1.58 2.80 1.33 1.53 3.15 0.70 5.09 2.03 4.41 2.98 3.18 2.72 
ETBW9136 7.48 3.16 1.63 3.83 2.14 2.05 4.14 1.84 5.47 3.11 6.09 4.01 4.46 3.80 
ETBW9396 7.03 3.49 1.64 3.62 1.58 2.44 3.67 2.79 5.12 2.75 5.68 3.09 3.72 3.59 
ETBW9452 5.41 1.60 1.56 3.01 1.10 2.23 3.74 0.67 5.25 2.25 4.91 2.78 2.48 2.85 
ETBW9642 4.80 1.04 1.52 3.22 1.39 0.90 3.28 0.38 5.41 2.47 4.95 2.54 2.38 2.64 
ETBW9647 5.08 1.65 1.54 2.93 1.53 1.04 2.93 0.76 5.06 1.89 4.97 2.91 3.06 2.72 
ETBW9648 1.85 0.18 1.31 2.21 0.43 -0.04 0.86 -0.05 4.47 0.79 3.92 0.54 0.63 1.32 
ETBW9650 5.92 2.34 1.54 3.19 1.86 1.35 3.36 1.31 5.17 2.28 5.14 3.23 3.34 3.08 
ETBW9654 5.25 1.94 1.46 2.94 1.61 1.29 2.35 1.03 4.99 1.52 4.33 2.92 2.89 2.66 

Lemu 4.08 1.46 1.46 3.21 1.27 0.99 2.51 0.71 4.99 2.66 3.66 2.34 2.66 2.46 
Wane 5.62 1.70 1.46 3.28 1.71 2.24 3.03 0.47 5.17 2.02 4.81 2.54 3.08 2.86 
Mean  5.64 2.14 1.56 3.17 1.55 1.75 3.44 1.28 5.16 2.40 4.77 3.00 3.41 3.02 
G. Variance  3.02 1.33 0.01 0.50 0.30 0.78 0.81 0.80 0.12 0.77 1.5 0.85 1.32  
E. Variance 0.29 0.27 0.11 0.21 0.11 0.12 0.12 0.7 0.22 0.11 0.19 0.25 0.17  
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3.3 BLUPs for Genotypes Mean Values 
Across Environments 

 
Best linear unbiased prediction (BLUP) is a 
typical approach for estimating random effects in 
a mixed model that has the feature of least mean 
square error of prediction and can produce a 
more accurate assessment of the underlying 
effects. In a plant breeding environment where 
genotype ranking accuracy is critical for the 
selection of superior genotypes, genotype effects 
are generally fitted as random variables. This is 
especially important in the early phases of 
genotyping trials with a high number of entries. 
The performance of genotypes may be graded 
using BLUP values averaged across correlated 
settings of the first cluster (C1), eliminating C2 
and C3 due to low genetic correlation with the 
other trials and low genetic variation. More than 
55.56% (50) of the 90 genotypes exhibited 
average grain yields of more than 3.02 t/ha, 
according to Table 5. The estimated mean grain 
yield, on the other hand, indicated eight 
candidate genotypes with mean yields of more 
than 4 t/ha: two of these candidate genotypes 
(EBW192346 and EBW192347) are advanced to 
variety verification trials for further testing and 
release as new variety (Table 5).  Furthermore, 
BLUP analysis revealed that 20BWNL1AA trials 
in 2020, 20BWNL2DM trials in 2021, and 
20BWNL2KU trials in 2021 produced high grain 
yields, implying that these sites are the best 
testing locations for distinguishing between bread 
wheat genotypes and the best-suited agro-
ecologies for bread wheat production in general. 

 
4. CONCLUSION  
 
To develop stable and high-yielding genotypes 
where both yield and stability qualities are 
assessed concurrently in addition to low 
genotype by environment interaction, 
researchers are currently focusing on crop 
breeding that combines stability and yield.  High-
yielding genotypes should be chosen in the 
environment.  Both the production of new 
cultivars and the endorsement of newly released 
varieties necessitate a selection from a larger 
range of candidate genotypes, therefore 
evaluating genotypic values is crucial to every 
breeding effort.  Combining MET with spatial and 
FA models improved knowledge of the genetic 
influence and increased the precision and 
accuracy of genotype evolution by allowing the 
breeder to account for the GEI effect. Depending 
on the purpose, this allows for the isolation of the 

genetic influence or a deeper investigation of the 
GEI effect. Using the fitted data, the genotypes 
with the highest potential for future verification 
and release as a variety may be identified. As a 
result, the ETW192346 and ETW192347 
genotypes outperform other genotypes and were 
chosen for variety verification testing. 
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