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Abstract

This paper investigates the existence of positive solutions of the nonlinear fractional differential
system {

Dsu = λa(t)f(v), 0 < t < 1,
Dpv = µb(t)g(u), 0 < t < 1,

where 0 < s, p < 1, Ds, Dp are the standard Riemann-Liouville fractional derivatives, λ, µ > 0

are parameters. The peculiarity of this coupled equations is the coefficient functions a(t) and b(t)

change signs, unlike the works in the literature keeping the signs of a(t), b(t) unchanged. On the

basis of a nonlinear alternative of Leray-Schauder type and Krasnoselskii′s in a cone, sufficient

conditions on a(t), b(t) guarantee the existence of positive solution of the coupled equations are

obtained. The results are illustrated with an example.
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1 Introduction

The last two decades have witnessed a great progress in fractional calculus and fractional-order
dynamical systems. It has been found that fractional calculus is a mathematical tool that works
adequately for anomalous social and physical systems with non-local, frequency- and history-
dependent properties, and for intermediate states such as soft materials, which are neither idea
solid nor idea fluid [1]-[9],[10]. Differential equations with fractional-order derivatives/integrals
are called fractional differential equations, and they have found many successful applications in
viscoelasticity, heat conduction, electromagnetic wave, diffusion wave, control theory and so on
see [11]-[14], and the references therein). Except for a few special cases, it is impossible to find
a closed-form solution for a fractional differential equation. Therefore, conditions that govern the
existence of some kind of solutions are very important in understanding real systems described by
fractional differential equations. In many applications, only the positive solutions of a differential
equation admit physical meaning. Thus, a number of works have been made for the existence of
positive solutions of fractional differential equations.

For example, Zhang in [15] investigated the existence of a positive solution of the initial problem
for the nonlinear fractional equation

Dsu = f(t, u), 0 < t < 1, (1)

where 0 < s < 1, Ds is the Riemann-Liouville fractional derivative, and f : [0, 1] × [0,+∞) →
[0,+∞) is a given continuous function, by using the sub- and supersolution method. Babakhani
and Daftardar-Gejji [14] presented a detailed analysis of the existence of positive solutions of multi-
term differential equation: L(D)u = f(x, u), where

L(D) = Dsn − an−1D
sn−1 − · · · − a1D

s1 , 0 < s1 < · · · < sn < 1, aj > 0.

In [16], [17], Bai et al. studied the following nonlinear fractional differential equation

Dsu = λa(t)h(u), 0 < t < 1, (2)

and nonlinear fractional differential system{
Dsu = f(t, v), 0 < t < 1,
Dpv = g(t, u), 0 < t < 1,

(3)

where f, g are two given continuous functions and singular at t = 0. Existence of positive solutions
for these two problems is established, by means of a nonlinear alternative of Leray-Schauder type
and Krasnoselskii′s fixed point theorem in a cone.

As for boundary value problem, El-Shahed [18] discussed the following nonlinear fractional problem{
Ds

0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < s ≤ 3,
u(0) = u′(0) = u′(1) = 0.

(4)

They used the Krasnoselskii′s fixed point theorem on cone expansion and compression to show the
existence and non-existence of positive solutions.

Most of the works mentioned above assume that the coefficient functions have a definite sign. To
the best of the author’s knowledge, little results are available in the literature for the existence of
fractional differential equations with coefficients that change signs. This motivates us to study the
existence of positive solutions to the following coupled system{

Dsu = λa(t)f(v), 0 < t < 1,
Dpv = µb(t)g(u), 0 < t < 1,

(5)

289



Cui & Yang; BJMCS, 9(4), 288-299, 2015; Article no.BJMCS.2015.203

where 0 < s, p < 1, Ds, Dp are the standard Riemann-Liouville fractional derivatives, f, g : [0,∞)→
[0,∞) are two given continuous functions, f(0), g(0) > 0, a(t), b(t) : [0, 1]→ (−∞,+∞) may change
signs, and λ, µ > 0 are parameters.

Schauder’s fixed point theorem works well in establishing the existence of a solution of various kind
of differential equations, but it does not guarantee the positivity of the solution. The main objective
of this paper is to establish two theorems that ensure the existence of positive solution of Eq. (5),
by using the following Krasnoselskii’s fixed point theorem (Lemma 1.1) and a nonlinear alternative
of Leray-Schauder type in cone (Lemma 1.2).

Lemma 1.1 [19] Let E = (E, ‖ · ‖) be a Banach space and let K ⊂ E be a cone in E. Assume
Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and let A : K ∩ (Ω1 \ Ω2) → K be
continuous and completely continuous. In addition suppose either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

(ii)‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω1 \ Ω2).

Lemma 1.2 [20], [21]. Let X be a Banach space with C ⊂ X closed and convex. Assume U is a
relatively open subset of C with 0 ∈ U and A : U → C is a continuous, compact map. Then either

(i) A has a fixed point in U ; or

(ii) there exists u ∈ ∂U and ν ∈ (0, 1) with u = νAu.

2 Existence of positive solutions

Let C[0, 1] be the space of all continuous real functions defined on [0, 1], X = C[0, 1] × C[0, 1] be
the Banach space endowed with the norm as follows

||(u, v)|| = min{||u||, ||v||}, ∀ (u, v) ∈ X

where ||w|| = maxt∈[0,1] |w(t)|, w ∈ C[0, 1]. A cone K ⊂ X is defined by

K = {(u, v) ∈ X : u(t) ≥ 0, v(t) ≥ 0, 0 ≤ t ≤ 1}.

Definition 2.1[5], [9]. The Riemann-Liouville fractional derivative of order 0 < s < 1 of a
continuous w : (0, 1)→ R is defined to be

Dsw(t) =
1

Γ(1− s)
d

dt

∫ t

0

(t− τ)−sω(τ)dτ

provided that the right side is point-wise defined on (0, 1).

Definition 2.2. For 0 < s, p < 1, a pair of (u, v) ∈ X, with continuous fractional derivatives
Ds, Dp on (0, 1), is a solution of a coupled system of fractional differential equations (5) if{

Dsu(t) = λa(t)f(v(t)), 0 < t < 1,
Dpv(t) = µb(t)g(u(t)), 0 < t < 1,

(6)

for s, p ∈ (0, 1) with initial data u(0) = v(0) = 0.
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The positive solution of Eq. (5) is a solution satisfying u(0) = v(0) = 0, u(t) > 0, v(t) > 0,
0 < t ≤ 1, (u, v) ∈ X, or simply denoted by

(u, v) ∈ D := {(u, v) ∈ X : u(0) = v(0) = 0, u(t) > 0, v(t) > 0, 0 < t ≤ 1}.

We assume that

(H1) f, g : [0,+∞)→ [0,+∞) are continuous, nondecreasing functions and f(0), g(0) > 0.
(H2) a, b : [0, 1]→ R are continuous, a(0) 6= 0, b(0) 6= 0, and there is h, l > 1 such that∫ t

0

(t− τ)s−1a+(τ)dτ ≥ h
∫ t

0

(t− τ)s−1a−(τ)dτ,∫ t

0

(t− τ)p−1b+(τ)dτ ≥ l
∫ t

0

(t− τ)p−1b−(τ)dτ

for t ∈ (0, 1], where a+(t) = max{0, a(t)} and a−(t) = max{0,−a(t)}, b+(t), b−(t) defined analogously.

According to [22], Proposition 2.4, system (6) is equivalent to the following coupled system of
integral equations {

u(t) = Isλa(t)f(v(t)) = λ
Γ(s)

∫ t
0

(t− τ)s−1a(τ)f(v(τ))dτ,

v(t) = Ipµb(t)g(u(t)) = µ
Γ(p)

∫ t
0

(t− τ)p−1b(τ)g(u(τ))dτ,
(7)

where t ∈ [0, 1]. Define

m(t) =

∫ t

0

(t− τ)s−1a+(τ)dτ, q(t) =

∫ t

0

(t− τ)p−1b+(τ)dτ.

Lemma 2.3. Suppose that (H1)− (H2) are satisfied. Then for 0 < δ1, δ2 < 1, there exist positive
numbers λ, µ such that, for 0 < λ < λ, 0 < µ < µ, the nonlinear fractional differential equation

Dsu(t) = λa+(t)f(v(t)), 0 < t < 1,
Dpv(t) = µb+(t)g(u(t)), 0 < t < 1,
u(0) = v(0) = 0

(8)

has a positive solution (uλ, vµ) with ||uλ||, ||vµ|| → 0 as λ, µ→ 0 and

uλ ≥ λδ1f(0)m(t)/Γ(s), vµ ≥ µδ2g(0)q(t)/Γ(p).

Proof. It is easy to know from (H2) that m(t), q(t) > 0 for t ∈ (0, 1]. Let A : X → X be the
operator defined as

A(u, v) = (
λ

Γ(s)

∫ t

0

(t− τ)s−1a+(τ)f(v(τ))dτ,
µ

Γ(p)

∫ t

0

(t− τ)p−1b+(τ)g(u(τ))dτ)

:= (A1v(t), A2u(t)), (9)

where u, v ∈ X. So the fixed points of A are solutions of system (8). By Lemma 2.1 in [15],
A : K → K is completely continuous. We shall apply the nonlinear alternative of Leray-Schauder
type to prove A has at least one fixed point for small λ, µ.
Let ε1, ε2 > 0 be such that

f(v) ≥ δ1f(0), g(u) ≥ δ2g(0), for 0 ≤ v ≤ ε1, 0 ≤ u ≤ ε2. (10)
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Suppose that

0 < λ <
Γ(s)ε1

2||m||f(ε1)
:= λ, 0 < µ <

Γ(p)ε2

2||q||g(ε2)
:= µ.

Since

lim
t→0+

f(t)

t
= +∞, lim

t→0+

g(t)

t
= +∞,

and again

f(ε1)

ε1
≤ Γ(s)

2λ||m|| ,
g(ε2)

ε2
≤ Γ(p)

2µ||q|| ,

there exist Rλ ∈ (0, ε1), Rµ ∈ (0, ε2) such that

f(Rλ)

Rλ
=

Γ(s)

2λ||m|| ,
g(Rµ)

Rµ
=

Γ(p)

2µ||q|| .

Let (u, v) ∈ K be any solution of

(u, v) = νA(u, v), (11)

for each ν ∈ (0, 1), where A is given by (9). In fact,

u(t) =
νλ

Γ(s)

∫ t

0

(t− τ)s−1a+(τ)f(v(τ))dτ ≤ λf(||v||)
Γ(s)

∫ t

0

(t− τ)s−1a+(τ)dτ

=
λf(||(u, v)||)

Γ(s)
m(t) ≤ λf(||(u, v)||)

Γ(s)
||m||,

v(t) =
νµ

Γ(p)

∫ t

0

(t− τ)p−1b+(τ)g(u(τ))dτ ≤ µg(||u||)
Γ(p)

∫ t

0

(t− τ)p−1b+(τ)dτ

=
µg(||(u, v)||)

Γ(p)
q(t) ≤ µg(||(u, v)||)

Γ(p)
||q||,

Consequently

||u|| ≤ λf(||(u, v)||)
Γ(s)

||m||, ||v|| ≤ µg(||(u, v)||)
Γ(p)

||q||. (12)

By (12) we can get the following inequalities exist,

f(||(u, v)||)
||(u, v)|| >

Γ(s)

2λ||m|| ,
g(||(u, v)||)
||(u, v)|| >

Γ(p)

2µ||q|| ,

which implies that ||(u, v)|| 6= Rλ and ||(u, v)|| 6= Rµ. Thus any solution (u, v) of (11) satisfies
||(u, v)|| 6= Rλ and ||(u, v)|| 6= Rµ. Let

U = {(u, v) ∈ K : ||(u, v)|| < min{Rλ, Rµ}}.

Therefore, Lemma 1.2 guarantees that A has a fixed point (u, v) ∈ U ∩D. Moreover, combining (9)
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and (10), we obtain

uλ ≥ λδ1f(0)m(t)/Γ(s), vµ ≥ µδ2g(0)q(t)/Γ(p).

Hence system (8) has a positive solution.

Theorem 2.4. Suppose that (H1)− (H2) hold. Then there exist positive numbers λ∗, µ∗ such that
system (6) has at least one positive solution for λ ∈ (0, λ∗), µ ∈ (0, µ∗).

Proof. Let

m∗(t) =

∫ t

0

(t− τ)s−1a−(τ)dτ, q∗(t) =

∫ t

0

(t− τ)p−1b−(τ)dτ. (13)

Then m∗(t), q∗(t) ≥ 0 for each t ∈ (0, 1]. By (H2) we have m(t) ≥ hm∗(t), q(t) ≥ lq∗(t). Choose
0 < c < 1 such that hc, lc > 1. There is b > 0 such that f(x) ≤ hcf(0), g(x) ≤ lcg(0) for x ∈ [0, b],
then

m∗(t)f(x) ≤ cm(t)f(0), q∗(t)g(x) ≤ cq(t)g(0) for t ∈ (0, 1], x ∈ [0, b]. (14)

Fix δ1, δ2 ∈ (c, 1) and let λ∗, µ∗ > 0 be such that

||uλ||+
λδ1f(0)||m||

Γ(s)
≤ b, ||vµ||+

µδ2g(0)||q||
Γ(p)

≤ b, λ ∈ (0, λ∗), µ ∈ (0, µ∗), (15)

in which uλ, vµ are given by Lemma 2.3, and

|f(x)− f(y)| ≤ f(0)
δ1 − c

2
, |g(x)− g(y)| ≤ g(0)

δ2 − c
2

, (16)

for x, y ∈ [0, b] with

|x− y| ≤ min{λ
∗δ1f(0)||m||

Γ(s)
,
µ∗δ2g(0)||q||

Γ(p)
}.

Let λ ∈ (0, λ∗), µ ∈ (0, µ∗). We look for a solution (uλ, vµ) of the form (uλ + u∗λ, vµ + v∗µ), where
(uλ, vµ) is the solution of (8) given by Lemma 2.1. Thus (u∗λ, v

∗
µ) solves the following equation:

Dsu∗λ(t) = λa+(t)[f(vµ + v∗µ)− f(vµ)]− λa−(t)f(vµ + v∗µ), 0 < t < 1,
Dpv∗µ(t) = µb+(t)[g(uλ + u∗λ)− g(uλ)]− µb−(t)g(uλ + u∗λ), 0 < t < 1,
u∗λ(0) = v∗µ(0) = 0.

For each (u, v) ∈ X, let (w, z) = A(u, v) be the solution of
Dsw = λa+(t)[f(vµ + v)− f(vµ)]− λa−(t)f(vµ + v), 0 < t < 1,
Dpz = µb+(t)[g(uλ + u)− g(uλ)]− µb−(t)g(uλ + u), 0 < t < 1,
w(0) = z(0) = 0.

Then A : X → X is completely continuous. Let (u, v) ∈ X and ν ∈ (0, 1) be such that
(u, v) = νA(u, v), then we have{

Dsu = λa+(t)[f(vµ + v)− f(vµ)]− λa−(t)f(vµ + v), 0 < t < 1,
Dpv = µb+(t)[g(uλ + u)− g(uλ)]− µb−(t)g(uλ + u), 0 < t < 1,

that is

u =
νλ

Γ(s)

∫ t

0

(t− τ)s−1a+(τ)[f(vµ(τ) + v(τ))− f(vµ(τ))]dτ
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− νλ

Γ(s)

∫ t

0

(t− τ)s−1a−(τ)f(vµ(τ) + v(τ))dτ, (17)

v =
νµ

Γ(p)

∫ t

0

(t− τ)p−1b+(τ)[g(uλ(τ) + u(τ))− g(uλ(τ))]dτ

− νµ

Γ(p)

∫ t

0

(t− τ)p−1b−(τ)g(uλ(τ) + u(τ))dτ. (18)

We claim that ||u|| 6= λδ1f(0)||m||/Γ(s), ||v|| 6= µδ2g(0)||q||/Γ(p). Suppose to the contrary that
(||u||, ||v||) = (λδ1f(0)||m||/Γ(s), µδ2g(0)||q||/Γ(p)). Then by (15) and (16), we get

||vµ + v|| ≤ ||vµ||+ ||v|| ≤ b, ||uλ + u|| ≤ ||uλ||+ ||u|| ≤ b (19)

and

|f(vµ + v)− f(vµ)| ≤ f(0)
δ1 − c

2
, |g(uλ + u)− g(uλ)| ≤ g(0)

δ2 − c
2

. (20)

From (14), we get

m∗(t)f(b) ≤ cm(t)f(0), q∗(t)g(b) ≤ cq(t)g(0) for t ∈ (0, 1]. (21)

Using (17)-(21), we obtain for each t ∈ (0, 1] that

u ≤ λ

Γ(s)

∫ t

0

(t− τ)s−1a+(τ)[f(vµ(τ) + v(τ))− f(vµ(τ))]dτ

+
λ

Γ(s)

∫ t

0

(t− τ)s−1a−(τ)f(vµ(τ) + v(τ))dτ

≤ λ

Γ(s)

∫ t

0

(t− τ)s−1a+(τ)f(0)
δ1 − c

2
dτ +

λf(b)

Γ(s)

∫ t

0

(t− τ)s−1a−(τ)dτ

≤ λ(δ1 − c)f(0)

2Γ(s)
m(t) +

λcf(0)

Γ(s)
m(t)

=
λ(δ1 + c)f(0)

2Γ(s)
m(t). (22)

Similarly we can get

|v| ≤ µ(δ2 + c)g(0)

2Γ(p)
q(t). (23)

In particular

||u|| ≤ λ(δ1 + c)f(0)

2Γ(s)
||m|| < λδ1f(0)

Γ(s)
||m||, ||v|| ≤ µ(δ2 + c)g(0)

2Γ(p)
||q|| < µδ2g(0)

Γ(p)
||q||,

a contradiction, and the claim is proved. Let

U = {u ∈ X : ||(u, v)|| < min{λδ1f(0)

Γ(s)
||m||, µδ2g(0)

Γ(p)
||q||}}.

By Lemma 1.2, A has a fixed point (u∗λ, v
∗
µ) ∈ U . Consequently,

||u∗λ|| ≤
λδ1f(0)

Γ(s)
||m||, ||v∗µ|| ≤

µδ2g(0)

Γ(p)
||q||.

Hence (u∗λ, v
∗
µ) satisfies (22), (23) and, using Lemma 2.3, we get

uλ ≥ uλ − |u∗λ| ≥
λδ1f(0)

Γ(s)
m(t)− λ(δ1 + c)f(0)

2Γ(s)
m(t) =

λ(δ1 − c)f(0)

2Γ(s)
m(t),
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vµ ≥ vµ − |v∗µ| ≥
µδ2g(0)

Γ(p)
q(t)− µ(δ2 + c)g(0)

2Γ(p)
q(t) =

µ(δ2 − c)g(0)

2Γ(p)
q(t),

i.e., (uλ, vµ) is a positive solution of system (6). So the proof of Theorem 2.4 is complete.

Theorem 2.5. Let 0 < λ1 < λ < λ∗, 0 < µ1 < µ < µ∗, 0 < δ1 < s < 1, and 0 < δ2 < p < 1.
Let tδ1f(y) and tδ2g(y) are two continuous functions on [0, 1] × [0,∞). a, b : [0, 1] → (0,+∞) are
continuous and there exist two distinct constants 0 < c < C such that c ≤ a, b ≤ C. Assume that
there exist two distinct positive constants ρ, η, ρ > η, such that the following conditions are satisfied:

(H ′1) tδ1f(ω) ≤ ρ Γ(1− δ1 + s)

Cλ∗Γ(1− δ1)
and tδ2g(ω) ≤ ρ Γ(1− δ2 + p)

Cµ∗Γ(1− δ2)
, (t, ω) ∈ [0, 1]× [0, ρ],

tδ1f(ω) ≥ ηΓ(1− δ1 + s)

cλ1Γ(1− δ1)
and tδ2g(ω) ≥ ηΓ(1− δ2 + p)

cµ1Γ(1− δ2)
, (t, ω) ∈ [0, 1]× [0, η],

Then system (6) has at least one positive solution.

Proof. Let Let A : X → X be the operator defined as

A(u, v) = (
λ

Γ(s)

∫ t

0

(t− τ)s−1a(τ)f(v(τ))dτ,
µ

Γ(p)

∫ t

0

(t− τ)p−1b(τ)g(u(τ))dτ)

:= (A1v(t), A2u(t)), (24)

where u, v ∈ X. By Lemma 2.1 in [15], A : K → D is completely continuous. In order to apply
Lemma 1.1, we separate the proof into the following two steps.

Step 1. Let U2 = {(u, v) ∈ K : ||(u, v)|| ≤ ρ}. For (u, v) ∈ K ∩ ∂U2, we have 0 ≤ u(t) ≤ ρ, 0 ≤
v(t) < ρ for all t ∈ [0, 1]. By assumption (H ′1) that for t ∈ [0, 1],

A1v(t) =
λ

Γ(s)

∫ t

0

(t− τ)s−1a(τ)τ−δ1τ δ1f(v(τ))dτ

≤ ρΓ(1− δ1 + s)

Γ(1− δ1)

1

Γ(s)

∫ t

0

(t− τ)s−1τ−δ1dτ = ρ
Γ(1− δ1 + s)

Γ(1− δ1)

Γ(1− δ1)

Γ(1− δ1 + s)
ts−δ1 = ρts−δ1

and

A2u(t) =
µ

Γ(p)

∫ t

0

(t− τ)p−1b(τ)g(u(τ))dτ ≤ ρtp−δ2 .

Hence for (u, v) ∈ K ∩ ∂U2,

||A(u, v)|| = max{max
0≤t≤1

|A1v(t)|, max
0≤t≤1

|A2u(t)|} ≤ ρ = ||(u, v)||.

Step 2. Let U1 = {(u, v) ∈ K : ||(u, v)|| < η}. For (u, v) ∈ K ∩ ∂U1, we have 0 ≤ u(t) ≤ η, 0 ≤
v(t) ≤ η for all t ∈ [0, 1]. It follows from (H ′1) that for t ∈ [0, 1],

A1v(1) =
λ

Γ(s)

∫ 1

0

(1− τ)s−1a(τ)τ−δ1τ δ1f(v(τ))dτ

≥ ηΓ(1− δ1 + s)

Γ(1− δ1)

1

Γ(s)

∫ 1

0

(1− τ)s−1τ−δ1dτ = η

and

A2u(1) =
µ

Γ(p)

∫ 1

0

(1− τ)p−1b(τ)g(u(τ))dτ ≥ η.
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Hence for (u, v) ∈ K ∩ ∂U1,

||A(u, v)|| = max{max
0≤t≤1

|A1v(t)|, max
0≤t≤1

|A2u(t)|} ≥ η = ||(u, v)||.

Therefore, by (ii) of Lemma 1.1, we complete the proof.

3 Example

Finally, we give an example to illustrate the result obtained in this paper.

Example 3.1. Consider the following nonlinear fractional differential system:
Dsu(t) = λ(2− 3t)(v2 + ev + 1

5
), 0 < t < 1,

Dpv(t) = µ( 3
4
− t)(u4 + ln(1 + u) + 1

3
), 0 < t < 1,

u(0) = v(0) = 0.
(25)

in which 1/2 < s < 1, 1/3 < p < 1 and λ, µ > 0 are parameters.

Let f(v) = v2 + ev + 1
5
, g(u) = u4 + ln(1 + u) + 1

3
and a(t) = 2 − 3t, b(t) = 3/4 − t. Obviously, f

and g satisfy (H1). In the following, we verify that a, b satisfy (H2). We see

a+(t) =

{
2− 3t, 0 ≤ t ≤ 2

3
,

0, 2
3
< t ≤ 1,

a−(t) =

{
0, 0 ≤ t ≤ 2

3
,

3t− 2, 2
3
< t ≤ 1.

and

b+(t) =

{
3
4
− t, 0 ≤ t ≤ 3

4
,

0, 3
4
< t ≤ 1,

b−(t) =

{
0, 0 ≤ t ≤ 3

4
,

t− 3
4
, 3

4
< t ≤ 1.

If 2
3
< t ≤ 1, then

p(t) =

∫ t

0

(t− τ)s−1a+(τ)dτ =

∫ 2/3

0

(t− τ)s−1(2− 3τ)dτ

= 2

∫ 2/3

0

(t− τ)s−1dτ + 3

∫ 2/3

0

(t− τ)s−1[(t− τ)− t]dτ

= (2− 3t)

∫ 2/3

0

(t− τ)s−1dτ + 3

∫ 2/3

0

(t− τ)sdτ

=
3

s+ 1
ts+1 − 1

s
(3t− 2)ts +

3

s(s+ 1)
(t− 2

3
)s+1, (26)

and

p∗(t) =

∫ t

0

(t− τ)s−1a−(τ)dτ =
3

s(s+ 1)
(t− 2

3
)ts+1. (27)

For 1/2 < s < 1, setting

ε :=
s− 1

3
(s+ 1)

( 1
3
)s+1

> 0.

By 2/3 < t ≤ 1, we have (t− 2/3)/t ≤ 1
3
. Therefore,

s =
1

3
(s+ 1) + ε(

1

3
)s+1 ≥ (s+ 1)

t− 2/3

t
+ ε(

t− 2/3

t
)s+1,
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that is

sts+1 ≥ (s+ 1)(t− 2/3)ts + ε(t− 2

3
)s+1,

2

3
< t ≤ 1. (28)

By (26)-(28), we get for each t ∈ (2/3, 1] that

p(t) ≥ (1 + ε)p∗(t). (29)

If 0 < t ≤ 2/3, then ∫ t

0

(t− τ)s−1a+(τ)dτ =

∫ t

0

(t− τ)s−1(2− 3τ)dτ > 0, (30)

and ∫ t

0

(t− τ)s−1a−(τ)dτ = 0, (31)

which implies (29) holds also for any t ∈ (0, 2/3]. Thus, a satisfies (H2). Similarly, we can get b
satisfies (H2). Applying Theorem 2.4, we know that there are numbers λ∗, µ∗ > 0 such that system
(25) has at least one positive solution.

4 Conclusion

This paper investigates the existence of positive solutions of the nonlinear fractional differential
system. The peculiarity of this coupled equations is the coefficient functions a(t) and b(t) change
signs, unlike the works in the literature keeping the signs of a(t), b(t) unchanged. On the basis of a
nonlinear alternative of Leray-Schauder type and Krasnoselskii′s in a cone, sufficient conditions on
a(t), b(t) guarantee the existence of positive solution of the coupled equations are obtained. Further
work will focus on the numerical solutions to the specific issues.
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