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ABSTRACT 
 
The finite element method (FEM) is a form of computational analysis that provides approximated 
results with acceptable accuracy. By using the FEM, developing theoretical models capable of 
properly analyzing the effects of the structural behavior under the influence of proposed 
imperfections becomes easier and more economical. Metal columns are elements that, when 
subjected to axial compressive forces, undergo a phenomenon called buckling. This      
phenomenon consists of the loss of stability in the element, causing a displacement in the buckling 
axis of the structure. However, some construction imperfections in the materials cause the     
buckling phenomenon to not have the classic behavior predicted in the studies by Euler.     
Therefore, this study will present a numerical analysis of metal columns in rolled profiles with 
parallel flanges. During the simulations, the variations in physical and geometrical         
imperfections were evaluated with different distribution models. The purpose was to evaluate the 
influence of such imperfections on flexural buckling, comparing the results obtained with numerical 
simulations to those obtained analytically. As indicated by the results of this evaluation, the physical 
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and geometrical imperfections influence buckling in the case of columns with low slenderness ratios, 
significantly decreasing their strength. For higher slenderness ratios, i.e., greater lengths, this effect 
is decreased. 
 

 
Keywords: Buckling; imperfections; residual stress; axial force. 
 

1. INTRODUCTION 
 
Metal columns used in civil construction are 
usually profiles with parallel flanges. These 
profiles are manufactured at high temperatures in 
metallurgical plants; one such manufacturing 
process is known as rolling, a process that is 
responsible for the presence of physical and 
geometrical imperfections. Fig. 1 shows the 
distribution of residual stresses in a rolled profile, 
in this case the value of the residual compressive 
( rc ) stress is taken as 0.3 of the yield stress of 

steel ( yf ). 

 
According to Beck and Dória [1], the 
compressive strength of steel columns depends 
on physical and geometrical properties, such as 
the geometrical cross section, slenderness, 
modulus of elasticity, residual stresses, and 
geometrical imperfections.   
 

1.1 Buckling 
 
The required condition for a structure (beam, 
pillar, etc.) to behave properly during its service 
life is to not reach the so-called limit states, i.e., 
the states in which the structure will stop 
providing its designed functions. There are two 
types of limit states: the ultimate limit state and 
the serviceability limit state. The serviceability 
limit state is related to the economical use and 
the integrity of materials supported by the 
structure, as well as the comfort of users. In turn, 
the ultimate limit state is associated with the 
partial or total collapse of a structure due to the 
depletion of the bearing capacity of the structure.  
 
In metal columns, as observed in Fig. 2, the 
ultimate limit states due to bending are generally 
associated with one of the following factors: the 
total or partial yielding of one or more cross 
sections (formation of plastic hinges), the flange 
local buckling and the web local buckling. As can 
be observed in Fig. 2 for long columns, which 
have a high slenderness index (  ), buckling 
occurs in the elastic phase, where the observed 
stresses are lower than the yield stress of steel   

( e ). For columns of intermediate length, 

slenderness upper to slenderness of 
plastification ( lim ) and less than slenderness of 

elastic buckling ( n ), buckling occurs in the 

inelastic phase where some regions of 
plastification can be observed, because tensions 
higher than the yield stress of steel are observed. 
Finally, it is observed that for short columns, 
slenderness downward the plastification limit       
( lim ), the ultimate strength is given by the steel's 

own plastification stress ( p ), with no buckling 

occurring, but the total plastification of the 
section. Theoretically, when an axial load P  is 
increased until the occurrence of failure by 
fracture or yielding, i.e., when the critical load crP

is reached, the column is at the limit of its 
stability. Therefore, if a small lateral force F  is 
removed, the column will remain at the flexed 
position. Any reduction in P to a value lower than 

crP  causes the column to remain straight, and 

any increase in P  higher than crP  causes a 

greater lateral deflection, fact that characterizes 
the phenomenon of buckling. The ability of the 
column to restore itself is based on its flexural 
strength. 
 

1.2 Physical and Geometrical 
Imperfections 

 
According Wang, Li and Chen [3] the physical 
imperfections, i.e., the residual stresses, appear 
in structural profiles and steel plates during the 
manufacturing process and will inevitably remain 
there unless stress relief techniques are used. 
During the non-uniform cooling, after rolling or 
welding the part, plastic deformations and 
therefore residual stresses occur, which in some 
cases could reach the same magnitude of the 
material’s yield strength. The residual stresses 
have an important role in the design of the steel 
pillars. Because they are the main cause for the 
nonlinearity of the stress-strain diagram in the 
inelastic region, according to Alpsten and Tall [4], 
they significantly affect the compressive  
strength.  
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Fig. 1. Rolled profile (I-beam) with residual stresses – Ref. [1] 
 

 
 

Fig. 2. Buckling intervals in metal columns – Adapted from Ref. [2] 
 
The residual stresses represent a state of self-
equilibrating internal stresses in the steel   
profiles as a result of the industrial production 
processes. They occur in bodies that undergo 
non-uniform plastic deformations. If no external 
forces oppose them, residual stresses will always 
be elastic. The non-homogeneous deformation 
condition, which creates the residual stresses    
in the steel sections, is due to the thermal 
(rolling, welding and flame cutting) and 
mechanical industrial processes (cold rolling and 
straightening).  

In hot-rolled profiles, the residual stress 
formation process causes the extremities of the 
flanges and the center section of the web to be 
compressed, whereas the joints between the 
web and the flange are in tension due to the slow 
cooling. For profiles welded with universal mill 
plates, the weld that joins the flanges to the web 
induces residual compressive stresses on the 
extremities of the flanges, expanding the region 
of residual compressive stresses and adversely 
affecting the strength of pillars compared to 
pillars composed of hot-rolled profiles. In the 
profiles welded with flame-cut plates, the cut 
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introduces tensile stresses in the edges of the 
plates due to the heat, which has a favorable 
effect on the compressive strength (Bjorhovde & 
Tall [5]; Mc Falls & Tall [6]; ECCS [7], Szalai & 
Papp [8], Spoorenberg, Snijder and 
Hoenderkamp [9]).   
 
The technical literature has adopted simplified 
forms of the parabolic or linear distributions for 
the residual stress variations of rolled and 
welded profiles. Many authors (Kanchanalai [10]; 
Chen & Toma [11]; Chen et al.; Kim & Chen [12, 
13], among others) use the linear distribution in 
the flanges and the constant distribution in the 
web in analysis models that consider the residual 
stresses. Nevertheless, for profiles with long 
webs, the stress variations along the web should 
also be considered. Hence, a good 
approximation would be to consider parabolic or 
linear distributions for both the flanges and the 
web.   
 
The functioning of structures composed of rolled, 
welded or cut steel profiles, such as metal pillars, 
primarily depends on the residual stresses that 
they present.   
 
In turn, the presence of geometrical 
imperfections in the columns, such as the initial 
curvature, transforms the buckling problem into a 
load-displacement problem, which opposes the 
problem of bifurcation of the equilibrium. 
According to Galambos [14,15], the real 
configuration of the initial curvature of a pillar 
may vary a lot and can present simple, double, or 
reverse curvatures or even curvatures in the two 
primary directions of the profile cross section 
(ECCS [7]). Additionally, the amplitude of the 
initial imperfections could vary widely along the 
pillar. 
 
Therefore, the objective is to evaluate the effects 
of these imperfections during the buckling 
process of the columns constituted by H-shaped 
profiles. Through the variation of the physical and 
geometric imperfection models, the critical 
situation is determined, that is, the provides the 
least resistance. The numerical analysis results 
are also compared with the Euler proposal and 
ABNT NBR 8,800: 2008 [16]. 
 
2. CALCULATION METHODS 
 
The Brazilian norm of reference ABNT NBR 
8,800:2008 [16] (Design and Execution of Steel 
structures in Buildings – Limit States Method) 

establishes a method for calculating the axial 
resistance force, found in item 5.3.2 of the norm. 
 
The design axial compressive strength of a 
structure, ,c RdN , which is associated with the 

ultimate limit states of instability by bending, 
torsion or flexural-torsion and local buckling, 
should be determined by Eq. (1): 
 

g y

C,Rd

a1

QA f
N




                                    (1) 

 
where:  
  is the reduction factor associated with the 

compressive strength;   

Q  is the total reduction factor associated with 

local buckling;  

yf  is the yield stress of the steel; 

gA  is the gross cross section area of the beam; 

and 

1a  is the weighted strength coefficient.   

 
For the calculation according to ABNT NBR 
8,800: 
 

 ASTM A572 Steel, 34.5 / ²yf kN cm , the 

ultimate tension of the steel is 
45.0 / ²uf kN cm ; and 

 I-beam with double-symmetric cross 
sections. 
 

According to table F-1 of annex F from ABNT 
NBR 8,800:2008 [15], the I-beam web belongs to 
group AA 2 because the web is the supported-
supported element of section I. The flanges 
belong to group AL 4 because they fit the profile 
of the group of supported-free elements of 
section I. Therefore, the total reduction factor 
associated with the local buckling will be given by 
Eq. (2): 
 

a sQ Q Q                                            (2) 
 
where: 

aQ  and 
sQ are reduction factors that take 

into account the local buckling of the elements  
 
However, because in both the web and the 
flange the width/thickness (b/t) ratio is smaller 
than lim/b t , the reduction factor will be given by 

Eq. (3): 
 

Q 1                                                 (3) 
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According to annex E of ABNT NBR 8,800:2008 
[15], for double-symmetric cross sections, such 
as that of I-beams, the elastic axial buckling 
stress ( eN ) is given by Eq. (4): 

 
2

y

ey 2
y y

EI
N

(k L )


                                     (4) 

 

where:  
E  is the elasticity modulus of steel; 

yI  is the moment of inertia about the y-axis; 

yk is the coefficient of the buckling length; and 

yL  is the buckling length in the y-direction. 

 
After performing the calculations above, the 
value of the reduction coefficient associated with 
the compressive strength (  ) is determine by 

Eqs. (5) and (6): 
 

0 1.5   so 
2

00.658                       (5) 

 

0 1.5   so 
2

0

0.877



                         (6) 

 
Where ( 0 ) is given by Eq. (7): 

 

g y

0

e

QA f

N
                                        (7) 

 
Hence, the design axial resistance force can be 
calculated ( ,c RdN ) 

3. NUMERICAL ANALYSIS 
 
The numerical analyzes were developed with the 
ABAQUS 6.12 Software [17], which uses the 
Finite Element Method (FEM). For the 
discretization of the numerical model, shell 
elements of type S4R with a width of 20 mm 
were used. Four nodes, six degrees of freedom 
per node and reduced integration characterize 
this element. This reduced integration is 
responsible for an increase in the quality of the 
results in relation to the displacements and the 
reduction in the time of analysis. The Fig. 3 
shows the element used and the discretized 
model. 
 
Initially, elastic buckling analyses were 
performed using the buckling calculation model, 
a procedure for linear perturbation analysis of 
eigenvalues and eigenvectors, where the first 
eigenvalue, the elastic buckling load factor and 
its respective eigenvector determine the 
deformation. Then, in the post-buckling analysis 
for the application of the physical and 
geometrical imperfections, the Static Riks 
calculation method was applied, which is 
generally used to prevent structural collapse   
and is extensively used in nonlinear physical         
and geometrical analyses. This calculation 
method applies the eigenvalue of the        
buckling analysis  to provide complete 
information on the structural collapse. 
Additionally, it is especially used to increase the 
rate of convergence of the method due to 
instability issues.   

 

 
 

Fig. 3. Representation of the S4R element and the discretized model 
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The metal columns were simulated with the HP 
250x85 profile, GERDAU AÇOMINAS standard, 
with boundary conditions of a pinned-pinned 
pillar. Therefore, the buckling length ( bL ) is equal 

to the actual length, with slenderness ratios of 
20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 215 
and 225. The selected ASTM A36 steel, grade 
50, has a modulus of elasticity of 

20,000 / ²E kN cm and a yield stress of 

 34.5 / ²yf kN cm . The value for the maximum 

residual compressive stress was adopted 
according to ABNT NBR 8,800:2008 [15]. The 
load was gradually increased from 0.5% up to 
the normal yield strength for the cross section in 
the centered compression of the beam, 

3,581.93y yP Af kN  , where A  represents the 

total cross-sectional area of the column and yf  

the yield stress of the steel. This load was 
distributed along the entire beam cross section in 
the z-direction to avoid yielding problems in the 
location where the load is applied. 
 
To perform the simulation of the models under 
the influence of geometrical imperfections (initial 
curvature), the following geometrical imperfection 
values were used: / 300L , / 500L , / 750L , 

/ 1,000L , / 1,500L , / 2,000L and / 4,000L , 

where L represents the unlocked length of the 
column. For the physical imperfections, five 
models were used, as shown in Table 1.  
 

4. RESULTS 
 
The analyses were performed with the initial 
considerations of physical and geometrical 
imperfections separately. In the first case, 
simulations of the physical imperfections were 
performed by varying the models according to 
Table 1, as shown in Fig. 4. Then, the 
simulations of the models of geometrical 
imperfections were performed, as previously 
presented and the results are shown in Fig. 5. 
Finally, the imperfections were combined, 
generating a model with both physical and 
geometrical imperfections, therefore Fig. 6 
presents the results for the columns analyzed 
with the combination of the five residual stress 
models presented in Table 1 with a geometric 

imperfection of / 1,000L . This value of geometric 

imperfection was adopted because it is the 
maximum tolerated value in structural profiles 
(Kala and Valeš [18], Bjorhovde [19]). 

 

 
 

Fig. 4.   versus /cr yP P  curves for different models of physical imperfections 

 



 
 
 
 

Rossi et al.; CJAST, 24(6): 1-11, 2017; Article no.CJAST.38210 
 
 

 
7 
 

 
 

Fig. 5.   versus /cr yP P curves for different models of geometrical imperfections 

 

 
 

Fig. 6.   versus /cr yP P curves for different models of physical and geometrical imperfections 

with a geometrical imperfection of L/1,000 



Table 1.

Setup Distribution
Flange 

 
 

 

Constant 

 

 
 

Linear 

 

 
 

Linear 

 

 
 

Linear 

 

 
 

Linear 

 

Therefore, the following results relate the
between the critical buckling load (

yield load of the section ( yP ) to the different 

slenderness ratios of the column, which has the 
HP250x85 profile as the geometrical section. 
This profile was selected because HP profiles 
are the most commonly used profile for metal 
columns. In the Fig. 4, 5 e 6 are presented the 
results of the analysis of the columns constituted 
by the profile HP250x85. 
 
The results presented in Figs. 4, 5 and 6 show 
that the buckling curves obtained in the 
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Table 1. Models of physical imperfections 
 

Distribution Residual tensile stress (σrt) 
Web 
Without 

rt rc    

Without 
rt rc    

Constant 
f f

rt rc

f f w w

t b

t b t d
 


 

Onde: 2w fd d t   

Linear 
rt rc    

Constant 2

4 3
f f

rt rc

f f w w

t b

t b t d
 


 

Therefore, the following results relate the ratio 
between the critical buckling load ( crP ) and the 

) to the different 

slenderness ratios of the column, which has the 
HP250x85 profile as the geometrical section. 

was selected because HP profiles 
are the most commonly used profile for metal 
columns. In the Fig. 4, 5 e 6 are presented the 
results of the analysis of the columns constituted 

4, 5 and 6 show 
that the buckling curves obtained in the 

numerical analyzes under the application of 
imperfections presented a considerable 
difference when compared with the Euler curve 
for values of slenderness less than 75. This 
difference was due to the
plastification of the geometric section occurs for 
values of slenderness less than 75 for the 
numerical analyzes carried out, where the 
critical load is still much lower than the 
plastification load, due to the effect of the 
physical and geometrical imperfections, a 
situation that is not observed in the buckling 
curve of Euler. 
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Model 

1 

2 

3 

4 

5 

numerical analyzes under the application of 
imperfections presented a considerable 
difference when compared with the Euler curve 
for values of slenderness less than 75. This 
difference was due to the fact that     
plastification of the geometric section occurs for 
values of slenderness less than 75 for the 
numerical analyzes carried out, where the  
critical load is still much lower than the 
plastification load, due to the effect of the 

ometrical imperfections, a 
situation that is not observed in the buckling 
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Fig. 7. Difference between models 3 and 5 of physical imperfections for profile HP250x85 
 

 
 

Fig. 8. Difference between the model with the combination of imperfections and ABNT  
NBR 8,800:2008 
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5. CONCLUSION 
 
According to the results from the analyses of a 
HP250x85 beam, the variation in the buckling 
load was small for the different models of 
physical imperfections, i.e., regardless of the 
distribution of the residual stresses in the metal 
profiles, the results were similar. This can be 
observed in the Fig. 7, which shows the 
difference between the residual stress models 
that presented the largest variation in profile 
HP250x85. 
 
It was also observed that the ABNT NBR 
8,800:2008 [16] calculation method is 
conservative in relation to the physical 
imperfections, and for all of the studied models, 
the results exhibited higher values than those 
obtained by the calculations according to this 
standard.    
 
The results of the models only containing the 
geometrical imperfections presented a large 
variation, i.e., the geometrical imperfection is a 
more determinant factor in the reduction of the 
buckling load, and for lower values, the reduction 
is much more significant. The ABNT NBR 
8,800:2008 [16] calculation method proved to be 
conservative in relation to most of the models. 
Additionally, it was possible to conclude that the 
standard loses its effectiveness for geometrical 
imperfection values larger than L/500. 
 
In turn, when the physical and geometrical 
imperfections are combined, there is a 
concerning result in relation to the calculation 
model provided by ABNT NBR 8,800:2008. In 
contrast to the elastic buckling phase, where all 
imperfection models – combined or not – were 
superior to the norm, i.e., where the norm is 
conservative, the norm did not have the same 
behavior in the inelastic and plastic buckling 
phases. For all combined models of physical and 
geometrical imperfections, the norm proved to be 
deficient, where the values found for the buckling 
load were lower than that calculated according to 
the norm. This can be observed in the Fig.8 for 
the most critical model observed in profile HP 
250x85: the combination of the physical 
imperfection model 1 and a geometrical 
imperfection of L/1,000. 
 
Therefore, it is concluded that the combination of 
the physical and geometrical imperfections 
should be an important factor to consider in 
structural calculations, especially when the 
structure is designed in the inelastic or plastic 

buckling phase because, as observed in Fig. 8 
for profile HP 250x85, for lengths smaller than 
7.4 m, the resistance value is lower than that 
calculated with ABNT NBR 8,800:2008. 
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