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Abstract 
 

This paper presents the solutions to the equations governing convective flow and heat transfer of two 
viscous immiscible dusty and pure fluids confined between a vertical corrugated wall and a parallel flat 
wall. The nonlinear partial differential equations governing the flow have been reduced to nonlinear 
ordinary differential equations using the regular perturbation method. The transformed nonlinear ordinary 
differential equations have been solved numerically using the linear approximation theorem. The effects 
of the governing parameters on the velocity and temperature fields for the two fluids and the dust 
particles have been obtained and graphically represented using Matlab. 
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Nomenclature  
 

          Specific heat capacity at constant pressure J/kg/i

pc K
 

    1 2        Dimensionless specific heat capacity at constant pressure p p pc c c
 

        Specific heat capacity of dust particlessc
 

 2         Acceleration due to gravity g ms
 

    
3 2

1 1
       Grashof number Gr w g t v

 
    2 1

0        Width ratio of the channel w w w
 

         Thermal conductivity / .ik W m k
 

          Stokes's resistance 6F rv
 
    2 1

0         Thermal conductivity ratio  k k k
 

    1 2

0         Viscosity ratio    
 

 3N         Number density of dust particles per unit volume m

 
          Dimensionless pressurep  

      1 1 1Pr         Prandtl number pc k
 

           Average radius of dust particlesr  

            Temperature of the fluid  T K
 

    2 1

0            Temperature ratio T  
 

           Temperature of the dust particles pT K
 

            Static temperature  sT K
 

,         Velocity component of the fluid along X and Y direction u v  
,     Velocity component of the dust particles along X and Y directionp pu v

 

 X,Y       Space coordinates m
 

,         Dimensionless space coordinatesx y  
 
Greek symbols 
 

        Dimensionless coefficient of thermal expansion  
   1     Coefficient of thermal expansion Ki 

 

 1 1        Viscosity kgm s  

 

  2 1         Kinematic viscosity , m s   

 

 3         Density kgm 
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    2 1

0        Density ratio   
 

/   Material density of dust particlesp
s 

 
         Fluid temperature  
       Dust temperaturep  

        wavelength  
       Temperature relaxation timet  
       Velocity relaxation timep  

 

1 Introduction 
 
Corrugated surfaces are, for example, utilized in compact heat exchangers and in industrial processes to 
enhance heat transfer efficiency. Dusty fluids are applicable in areas such as petroleum extraction, 
purification of crude oil and nuclear waste treatment. Yao and Moulic [1] studied natural convection along a 
wavy surface with uniform heat flux. Sastry et al. [2] analyzed Couette flow of two immiscible fluids 
between two permeable beds. Umavathi et al. [3] analyzed the problem of unsteady mixed convective heat 
transfer of two immiscible fluids confined between long vertical wavy wall and parallel flat wall. Umavathi 
et al. [4,5] studied unsteady flow and heat transfer of three immiscible fluids. Vajravelu and Sastri [6] 
investigated free convective heat transfer in a viscous incompressible fluid between a vertical wavy wall and 
a parallel flat wall. Verma and Bhatt [7] considered the steady flow of two immiscible incompressible fluids 
with suction at the stationary plate. Wang et al. [8,9,10] studied free and forced convective flow in wavy 
channels. Yao [11] studied natural convection along a vertical complex wavy surface.  
 
Most recently, Siddiqa et al. [12] analyzed flow of a dusty fluid in two phase natural convection. Attia et al 
[13] used a porous medium in a circular pipe to study unsteady dusty Bingham fluid flow. Abba et al. [14] 
also used two parallel plates with heat transfer to investigate Couette flow of two immiscible dusty fluids.  
 
All the above cited references except Abba et al. [14] investigated on dusty fluids and pure immiscible fluids 
through different channels but none studied flow and heat transfer of two viscous immiscible dusty and pure 
fluids between a corrugated wall and a parallel flat wall.  
 
Thus, the objective of the present work is to study convective flow of two viscous immiscible dusty and pure 
fluids between a vertical corrugated wall and a parallel flat wall.  
 
The flow is taken to be steady, two dimensional and the fluid is liquid and not gas, incompressible and 
electrically non-conducting. The governing nonlinear equations for the dusty and pure fluids are solved 
numerically by Perturbation Method with linear approximation theorem. 
 

2 Mathematical Formulation 
 
A two dimensional steady laminar flow of two electrically non-conducting immiscible dusty and pure fluids 
in a vertical channel with one wavy wall and another flat wall is considered as shown in Fig. 1. The X- axis 
is represented by the equation 
 

   2 cosY w X                                                                                                                   (1)  

 
which is taken parallel to the flat wall, while the Y- axis represented by the equation 
 

  1
Y w                                                                                                                                            (2) 
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which is taken to be perpendicular. The wavy and flat walls are maintained at constant temperatures 2T and 

1T  respectively. Region I is occupied by a fluid of density
 1 , viscosity

 1 , thermal conductivity  1
k , 

thermal expansion coefficient
 1 , specific heat at constant pressure 

 1
pc and Region II is occupied by the 

fluid of density
 2 , viscosity

 2 , thermal conductivity  2
k , thermal expansion coefficient

 2 , specific 

heat at constant pressure 
 2

pc . 

 

 
 

Fig. 1. Physical configuration 
 

The following assumptions are considered in this study. The fluid in region-II is dusty while the fluid in 
region-I is considered to be a pure fluid. Except the density in the buoyancy term in the momentum equation, 
all fluid properties are assumed constant. The transport properties of both fluids are assumed to be constant 
and the fluid rises in the channel driven by buoyancy forces. The dust particles in region II are assumed to be 
electrically non-conducting, spherical in shape, solid, same radius and mass (uniform in size), un-
deformable, and uniformly distributed throughout the flow. This means that, by conduction through their 

spherical surface, the dust particles gain heat energy from the fluid. The number density N of the particles is 
constant throughout the flow and volume fraction of the dust particles is neglected and the temperature 
between the particles is uniform throughout the motion. The concentration of particles is very small that it is 
not interfering with the continuity and the net effect of the dust on the fluid particles is equivalent to

  2 pFN u u  per unit volume. Where F  is stoke's law (drag force) where 6F rv  and r is 

average radius of the dust particles,  is coefficient of fluid viscosity (dynamic viscosity, v  is flow 

velocity relative to the object and N is density number of particles per unit volume of the fluid.  
 

3 Governing Equations 
 
Region I (Pure fluid) 
 

  

 

 

 

 

1 1

1 1
0

u v

x y

 
 

 
      Continuity                                                                                                  (3) 

            

   
 

 
 

 

 

 

 
          

1 1 1
1 1 1 1 1 1 1 12

1 1 1 s

u u p
u v u g T T

x y x
   

   
           

X-Momentum             (4) 
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   
 

 
 

 

 

 

 
   

1 1 1
1 1 1 1 12

1 1 1

v v p
u v v

x y y
 

   
         

       Y-Momentum                                     (5) 

 

  

     
 

 
 

 

 
   

1 1
1 1 1 1 1 12

1 1p

T T
c u v k T

x y


  
      

   Energy                                                           (6)  

                                                                    

Region II (Dusty fluid) 
 

 

 

 

 

2 2

2 2
0

u v

x y

 
 

 
     Continuity                                                                                                     (7)  

                                                                                                                 

   
 

 

 
 

 

 

 

             
2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2

p

s

u u p
u v u g T T FN u u

x y x
   

  
        

  

 
 
 

X- 

Momentum (8) 

   
 

 
 

 

 

 

 
      

2 2 2
2 2 2 2 2 22

2 2 2

pv v p
u v v FN v v

x y x
 

   
           

Y-Momentum         (9) 

 

The equation of motion of the dust particles by taking Newton’s second law in the X direction is given by  

 

  2
p p

p p
p

u u
m u FN u u

x y

  
   

                                                                                      (10)                                                                                           

pm  is average mass of dust particles. 

 

     
 

 
 

 

 
      

2 2

2 2 2 2 2 2 22

2 2

p

ps

p

t

cT T
c u v k T T T

x y






 
    

 

 
 
 

Energy equation of the fluid      (11) 

 

 
 

 
 

  2 2 2

2 2

1p p

p

t

T T
u v T T

x y 

  
  

   
Energy equation of the particles                                   

(12)
 

 

For both the velocity and temperature, the relevant boundary and interface conditions used to solve Eqns. (3) 
to (12) are  
 

   2 2 0 at P Pu v u v       2 cosY w X    , 
     1 1 10 at u v Y w   , 

   1 2  pu u u  , 
 

   1 2 pv v v   at  0Y  ,  
 

 
 

 
1 2

1 2 2

p
u v u v u v

y x y x y x
  

          
         

          

at 0Y       

   

 

 

 

 

1 2

1 2

p p

x x

 


 
  at  0Y   ,   

 2

2T T     at  
   2 cosY w X    ,  

 1

1T T     at   1Y w     
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   1 2 pT T T   ;  

 
 

 
 1 2

1 2T T T T
k k

y x y x

      
     

      
 at  0Y    

 
The non-dimensional flow variables are:  
 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
   

 

 
 

1 1 2 2 1 1
1 1 2 2 1 1 1 1

1 1 2 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ,    ,    ,    ,    ,    ,  

x y x y w w
x y x y u u v v

w w w w v v
     

  

    

  

 
 

 
   

 

 
 

   

 

   

 
 

3

2

1 12 2 1 1
2 2 2 2 2

22 2 11

ˆˆ ˆ,   ,  ,    ,  Pr  ,  
p

s

cw w w g T
u u v v Gr T T T w

v v kv


 


         

 
 

      
 

 

      
 

 
 

 1 21 2
1 2 1 2 1

02 2
1 1 1 2 2 2

2 2 2 2

ˆ ˆ,   ,  ,  , ,
p

ps s s s

s s s s

T T T T T T T Tp p
p p T

T T T T T T T Tv w v w
  

 

   
     

   
 

 

 

 

 

 

 

 

 

 

 

 

 

12 2 1 2 2

0 0 0 0 01 1 2 1 1 2
,  ,  ,  ,  ,  p

p

p

cw k
w k c

w k c

  
  

  
      ,  

 

 
 

 

 

1 2
1 2

1 2
   ,  v v

 

 
    

   
The non-dimensional variables are substituted in to Eqns. (3.1) to (3.10) and dropping the (caps) for 
simplicity, the equations obtained are as follows 
 
Region I (Pure fluid) 
 

 

   1 1

0
u v

x y

 
 

 
                                                                                                                        (13)  

 

 
 

 
       

 
1 1 1 1 12 2

1 1 1

2 2

u u p u u
u v Gr

x y x x y


    
     

    
                                                    (14)    

 

 
 

 
       1 1 1 1 12 2

1 1

2 2

v v p v v
u v

x y y x y

    
    

    
                                                                      (15)   

   

 
 

 
     1 1 1 12 2

1 1

2 2

1

Pr
u v

x y x y

       
        

                                                                        (16) 

 

Region II (Dusty fluid)  
  

   2 2

0
u v

x y

 
 

 
                                                                                                                         (17)   

  

  
 

 
       

    
2 2 2 2 22 2

2 2 2 23 2 2
0 0 0 0 02 2

pu u p u u
u v Gr w R u u

x y x x y
   

    
       

    
   (18)   

 
 

 
       

  
2 2 2 2 22 2

2 2 2

02 2

pv v p v v
u v R v v

x y y x y

    
      

    
                                    (19) 
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  2

0

1p p
p p pu u

u v u u
x y G

 
  

 
                                                                                          (20) 

 

 
 

 
     

  
2 2 2 22 2

2 2 0 0 20
2 2

2

Pr 3Pr

p p
k c R

u v
x y x y

   
 

    
          

                           (21) 

 

  2
p p

p p pu v L
x y

 
 

 
   

 
                                                                                         (22) 

 
The boundary and interface conditions are non - dimensionalized as follows  
 

   2 2
   atp pu v u v       1 cosy x   ,    1 1

0u v   at 1y   
 

 
 

 
 2 2

1 1

0 0 0 0 0 0 0 0 0 0 0 0

,    at 0
p pu u v v

u v y
w w w w       

                   

                                                                                                                                                                   
   1 2

2 2 2 2
0 0 0 0 0 0

1 1
   at 0

p
u v u v u v

y
y x w y x w y x   

          
          

          
    

  

 

   1 2

2 2
0 0 0

1p p

x w x 

 


 
 at 0y    , 

   2
1  at  1 cosy x       ,   

 1
0  at  1T y       

  

   
   1 2

1 2 0 0

0 0

,  =   at  0

p

p k k
y

y x w y x w y x

     
  

          
           

            
 

4 Solving of the Equations 
 
Perturbation techniques can be used to obtain approximate solutions since analytical solutions are difficult 
because of their nonlinear form. By introducing a small parameter and assuming that the solutions consists 
of a Zeroth order (no perturbation, hence no new information) and a first order (meaning full perturbation) 
the velocity, pressure and temperature can be written as 
 
Region I (Pure fluid) 
 

           1 1 1

0 1, , .....u x y u y u x y  
                                                                                    (23) 

 
       1 1

1, , .........v x y v x y 
                                                                                                (24) 

       1 1

1, , .........p x y p x y 
                                                                                             (25) 
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           1 1 1

0 1, , .........x y y x y    
                                                                               (26) 

 

Region II (Dusty fluid) 
 

           2 2 2

0 1, , .........u x y u y u x y  
                                                                            (27) 

 

     0 1, , .........p p pu x y u y u x y  
                                                                                 (28) 

 

       2 2

1, , .........v x y v x y 
                                                                                                (29) 

 

   1, , .........p pv x y v x y 
                                                                                                  (30) 

 

       2 2

1, , .........p x y p x y 
                                                                                             (31) 

 

           2 2 2

0 1, , .........x y y x y    
                                                                            (32) 

 

     0 1, , .........p p px y y x y    
                                                                                (33) 

 

5 Results and Discussion 
 
After substituting Eqns. (23)-(33) in to Eqns. (13)-(22), the obtained ordinary differential equations are 
solved numerically using Perturbation method and the linear approximation theorem. In each graph, Grashof 
number, viscosity ratio, width ratio and conductivity ratio are fixed at 6, 3, 3, and 3 respectively except the 

temperature ratio, 
0

T  and the parameter in question. The temperature ratio is increasing from -2 to 2 in all 

the graphs. 
 

From Fig. 2(a), it is observed that, as the Grashof number and the temperature ratio increases, the zeroth 
order velocity of the dust particles and that of the fluid increases in both regions for 

0
2T   and 

0 0T  . For

0
2T   , the velocity decreases from the start of region II (wavy wall) up to near the middle of region I (flat 

wall) and again starts to increase as it approaches the end of region I. From Fig. 2(b), as the Grashof number 
increases, the first order velocity diminishes sharply in both regions. For

0
2T   , the velocity increases from 

the start of region II (wavy wall) up to near the middle of region I (flat wall) and again starts to decrease as it 
approaches the end of region I. Physically, increase in Grashof number is an increase in the buoyancy force 
because, in the momentum equation, the Grashof number acts a driving mechanism of the buoyancy force 
which supports the motion. From Fig. 3 (a), it is observed that, as the width ratio and temperature ratio 
increases, the zeroth order velocity increases in both regions From Fig. 3(b), it is observed that, as the width 
ratio and temperature ratio increases, the first order velocity decreases in both regions. For a larger width, 
physically this means an increase in velocity. 



 
 
 

Musau et al.; AJPAS, 4(3): 1-12, 2019; Article no.AJPAS.50217 
 
 
 

9 
 
 

  
 

Fig. 2(a). Effect of Grashof number, Gr  on the velocity profiles 
 

 
 

Fig. 2(b). Effect of Grashof number, Gr  on the velocity profiles 
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Fig. 3(a). Effect of width ratio, 0w  on the velocity profiles 
 

 
 

Fig. 3(b). Effect of width ratio, 0w  on the velocity profiles 
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6 Conclusions 
 

1. As the Grashof number and temperature ratio increases, zeroth order velocity of the dust particles 
and that of the fluid increases in both regions and first order velocity decreases in both regions. 

2. The zeroth order velocity increases significantly in region II and starts to decrease at the start of 
region I as the Grashof number increases.  

3. The first order velocity decreases significantly in region II and starts to increase at the start of 
region I as the Grashof number increases. 

4. As the width ratio and temperature ratio increases, the zeroth order temperature increases in both 
regions as the first order velocity decreases in both regions.  
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