
 

British Journal of Mathematics & Computer Science 
  

9(4): 357-366, 2015, Article no.BJMCS.2015.208 
 

ISSN: 2231-0851 
 

SCIENCEDOMAIN international 
www.sciencedomain.org   

 
 

_____________________________________ 

*Corresponding author: megaobrait@hotmail.com; 
  

 

Application of Multiple Scale Method to a Discretized Financial 
PDE 

 
Bright O. Osu1* and Okechukwu U. Solomon2 

 
1Department of Mathematics, Abia State University, Uturu, Abia State, Nigeria. 

2Department of Physical Science, Rhema University, Aba, Abia State, Nigeria. 
 

Article Information 
 

DOI: 10.9734/BJMCS/2015/18407 
Editor(s): 

(1) Raducanu Razvan, Department of Applied Mathematics, Al. I. Cuza University, Romania. 
Reviewers: 

(1) Anonymous, UAM-Cuajimalpa, Mexico. 
(2) G. Y. Sheu, Accounting and Information Systems, Chang-Jung Christian University, Taiwan. 

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=1145&id=6&aid=9525 

 
 
 

Received: 20 April 2015 
Accepted: 04 May 2015 

Published: 01 June 2015 

_______________________________________________________________________________ 
 

Abstract 
 

This paper presents an application of two way variable expansion method (multiple scale) for the 
calculation of the periodic solutions, resulted from a Hopf bifurcation of a discretized generic PDE in 
finance to a first order time-delay system arising from laser dynamics and a single inertial neural model 
with time delay. The two way variable expansion methods involve easy computation only, and yield 
estimation to the oscillatory movement of the price of stock with high accuracy. 
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1 Introduction 
  
Over the past decade, rapid advances has been made to control and stabilize the transient behavior of some 
financial derivative [1]. From 2007 the Global financial Economy has been experiencing what is said to be 
worst financial crisis since the great depression in the 1930’s. the current crisis is triggered by the short fall 
of liquidity in the United States, followed by collapsing of large financial institutions, bailout of banks, turn 
downs of international stock markets and credits, collapse of housing bubble, mortgage foreclosures, failure 
of key businesses, declines of wealth, increase of governmental debts due to substational commitments and 
many other factors. To those who have ever dealt with Black Scholes equations, the instabilities and 
oscillatory behavior modeled by Black Scholes equation are all too well known. What perhaps not so 
familiar is that the Black Scholes equations could be discretized into delay differential equation (DDE) 
which have the opposite effect in the financial market, namely that they could suppress oscillations and 
stabilize equilibria which would be unstable in the absence of delays. For instance, oscillatory behavior can 
often be connected to a Hopf bifurcation of an equilibrium solution under the variation of some parameter, 

Short Research Article 



 
 
 

Osu and Solomon; BJMCS, 9(4): 357-366, 2015; Article no.BJMCS.2015.208 
 
 
 

358 
 
 

and such local bifurcations share common qualities expressed in terms of the behavior on a low-dimensional 
center manifold. Hence, an analysis of stabilization near a generic Hopf bifurcation would yield general 
results applicable to any system near a Hopf instability and serve as a useful guide for understanding the 
behavior of a financial market systems under time delays.  
 
Although the financial derivatives are governed by the celebrated parabolic partial differential Black-Scholes 
formula, but it is not clear how derivatives are controlled and stabilized. In this paper, analysis are made 
based on the discretization of Black-Scholes formula to a system of DDE’s. It is found that such financial 
derivatives experience a drift which hardly can be brought to equilibrium state. In the case of ordinary 
differential equation (ODE’s), a very popular method for obtaining transient behavior is the two variable 
expansion method (also known as multiple scales) [2,3,4] is proposed. 
 
This paper is organized as follows. In section 2, we presented a scalar DDE and the properties it must satisfy 
for the existence of Hopf bifurcation. Illustrative example were also given. We review modeling of Black-
Scholes and the partial differential equation which financial derivative have to satisfy in section 3. The 
generic PDE in finance were discretized in spatial dimension in section 4. Finally section 5, the method of 
multiple scale were presented, applied and analyzed. 
 

2 Hopf Bifurcation of Time-delay Systems  
 
Consider the following scalar DDE’s with a parameter q (the delay or some other physical parameter)  
 

  �(�)(�) = �(�(�), � ′(�), … , ����(�), �(� − �), 
 � ′(� − �), … ����(� − �), �) , � ∈ �                                                                                                              (1) 
 
where F has at least up to fourth order continuous derivatives satisfying �(0,0, … ,0, �) ≡ 0. Equation (1) is 
assumedto admit a Hopf bifurcation at � = ��. The existence of the bifurcation can be characterized by the 
root location of the characteristic function �(�, �) of the linearized equation at � = 0 of (1) as follows: 
 

 For a small � ≔ � − ��, �(�, �) has exactly one pair of simple complex roots �(�) = �(�) ± ��(�) 
such that at � = 0, one has �(0) = 0, �� = �(0) > 0, and all the other characteristics roots have 
negative real parts. 

 � ′(0) = �
��

��
(0) ≠ 0 (the transversality condition), where �(�) stands for the real part of ��ℂ. 

 
Due to the Hopf bifurcation Theory, the bifurcated nontrivial periodic solution has a period 

approximately2�
�(�)� , and 2�

�(�)� → 2�
��

�  as � → 0 . Thus, in the vicinity of the Hopf bifurcation, 

namely for a sufficiently small |�|, the stationary solution of (1) has a form  
 
                 �(�) = �(��) cos(�(�)� + �) + 0(��))    

=  ����(��� + �) + 0(�)                                                                                                                                (2) 
 
as done in applications of method of multiple scales, where  
 
� ≔ �(0), � ≔ �(0) for short. Therefore, it is expected that the time-delay system near the Hopf bifurcation 
behaves similar to the Black-Scholes differential equation involving a term � ′′(�). The key features of the 
Hopf bifurcation of (1) can be preserved if the right hand function F is approximated with the third or fifth 
order Taylor expansion, which is required in the computation of the averaged power function, defined in [5]. 
That is to say, the local dynamics near the Hopf bifurcation of (1) can be determined from the averaged 
power function [5]. 
 
Example1; let us study the following scalar DDE arising from laser physics [6]. 



 
 
 

Osu and Solomon; BJMCS, 9(4): 357-366, 2015; Article no.BJMCS.2015.208 
 
 
 

359 
 
 

�̇(�) = − �
�

2
+ �� ����(� − 1)                                                                                                                        (3) 

 
where | � | ≪ 1 is a small parameter. Equation (3) undergoes a Hopf bifurcation at � = 0, because the 
following conditions hold [7,1]: 
 

1. For small � < 0, the zero solution � = 0 of ( 3 )is asymptotically stable. 

2. At � = 0, the characteristic function �(�) ≔ � + (
�

�
+ �)��� has a pair of complex conjugate roots 

� = ± � �
2� , and the other roots of �(�) have negative real parts. 

3. � �
��

��
�

���
≠ 0, where �(�) stands for the complex conjugate of z. 

 
The key features near the Hopf bifurcation can be determined from 
 

�̇(�) = − �
�

2
+ �� × ��(� − 1) −

��(� − 1)

6
+

��(� − 1)

120
�                                                                      (4) 

 
because Hopf bifurcation is a local property of dynamical systems and also refers to the analysis or 
evaluation of market conditions based on two distinct scenarios. 
 

3 Black-Scholes Financial Derivatives Overview 
 
Considering the importance of financial derivatives, a crucial problem in finance is how to evaluate and 
price each financial derivative (option, futures and swap of a financial assets).  
 
Black and Scholes [8] discovered the partial differential equation which financial derivatives (the underlying 
assets of which are stock) have to satisfy.  
 
Merton’s work [9] helps us to understand the Black-Scholes equation from the mathematical point of view. 
 
Let � be time and � be the price of stock. Consider a derivative security whose price depends on � and �. The 
price is a function of � and �, so we call it �(�, �) or just �. Then, our task is to find the equation which � 
satisfies. We assume that there is a risk-free bond B which earns a risk-free rate �. 
 
That is, the following holds:   
 
Bond (cash): A riskless B that evolves in accordance with the process 
 

dB = ���� .                                                                                                                                                           (5) 
 
In addition, an underlying security which evolves in accordance with stock � that follows the geometric 
Brownian motion (Ito process): 
 

Stock: �� = ���� + ����                                                                                                                                 (6) 
 
here � is a Brownian motion, � is a Wiener process, � is constant parameter called the drift. It is a measure 
of the average rate of growth of the asset price. Meanwhile, � is a deterministic function of time when � is 
constant, (6) is the original Black-Scholes model of the movement of a security, �. In this formulation, � is 
the mean return of �, and � is the variance. 
 
The quantity �� is a random variable having a normal distribution with mean 0 and variance ��: 
 

     �� ∝ �(0, (√��)�).   
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For each interval ��, �� is a sample drawn from the distribution �(0, (√�� )�), this is multiplied by � to 
produce the term ���. The value of the parameters � and  � may be estimated from historical data.  
 
Consider the derivative parabola 
 

�� = �
��

��
+ ��

��

��
+

1

2
����

���

���
� �� + ��

��

��
��                                                                                 (7) 

 
from an option �(�, �) written on the underlying security (by Ito’s Lemma) evolves in accordance with the 
process. �(�, �) is sufficiently smooth, namely, its second-order derivatives with respect to � and first-order 
derivative with respect to � are continuous in the domain. As it can be seen in Ito’s Lemma, the price change 
is proportional to a coupled second order partial differential equation which depends on the random 
stochastic variable  �� , the deterministic function � , and the drift parameter � [10] . By comparing the 
portfolio � (a portfolio using � and � so that the portfolio behaves exactly the same with �) consisting of 
� shares of stock and � units of bond. 
 

� = �� + ��                                                                                                                                                      (8) 
 
With the option �(�, �), equation (5), (6), and (7), we derived 
 

��

��
+ ��

��

��
+

1

2
���� 

���

���
− �� = 0      .                                                                                                    (9) 

 
This partial differential equation (9) is celebrated Black Scholes equation. In this derivation (9), we 
replicated the derivative with a stock and a bond. 
 

4 Discretising the Financial PDE Found in Finance 
 
Consider the generic PDE for a contingent claim on a single asset written as 
 

��

��
+  ℯ (�, �)

���

���
 +  � (�, �)

��

��
+  ℎ (�, �)� = 0                                                                                 (10) 

 
where t either represents calendar time or time-to-expiry, s represents either the value of the underlying asset 
or some monotonic function of it (e.g. ��� (��); log − ����) and C is the value of the claim (as a function of 
s and t). The term �(. ), �(. ) and ℎ(. ) are the diffusion, convection and reaction coefficient respectively, and 
this type of PDE is known as a convection-diffusion PDE. This type of PDE can also be written in the form 
 

��

��
+  � (�. �)

�

��
��(�, �)

��

��
� +  �(�, �)

�

��
(�(�, �)�) +  ℎ(�, �)� = 0.                                           (11) 

 
This form occurs in the Fokker-Planck (Kolmogrov forward) equation that describes the evolution of the 
transition density of a stochastic quantity (e.g. a stock value). This can be put in the form of equation (10) if 
the functions � and � are both differentiable in S-although it is usually better to directly discretize the form 
given [11]. 
 
We do not consider this form (11) further in the paper. Equation (10) can be solved with Dirichlet boundary 
conditions and initial condition (see [12,10]).  
 
Dirichlet boundary conditions, which take the form. 
 

� (�, �) =  � (�, �)∀ � � Ґ(�)                                                                                                                          (12) 
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where Ґ(�) is the (possibly time-dependent) boundary of the region. In the ID case this simplifies to 
 

�(��(�), �) = �(�)                                                                                                                                          (13) 
 
Initial condition 
 

�(�, 0) =  �(�)                                                                                                                                                (14) 
 
to some terminal time T, so the time domain is naturally bound. 
 
Note that failure to provide consistent boundary condition will greatly reduce accuracy of the solution. 
 
To begin with, we just consider discretization in the spatial dimension. Given the time-dependent vector  

�(�) = ��(��, �), ����,�� … … . . �(��, �), ������,���
�

,  the derivatives are given by 

 
��

��
   ≈   ���(�)                                                                                                                                              (15) 

 
���

���
  ≈   ���(�) 

 

If we similarly define �(�) = ��(��, �), �(��, �), … , �(��, �), � (����, �)�
�

, and likewise for �(�) and ℎ(�), 
then equation (10) may be written as a set of N+2 coupled ordinary differential equations (ODEs) 
 

��(�)

��
 =  −�(�) �(�)                                                                                                                                      (16) 

 

where �(�) ≡ �(�)�� +  �(�)�� +  �(�)��� �(�) = ���� ��(�)� etc  (i.e. the diagonal matrix with the 
elements of e along the lead diagonal). 
 
In general equation (16) can be denoted in the form 
 

��

��
=  −� (��  ; �)                                                                                                                                            (17) 

 
where �(�)  ∈   ��, ��� � ∈  � is a parameter. This usual notation �� denotes the values of the system state 
over a time windows of finite length � , that is ��(�) = � (� + �) ∈  ��, � ∈  [−�, 0],  and  ��  ∈  �, 
where  � ≔ � ([−�, �], ��)  denotes the Banach space of continuous functions over the interval [−�, �] 
equipped with the supremum  norm. It is assumed that �: � � � ⟶  �� is twice continuously differentiable 
in its arguments and �(�; �) = 0 for all �. Assume further that the origin undergoes a supercritical Hopf 
bifurcation at � = 0. Hence, for small positive � the origin is unstable and there exist a small amplitude limit 
cycle. To study the behavior near the origin, it is convenient to scale the variable � ⟶ �� ��� � ⟶ ��, 
where � is a small positive parameter. This transforms (17) into a weekly nonlinear system of the form 
 

��

��
= −�� �� +  � � (��;  �)�                                                                                                                          (18) 

 
where �: � ⟶ ��is a linear operator and � is a �� function with�(�; �) = � for all �. Equation (18) is a 
perturbation of the linear equation [1]. 
 

��
��� = −� ��                                                                                                                                                   (19) 
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5 Multiple Scale and Financial Derivatives 
 
In this section, we show how the method of multiple scale can be applied to the discretized PDE in equation 
(19). 
 
Example (2) 
 
Consider the DDE problem, one that has an exact solution, namely; 
 

��

��
= −�(� − �), � =  �

2� +  ��             .                                                                                                     (20) 

 
Equation (20) undergoes a Hopf bifurcation at � = �, because the following conditions in example 1 hold. 
Hence, equation (20) behaves similar to Black-Scholes differential equation involving a term �′′(�). 
 
Lemma 1 
 
Let � be replaced by two time variable: regular time � (A riskless Bond (cash) as in (5)) and slow time 
� =  ��  (underlying security which evolves in accordance with stock price S, as in (6)), then the solution of 
(20) is given by 
 

�� =  �� exp �
4�(��������

�� ������

�� + 4
� cos

⎝

⎜
⎛

��� ln ���
�� − �

2�� ���������

�� �������

�� + 4
+ ���

⎠

⎟
⎞

 (21) 

 
Proof 
 
Let the dependent variable �(�) be replace by � (�, �). Hence, if � (�, �) 
 

�� =  
��

��
     ��   +     

��

��
    �� 

��

��
=  

��

��

��

��
  + 

��

��

��

��
 

��

��
=  

��

��
 +  �

��

��
 . 

 
From equation (20), we have 
 

��

��
+  �

��

��
=  −�(� − �, � − ��)                                                                                                                   (22) 

 
Since � =  �

2� +  ��, the delayed term may be expanded for small � as follows; 

 

          ��� − �
2� − ��, � − � �

2� − ����  

 = � �� − �
2,� �� −  � � 

���

��
−  � �

2�
���

��
+  0 (��)                                                                                        (23) 

 

where �� is an abbreviation for � �� − �
2� , ��. Next we expand  

 
� =  �� + ��� +  0 (��),                                                                                                                                        (24) 

 
So 
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��

��
=  

���

��
 +   �

���

��
+  0(��)                                                                                                                       (25) 

 
��

��
=  

���

��
 +   �

���

��
+  0(��)     .                                                                                                                  (26) 

 
By substituting equation (23), (25) and (26) into (22), gives  
 

���

��
+  �

���

��
+  �

���

��
+ �� ���

��
=  − ���� − �

2� , ��       

− ����� − �
2� , �� +  �� 

����

��
+ ��� 

����

��
 � �

2�
����

��
               

+ �� �
2�

����

��
 +  0(��)                                                                                                                                   (27) 

 
���

��
+  ���� − �

2� , �� =  0                                                                                                                          (28) 

 
���

��
+  ���� − �

2� , �� =  � 
����

��
+ �

2�
����

��
−  

���

��
                                                                          (29)  

 
Equation (28) has periodic solution (since (20) is autonomous) 
 

�� = � (�) cos(� − �(�))                                                                                                                               (30) 
 
where as usual in this method �(�) (the approximated amplitude of periodic motion of stock) and �(�) (the 
frequency of the bifurcated periodic solution) are yet undetermined function of slow times �. 
 

Taken ��� = −
���

��
   in equation (29) 

 
���

��
+ ���� − �

2� , �� =  − 
�����

���
−  � 2�

����

����
− 

���

��
  .                                                                     (31) 

 
Substitute equation (30) into (31) 
 

���

��
= −� sin(� − �) 

���

��
=  �� ′ sin(� − �) + �′ cos  (� − �) 

����

���
=  −� ��� (� − �) 

����

����
=  −[− �� ′ cos(� − �) +  �′ sin(� − �)] 

=  �� ′ cos(� −  �) − �′ sin(� − �) . 
 

Let � −  � = �, �� ������������ 
���

��
,

���

��
,

����

���  ��� 
����

����
 in (31), we have 

 

�� cos(�) −  �
2� �� ′ cos(�) + �

2� �′ sin(�) −  �� ′ sin(�) − �′ cos(�) =
���

��
+  ���� − �

2� , ��  (32) 

 
Equating coefficient of sin (�) and cos (�)  to zero 
 

�� −  � 2� �� ′ − �′ = 0                                                                                                                                    (33) 
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�
2� �′ −  �� ′  =   0       .                                                                                                                                 (34) 

 
From equation (34) 
 

� ′ =  
��′

2�
        .                                                                                                                                                  (35) 

 
Plug equation (35) in equation (34) 
 

�′ =  
4��

�� + 4
       .                                                                                                                                            (36) 

 
Plug (36) in equation (35) 
 

� ′ =  
2��

�� + 4
    .                                                                                                                                                (37) 

 
From equation (36), we get 
 

1

�
 �� =  

4�

�� + 4
 ��  

 
so that 
 

ln �  =   
4��

�� + 4
   +     �, 

 
and 
 

�(�) =  �� exp �
4��

�� + 4
�   .                                                                                                                         (38 ) 

 
Similarly 
 

� (�) =  
2���

�� + 4
 +   ��                                                                                                                                   (39) 

 
substitute R(s) and θ (s) in equation (30) 
 

� ≈  �� =  �� exp �
4��

�� + 4
� cos  �� − �

2���

�� + 4
+  ����.                                                                     (40) 

 
It is not difficult to show from (5) and (6) that  
 

� = �����,                                                                                                                                       (41) 
 
and    
 

� = ���
���

��

�
��� � ��                                                                                                                        (42)  

 
respectively.   
     
Solving for � in (41) and plugging it in (40) using (42), we have (21) as required.  
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6 Conclusion 
 
The periodic solution derived from two way variable expansion method (21) proves that, if the time is 
delayed, the oscillatory movement of the price of stock can be monitored and instability controlled and 
stabilized. Using the slow time � = �� and equation (42), we have 
 

�� = ����� ��
��

�
− �� � − ����.                                                                                                      (43) 

 
Plugging (43) into (21) we arrive at; 
 

�� =  �� exp �
����

����
� cos ���� ln ���

�� − �
�����

����
+ ����.                                                               (44) 

 
Notice that �� → 0 as � → 0 and �� fluctuate according to �. 
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