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Abstract 
Titanium dioxide (TiO2) doped with neodymium (Nd) and/or Gadolinium 
(Gd) rare-earth elements were fabricated into nanotubes via the hydrother-
mal method in a KOH solution and in-situ doping. Titanium dioxide nano-
tubes (TNTs) and in-situ Nd-doped and/or Gd-doped TNTs were characte-
rized with transmission and scanning electron microscopy, energy-dispersive 
X-ray analysis, X-ray diffraction, Raman spectroscopy, and Fourier-transform 
infrared spectroscopy. Morphologies indicated a network of aggregated na-
notubes. The phase and composition analyses revealed that the lanthanide 
TNTs had anatase phases with Nd and/or Gd nanoparticles in the TNT lat-
tice. The nanoparticles were uniformly deposited on the surface because of 
hydroxyl groups on the TNT surfaces, resulting in a very high loading densi-
ty. The outer diameter and the length of the TNTs increased with doping. The 
mechanisms for the formation of multiwall TNTs are discussed. 
 

Keywords 
TiO2 Nanotube, Lanthanide Doped, Hydrothermal, XRD, TEM, Raman  
Spectroscopy 

 

1. Introduction 

In the effort to improve the performance of fuel cells, dye-sensitized solar cells 
[1], photocatalysis [2] [3], and solar driven processes [4], the fabrication and elec-
trocatalytic properties [5] [6] of metals deposited on nanomaterials have been 
intensely investigated. Nanoscale materials derived from titanium oxide (TiO2) 
have been extensively investigated for various applications, including solar-cells 
and batteries [7] [8], hydrogen generation [9] [10] [11], drug delivery [12] [13], 
photolysis [14] [15], and electrocatalysis [16] [17]. Titanium nanotubes (TNT) 
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can be fabricated via the template-free hydrothermal method, which is simple, 
cost-effective, and environmentally friendly [18]. Furthermore, TiO2 is a low-cost 
abundant resource known for its long-term stability, non-toxicity, and resistance 
to photo-corrosion. 

Lanthanide ions have a special 4fx5dy electronic structure that enables them to 
form complexes with various compounds, such as TiO2, that can donate a pair of 
nonbonding electrons. Incorporation of lanthanide ions in a TiO2 matrix could 
concentrate organic pollutants on the surface and thus enhance electrocatalytic 
and/or photocatalytic activity [19] [20] [21] [22]. The specific surface area of the 
nanoscale catalyst and its particle size are very important parameters that strongly 
affect its catalytic activity. 

In recent years, researchers used many Lanthanide elements to modify the 
TiO2 nanostructure (such as La, Pr, Nd, Eu, Gd, Tb, Ho, Er and Yb) by differ-
ent method to improve its photocatalytic and others applications [20]-[31]. In 
particular, Lanthanide elements (such as La, Eu, Gd and Ce) doped TNTs were 
prepared by hydrothermal method using NaOH to improve its photocatalytic 
and photoelectrocatalytic activity for oxidation of organic dye and organic 
compounds [20] [23] [29] [31]. Doping methods include wetness impregna-
tion method [20], electrochemical anodization [21] [22] [27] [30], precipita-
tion methods [24], sol-gel method [19] [25], hydrothermal treatment [26], wet-
ness impregnation method [20], ultrasonic hydrothermal [29], ion exchange 
[31].  

Here, the hydrothermal method for TNT syntheses and an in-situ doping 
strategy was used to incorporate Nd and/or Gd nanoparticles in TNT scaffolds. 
The effects of these lanthanides on the structural, textural, and morphological 
properties of TiO2 nanomaterials obtained after calcination of hydrogen titanate 
nanotubes were investigated. The synthesized TNT, Nd and/or Gd-TNT show 
different applications, such as great performance of electro-oxidation of hydra-
zine by electrosensory [32] and determination of pharmaceutical compound as 
Alendronate sodium [33].  

2. Experimental  

2.1. Synthesis of TNTs 

TiO2 powder [P25, (99.5%, 21 nm)] and potassium hydroxide (KOH) were pur-
chased from Sigma-Aldrich, USA. HCl for acid washing was purchased from 
S.D. Fine Chemicals, India. TNTs were synthesized via the hydrothermal me-
thod, where a mixture of 0.5 g of TiO2 powder was dispersed in 30 mL of con-
centrated aqueous KOH solution. The mixture was stirred for 30 min and then 
transferred into a Teflon-lined stainless-steel autoclave, where the hydrothermal 
treatment was performed for 24 h at 150˚C [34]. The precipitate was collected 
and washed with deionized water and dilute HCl until the pH was 6.5. The TNTs 
were then dried for 10 h at 90˚C, followed by annealing at 400˚C for 2 h. In the 
case of doping, the molar ratio of titanium/dopant was 20:1 when Nd(NO3)3 
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and/or Gd(NO3)3 were added to the TiO2 in the KOH solution. The hydrother-
mal and post-synthetic treatments were then performed as described above for 
the un-doped TNTs. 

The samples were accordingly labelled TNTs, Nd-TNTs, Gd-TNTs, and 
Nd-Gd-TNTs. Finally, the TNTs became a white powder after drying and grind-
ing. They were characterized with respect to surface morphology and crystallo-
graphic structure. 

2.2. Apparatus 

2.2.1. Morphology and Compound Composition 
The morphological characterization of un-doped TNTs and doped TNTs prepped 
by hydrothermal method was achieved using Transmission Electron Microscope 
(TEM, JEOL JEM 1400, Japan) at 110 kV. The samples were prepared by drop-
ping the ethanol solution of TNTs and Nd-TNTs, Gd-TNTs and Nd-Gd-TNTs 
catalysts on the Cu coating by carbon grids. The scanning electron microscopy 
(SEM) images were taken at different magnifications, without coating with con-
ductive material, by (SEM, Super scan SS-550, Shimadzu, Japan). EDX was used 
to characterize the distribution of elements in un-doped TNTs and doped-TNTs 
synthesis by both hydrothermal using (EDX, Superscan SS-550, Shimadzu, Ja-
pan).  

2.2.2. Crystalline Phase 
Crystalline phases were acquired via X-ray diffraction (XRD, Shimadzu, XRD-7000, 
Japan) at 40 kV and 30 mA, using a Cu Kα incident beam (0.154 nm). The TNT 
molecular structures were characterized with Fourier-transform infrared spec-
troscopy (FT-IR, Thermo Fisher Scientific Inc., Madison, WI, USA) over the range 
400 - 4000 cm−1. Raman spectroscopy was performed with 532-nm excitation on a 
Raman microscope (Sentrarra, Bruker, USA) coupled to a Leica microscope (Olym-
pus BX series, USA). The spectra were analyzed over the range 50 - 1200 cm−1, 
with Rayleigh rejection via a 532 nm.  

2.2.3. Surface Area and Porosity  
Brunauer-Emmett-Teller specific surface areas (SBET) of the TNTs were deter-
mined by a multipoint method using adsorption data for a relative pressure of 
0.1515 (Micromeritics analyzer, Gemini VII, 2390 Surface Area and Porosity, 
USA).  

3. Results and Discussion 
3.1. Nanotube Morphologies  

In Figure 1(a), a spherical shape was observed for the P25 TiO2 powder. The 
un-doped TNTs samples calcined at 400˚C (Figure 1(b)) were aggregated thread 
networks. Figures 1(c)-(e) are SEM images of in situ lanthanide-doped TNTs 
calcined at 400˚C. These nanotubes were heavily aggregated.  
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Figure 1. SEM images of ((a), (b), (c), (d)) P25 TiO2 Powder, undoped TNTs, Nd-TNTs, 
Gd-TNTs, and Nd-Gd-TNTs; ((a'), (b'), (c'), (d')) EDX of undoped TNTs, Nd-TNTs, 
Gd-TNTs, and Nd-Gd-TNTs respectively. 

 
The approximate compositions of P25 and the un-doped and doped TNTs were 

calculated from EDX spectra (Figures 1(a')-(e')). Uniform distributions of Nd and 
Gd nanoparticles were observed in the TNT lattice. As shown in Table 1, the EDX 
patterns had nearly 3.37% Nd loading in the Nd-TNTs, 2.92% Gd loading in the 
Gd-TNTs, and 9.42% Nd and 3.48% Gd loading in the Nd-Gd TNTs. 

Figure 2(a) displays a TEM image of un-doped TNTs that were aggregated and 
formed a large composite fiber-like structure, in agreement with the SEM images. 
The nanotubes were uniform and hollow, with multiwall sheets. The outer diame-
ters were 6.5 - 10.6 nm, and the lengths were 51 nm. The open-ended fiber-like 
structures of uniform, multiwall, straight tubes are shown in Figures 2(b)-(d). 
The well-dispersed Nd and/or Gd oxide nanoparticles in the TNT lattice also can 
be seen. The outer diameter of the Nd-TNT multi-layered sheets was in the 
range of 5.7 - 8 nm, that for the Gd-TNTs was in the range of 6.1 - 14.2 nm, and 
that for the Nd-Gd-TNTs was in range of 9.4 nm - 14.2 nm. 

The mechanisms for multiwall TNT formation by hydrothermal treatment 
could be understood as follows. When the Ti precursors were mixed with the 
concentrated aqueous KOH at high temperature and pressure, Ti-O-K bonds 
formed on the TiO2 surface instead of “Ti-O-Ti” bonds because of the concen-
trated KOH [35]. These salts formed nanosheets by: 
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Table 1. EDX analysis of P25 TiO2, undoped TNTs, Lanthanides-doped TNTs. 

Spectrum Label O% Ti% Nd% Gd% Total 

P25 TiO2 46.56 53.44 --- --- 100.00 

Undoped TNTs 49.07 50.93 --- --- 100.00 

Nd-TNTs 40.97 55.66 3.37 --- 100.00 

Gd-TNTs 53.55 43.53 --- 2.92 100.00 

Nd-Gd-TNTs 41.72 45.38 9.42 3.48 100.00 

 

 
(a)                                  (b) 

 
(c)                                  (d) 

Figure 2. TEM images of (a) undoped TNTs, (b) Nd-TNTs, (c) Gd-TNTs, and (d) 
Nd-Gd-TNTs. 

 

( ) 2Ti-O-Ti 2KOH 2 Ti-O ,K H O− ++ → +                 (1) 

Then, when the samples were treated with deionized water, the Ti-O-K  
bonds in the ( )2 2 1K Ti On n+  multilayer crystal gradually converted into Ti-OH 
bonds in sheets of hydroxyl titanate ( )2 2 1H Ti On n+ . After the sample was treated 
by dilute acid, Ti-O-Ti  bonds [36] or Ti-O-H O-Ti�  hydrogen bonds were 
generated according to: 

( )Ti-O ,K H Ti-OH K− + + ++ → +                    (2) 
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These bonds significantly decreased the Ti-O length, thus leading to the fold-
ing of the sheets into a multiwall tube structure, as shown in Figure 3.  

3.2. Crystalline Phase Characterization  

The crystal phases of P25 TiO2 and un-doped and doped TNTs are shown in 
Figure 4. The XRD patterns in Figure 4(e) for P25 TiO2 indicated anatase phase 
planes with main peaks located at 25.3˚, 37.8˚, 48.0˚, and 55.1˚, respectively cor-
responding to the (101), (004), (200), and (211) planes, in good convention with 
the standard spectrum [Joint Committee on Powder Diffraction Standards 
(JCPDS), card no.: 21-1272] [37]. The XRD patterns of un-doped TNTs are 
shown in Figure 4(a), where diffraction peaks were observed at 24.90˚, 48.10˚, 
and 55.91˚, corresponding to the (101), (200), and (211) crystal planes of anatase 
TiO2, respectively. These data suggested an anatase phase of TiO2 (JCPDS, card 
no.: (00-021-1272). However, these XRD patterns were typical of layered mate-
rials, suggesting that the TNTs were multi-walled [38]. The diffraction peak with 
a low 2θ value of 11.5˚ (020) corresponded to the TNT interlayer distance. An 
intense peak at 2θ = 48.10˚ was due to the edge-sharing TiO6 octahedral [18]. 

The diffraction planes of anatase in Figure 4(b) were sharp, indicating good 
crystallization of Nd-TNTs, and the other four peaks had the same positions of 
22.70˚, 32.45˚, 46.65˚, and 57.28˚ assigned to (002), (200), (220), and (132) ref-
lections, indicating well-embedded incorporation of Nd ions in the TiO2 lattice 
as NdTiO3 (JCPDS, card no.: (00-029-0922). Meanwhile, in Figure 4(c), there 
were characteristic peaks of Gd observed at 29.28˚, 31.64˚, 47.89˚, and 58.72˚ as-
signed to (201), (040), (341), and (611) planes, respectively, indicating Gd ions 
in the form of Gd2TiO5 (JCPDS, card no.: (00-021-0342). The XRD patterns rec-
orded for co-doped Nd-Gd-TNTs are shown in Figure 4(d). They revealed ana-
tase phases, with new peaks for Nd and/or Gd. 

 

 

Figure 3. Hydroxyl titanate nanosheets ( 2 2 1H Ti On n+ ), (a) mechanism for breaking of 

( )2 2 4 2
Na Ti O OH , (b) rolling up the nanosheet to nanotubes. 

(a)
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Figure 4. XRD image of (a) P25 TiO2, (b) undoped TNTs, (c) Nd-TNTs, (d) Gd-TNTs, 
and (e) Nd-Gd-TNTs. 

 
The occasional absence of sharp peaks corresponding to Nd and/or Gd in the 

XRD patterns could be attributed to small or highly dispersed concentrations 
below the detection limit, or they were located inside the TiO2 lattice (i.e., TNT 
doping) [39]. 

Grain sizes of the P25 TiO2 and the un-doped and doped TNT powders were 
calculated using the Scherrer equation. The crystalline sizes are shown in Table 
2, where there was a slight change when Nd and/or Gd were incorporated.  

The slight expansion of the TiO2 crystal volume after lanthanide modification 
suggested that the Nd and Gd oxide were located at the crystal boundaries rather 
than inside the TiO2 unit cell [38] [39]. For the Nd-Gd-TNTs, the crystallite size 
was reduced from 7.06 nm to 6.35 nm. Zhang et al. [40] and Meksi et al. [20] ex-
plained this decrease of the TiO2 anatase phase in terms of dopant cations lo-
cated at the grain boundary hindering grain growth.  

3.3. BET Surface Area 

The BET surface area in Table 2 of un-doped TNTs was 160 m2/g, which in-
creased to 175 m2/g for (20:1) for Nd-loading, 207 m2/g for (20:1) Gd-loading, 
and 231 m2/g (20:1) for Nd-Gd-loading. The massive increases compared to P25 
were attributed to the tubular form of the TNTs [41]. The doped TNTs had a 
larger mesoporous volume than that of the undoped TNTs, while no change was 
observed in pore size. The larger mesoporous volume of all rare-earth-loaded 
TNTs samples has been attributed to the enhanced mesoporosity [40].  

3.4. Resonance Raman Spectra  

A Raman spectrum of un-doped TNTs is shown in Figure 5. The peaks observed 
in Table 3 at 143 cm−1 (E1g), 198 cm−1 (E2g), 394 cm−1 (B1g), and 638 cm−1 (E3g) 
were attributed to anatase TiO2, in agreement with previous studies [42] [43] 
[44]. The strongest E1g mode at 143 cm−1, attributed to the external vibration of 
the anatase structure, was well resolved and indicated that the anatase phase was 
formed in the nanotube [45]. This was in good agreement with the XRD data and 
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previous work. The Eg peak was attributed mainly to the symmetric stretching vi-
bration of O-Ti-O linkages in TiO2, the symmetric bending vibration of O-Ti-O 
was confirmed by B1g, and the A1g peak was associated with the antisymmetric 
bending vibration of the O-Ti-O linkage [33]. The same strong peaks observed in 
Figures 5(b)-(d) for the doped TNTs had anatase characteristics, indicating that 
Nd and Gd may be introduced into the lattice or interstitial sites of TiO2.  

 
Table 2. Particle sizes, BET surface area, pore volume and pore size of synthesis TNTs 

Sample 
Average  

Crystalline  
Size (nm) 

BET Specific 
Surface Area, 

SBET (m2/g) 

Pore  
Volume 
(cm3·g−1) 

Pore 
Size 
(˚A) 

P25 TiO2 7.31 58.90 0.047 16.9 
Undoped TNTs 7.06 160 0.064 16.05 

Nd-TNTs (Ti:Nd = 20:1) 7.93 175 0.068 16.07 
Gd-TNTs (Ti:Gd = 20:1) 7.91 207 0.083 16.06 

Nd-Gd-TNTs (Ti:Nd + Gd = 20:1) 6.35 231 0.073 16.11 
 

 
(A) 

 
(B) 

Figure 5. Raman spectra of (a) undoped TNTs, (b) Nd-TNTs, (c) Gd-TNTs, and (d) 
Nd-Gd-TNTs. 
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Table 3. Raman shift of vibration mode for different catalyst supports. 

Raman  
shift (cm−1) 

Vibration Ref. 

143 symmetric stretching vibration of O-Ti-O in anatase form [45] 

198 symmetric stretching vibration of Ti-O-Ti in anatase form [43] [46] 

278 symmetric stretching vibration of Ti-O-K bonds [50]  

394 symmetric binding vibration of Ti-O-Ti in anatase form [42] 

448 symmetric stretching vibration of Ti-O-Ti crystal phonons [46] 

638 symmetric stretching vibration of Ti-O-Ti crystal phonons [46] 

704 symmetric stretching vibration of covalent Ti-O-H bonds [46] 

820 symmetric stretching vibration of covalent Ti-O-H bonds [47] 

920 surface Ti-O-K vibrations [47] 

 

 

Figure 6. FT-IR spectroscopy of (a) TNTs, (b) Nd-TNTs, (c) Gd-TNTs, and 
(d) Nd-Gd -TNTs. 

 
The band at 278 cm−1 was assigned to the stretching vibration of Ti-O-K bonds 

[45], while the bands at 198 cm−1 and 394 cm−1 corresponded to anatase Ti-O-Ti 
[43]. The bands at 448 cm−1 were related to Ti-O-Ti crystal phonons [46]. The 
bands at 704 cm−1 and 820 cm−1 corresponded to covalent Ti-O-H bonds, and the 
band at 920 cm−1 was assigned to surface Ti-O-K vibrations [47] (Table 3).  

3.5. Fourier-Transform Infrared Spectra 

In FT-IR spectra of TNTs (Figure 6), three absorption bands cantered at 3432.53 
cm−1, 1627.87 cm−1, and 955.87 cm−1 were assigned to stretching vibrations of 
OH groups, and bending vibrations of H-O-H and Ti-O bonds, respectively 
[48]. The strong intensity of the hydroxyl groups at 3432.53 cm−1 indicated a 
large concentration on the un-doped TNT surface. This helped conjunction and 

https://doi.org/10.4236/ojpc.2023.132002


K. M. Emran, H. E. Alanazi 
 

 

DOI: 10.4236/ojpc.2023.132002 24 Open Journal of Physical Chemistry 
 

dispersion of the metal particles on the TNT walls [49] [50] [51] [52], and also 
captured photoexcited electrons and holes to produce reactive oxygen species for 
photocatalysis of organic wastewater. The peaks at 1627.87 cm−1 and 1349.52 
cm−1 corresponded to undoped TNTs [50]. The unchanged intensity of the 3432.53 
cm−1 band may have been due to the interactions of doped Nd and Gd in the 
TiO2 lattice that did not replace -OH groups on the oxide surface. Moreover, the 
band at 446 ± 4 cm−1 corresponded to the asymmetric vibration of M-Ti-O (M = 
K, Nd, Gd) groups inside the lattice [27]. In all cases, the FT-IR spectra kept 
their general features, which confirmed that the metals and the TNTs had strong 
chemical interactions, consistent with the XRD and Raman structural analyses.  

4. Conclusion 

The fabrication of un-doped TNTs and Nd- and/or Gd-doped TNTs was dem-
onstrated via the environmentally-friendly hydrothermal treatment of TiO2 P25 
in a concentrated KOH solution and in-situ doping. The morphologies of all the 
samples from SEM, EDX, and TEM data confirmed that the structure of the 
multiwall nanotubes was fiber-like with a uniform distribution of Nd and/or Gd 
ions in the TNT lattice. The nanotubes were in an anatase phase, even after doping 
with Nd and/or Gd oxide. The mixed Nd-Gd-TNTs had smaller grain sizes be-
cause the dopant cations were located at the grain boundary, thus hindering grain 
growth. It was found that the specific surface area of the nanotubes (50 - 210 
m2/g) considerably exceeded that of the initial TiO2 (12 m2/g).  
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