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Abstract 
 

In this paper, we investigate uniqueness problems of q-difference transcendental meromorphic functions 
with zero order sharing one value. We obtain some results on q-difference, which extend many previous 
results. 
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1 Introduction and Main Results 
 
When investigating uniqueness problems of q-difference functions, we always use kind of function, which is 
meromorphic in the whole complex plane except at possible poles. In this paper, we define this as a 
meromorphic function. If no poles occur, it reduces to an entire function. Let q be non-zero complex 
constant in what follows, and q-difference of f (z) be defined by f (qz). We assume the reader is familiar with 
the standard notations and results such as the proximity function m(r, f), counting function N                                   
(r, f), characteristic function T (r, f), the elementary Nevanlinna theory, see, e.g., [1]. We denote by S(r, f) 
any quantity satisfying S(r, f) = o(T (r, f)), as r → ∞ possibly outside a set of log logarithmic density 0. 
 
We define that f, g are meromorphic and share a value a IM (ignoring multiplicities) if f− a and g − a have 
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the same zeros. While f − a and g – a have not only the same zeros but also the same multiplicities, we say 
that f and g share a CM (counting multiplicities). 
 

In 1959, Hayman [2] proved that
'ff n
takes every non-zero complex value infinitely often if n ≥ 3, when f 

is a transcendental meromorphic function, and n is a positive integer. In particular, he proved the following 
famous theorem. 
 
Theorem A. If f is a transcendental meromorphic function, n(≥ 5) is a positive integer, and a( 0) is a 

constant, then
nzafzf )()('   takes every finite complex value b infinitely often. If f is a transcendental 

entire function, then n ≥ 3 or n ≥ 2, when b = 0 also holds. 
 
Liu [3] considered the difference counterpart of Theorem A, and proved the following result. 
     
Theorem B. If f is a transcendental meromorphic function with finite order, period is not c, and a is a non-

zero constant, n 8, then f(z)
n

+a(f(z+c)-f(z))-s(z) has infinitely many zeros.    
  
In this paper, on the basis of theorems A and B, we study uniqueness problems of two q-difference 
polynomials sharing one value and obtain the following results. 
 
Theorem 1.1. Let f and g be two transcendental meromorphic functions with zero order, a

CbC  },0{\ , and let n be a positive integer satisfying n 26. Assume that the functions 

 

nf
f

bqzaf 


)(
:        and       

ng
g

bqzag 


)(
:                                   (1.1) 

 
Share the value 1 IM. Then  
                                

                              gf                                                                                                                          (1.2) 

or 
                                                                   

                       
1. gf                                                                                                                      (1.3) 

 

Theorem 1.2. Let f and g be two transcendental entire functions with zero order, a CbC  },0{\ , 

and let n be a positive integer satisfying n 14. Assume that the functions f  and g  defined as in (1.1) 

share the value 1 IM. Then (1.2) holds. 
 
When considering the particularity of meromorphic functions, we have two relatively simple results as 
follows. 
 
Theorem 1.3. Let f and g be two transcendental meromorphic functions with zero order, a

CbC  },0{\ , and let n be a positive integer satisfying n 14. Assume that the functions f  and 

g  defined as in (1.1) share the value 1CM. Then (1.2) or (1.3) holds. 

 

Theorem 1.4. Let f and g be two transcendental entire functions with zero order, a CbC  },0{\ , 

and let n be a positive integer satisfying n 8. Assume that the functions f  and g  defined as in (1.1) 

share the value 1 CM. Then (1.2) holds. 
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2 Lemmas 
 
In this section, we present some lemmas which play an important role in the following proofs. The following 
q-shift difference analogue of the logarithmic derivative lemma is very important when we consider ring q-
shift difference polynomials. 
 
Lemma 2.1 ([4], Theorem 2.1]). Let f(z) be a meromorphic function of zero order.  
Then 
 

)),(()
)(

)(
,( frTo

zf

cqzf
rm 


 

 
On a set of logarithmic density 1. 
 
The next two lemmas are essential in our proofs, which offer us the way to estimate the characteristic 
function and counting function of f(qz), see the theorems 1.1 and 1.3 in [5].  
 

Lemma 2.2 Let f(z) be a nonconstant zero order meromorphic function, and },0{\Cq  . Then  

 

                             ),())(,())(,( frSzfrTqzfrT   

 
 on a set of logarithmic density 1. 
 

Lemma 2.3 Let f(z) be a nonconstant zero order meromorphic function, and },0{\Cq  . Then  

 

                             ))(,())1(1())(,( zfrNoqzfrN   

  
on a set of lower logarithmic density 1. 
 

Now, we introduce some notations. Let F and G be two nonconstant meromorphic functions,  Ca . 

Suppose that 0z is an a-point both of F of order p and of G of order q. We denote by ),( arN A  the 

counting function of the common a-point of F and G satisfying the condition A, where each point is counted 

once. For example, ),(1 arN qp   denotes the counting function of those common simple a-point of F and 

G, as well as ),( arN qp  of F and G with the orders p>q. Furthermore, separately defining 

)
1

,()
aF

rN p


 and )
1

,(1(
aF

rN p


  is the counting function of the zeros of F-a with the orders less 

than or equal to p and with the orders larger than p, in which each point is counted once. However, 

)
1

,(
af

rN p


 denotes the counting function of the zeros of f-a where m-fold zeros are counted m times 

if m  p and p times if m>p. Now we denote 
 

0),()
1

,()
1

,(),( 1,12(2(
* 





  arN

aG
rN

aF
rNarN qp          (2.1) 

 
The auxiliary function H in the following lemma plays an important role on solving two meromorphic 
functions, which share one finite value. 
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Lemma 2.4 ([6], Theorem 3]). Let 
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where F and G are two nonconstant meromorphic functions. If H ≢0, then 
          

                             
),(),(),()1,(1 GrSFrSHrNrN qp   

 
When considering two nonconstant meromorphic functions F, G that share at least one finite value IM, we 
could find the following lemma play a key role. The proof of the lemma in [7] is submitted, but for the 
convenience of readers, we list here again. In the original paper, S(r,F) denotes any quantity of 
S(r,F)=o(T(r,F)), as r  possibly outside a set of finite linear measure. So it holds when 
S(r,F)=o(T(r,F)), as r  possibly outside a set of logarithmic density 0. 
 
Lemma 2.5 ([7]). Let F and G be two nonconstant meromorphic functions. If F and G share 1 IM, then one 
of the following three cases holds: 
 

(1) 
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                       (2.3)                     

     

(2)                1FG                                                               
 

(3)                GF                                                      
 

where )/1,(2 FrN  denotes the counting function of zeros of F such that simple zeros are counted once 

and multiple zeros twice. 
 
Proof. Let H be given as in (2.2). Then 
 

                     
)1,()1,(),()0,(),( ** rNrNrNrNHrN qpqp    

                     )/1,()/1,( '
0

'
0 GrNFrN             (2.4) 

 

where )/1,( '
0 FrN  denotes the counting function corresponding to the zeros of 

'F  which are not the 

zeros of F and F-1, and correspondingly for 
'G . From Lemma 2.4 and (2.4), if 0H , we have 
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From the second fundamental theorem, we have 
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Firstly, noting that 
 

                      
       FrSFFrNFFrNrN qp ,/,/,1, ''   

                      ),(),()/1,( FrSFrNFrN             (2.5) 

 

                      
       GrSGGrNGGrNrN qp ,/,/,1, ''    

                      ),(),()/1,( GrSGrNGrN             (2.6) 

 
Combining the above three inequalities with (2.5) and (2.6), we obtain      
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Which 
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Similarly, 
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So we have 
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),()0,()/1,()/1,({2),(),( 21,122 FrNrNGrNFrNGrTFrT qp    

);,(),(

)}1,()1,({3)},(),( 1,12

GrSFrS

rNrNrNGrN qpqpqp



 
                      (2.7)                                  

 

The conclusion (1) follows by inserting the last two inequalities into  7.2 . 

 

If H 0 , by integration, we get from  2.2  that 
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where A(  0) and B are constants. From (2.8) we have 
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We discuss the following three cases. 

Case 1. Suppose that B 0,-1. If B  A, we get from (2.9) that ),()
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The conclusion (1) holds. If B=A, rewrite (2.9) as 
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Noting that  GrN
B

B
FrN ,)

1
/1,( 







 
  and  FrN

B
GrN ,)

1

1
/1,( 










  

 

The conclusion (1) holds by the second fundamental theorem and the same arguments as above. 
 

Case 2. Suppose that B=0. From (2.9) we have  
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If A 1, by (2.10), we obtain  FrN
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 GrN /1, . The conclusion (1) follows again by the second fundamental theorem. If A=1, then F=G, 

which is the conclusion (3). 
 
Case 3. Suppose that B=-1. (2.9) yields 
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F
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F
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            (2.11) 

 
If A -1, we obtain the conclusion (1) by the same reasoning discussed in Case 2. If A=-1, we get FG=1 
from (2.11).                                                
 
The following corresponding result is about two meromorphic functions sharing 1 CM. 
 
Lemma 2.6 ([8], Lemma [3]). Let F and G be two nonconstant meromorphic functions. If F and G share 1 
CM, then one of the following three cases holds: 
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 2      ;1FG  

 

 ,GF   

   

where  FrN /1,2  denotes the counting function of zeros of F such that simple zeros are counted once 

and multiple zeros twice. 
 

3 Proofs of the Theorems 
 
In this section, the proofs of our results are given. 
 
Proof of Theorem 1.1.  The first main theorem and Lemma 2.2 gives  
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and so 

                

       frSrTfrTn f ,,,1                (3.2) 

 
Similarly, 

 

       grSrTgrTn g ,,,1                (3.3) 

 

Then f  is nonconstant, so is g . From the conditions of Theorem 1.1, we know that f  and g  share 1 

IM. By (1.1) and Lemma 2.3, we get 
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Similarly, we get 
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Suppose that (2.3) in Lemma 2.5 holds. The above two inequalities with Lemmas 2.2 and 2.3 yield 
 

           },/1,,/1,{3,, ggffgf rNrNrNrNrTrT  
 

 

                            
       },/1,,/1,{2 2222 ggff rNrNrNrN    

 

                            
   gf rSrS  ,,   

 



 
 
 

Wang et al.; BJMCS, 9(4): 308-319, 2015; Article no.BJMCS.2015.205 
 
 
 

316 
 
 

   
       

   

   
     
     },,/1,2

/1,2,2,2

/

1
,

/

1
,{2

,,

}/1,/1,,2,2

/

1
,

/

1
,{3

22

grNfrNgrN

frNfrNgrN

abqzg
rN

abqzf
rN

grSfrS

frNgrNfrNgrN

abqzg
rN

abqzf
rN























































 

 

       grSfrSgrTfrT ,,],,[24                                                                (3.4) 

 
Combining (3.2) and (3.3) with the last inequality, we obtain 
 

         grSfrSgrTfrTn ,,],,[25   
 

which is a contradiction since 26n . Lemma 2.5 gives gf  
 
or 1. gf  . Therefore, Theorem 

1.1 is thus proved.                                     
 

Proof of Theorem 1.2. Let f and g  be defined as in (1.1). Suppose that (2.3) holds. By the same 

arguments as in the proof of Theorem1.1, we note that f and g are entire functions and (3.2)- (3.4) turn out to 
be 

       ,,,,1 frSrTfrTn f    
 

       ,,,,1 grSrTgrTn g    
 

And 

           .,,],,[12,, grSfrSgrTfrTrTrT gf    
 

Combining the last three inequalities, we get 
 

         grSfrSgrTfrTn ,,],,[13   
 

which contradicting with 14n . Then from Lemma 2.5, we have gf    or 1. gf  . 
     

If gf    holds, (1.2) follows by Lemma 2.5. 
 

Next, we assume that 1. gf   holds. We know from (1.1) that 
 

     bqzagbqzafgf nn          
          (3.5) 

 

We consider two cases in the following. 

 

Case 1. If b=0. By the above equation, we get  
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Let fg=h. If h is not a constant, then by the above equation, we have 
 

 .2 qzhah n                                                                                                               (3.6)       

 
Thus, from the first main theorem, we obtain          
 

        1,,, OqzahrThrThrnT n   
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Since 2n , we know that h is a constant, i.e. fg is a constant, so f and g have no zeros. Hence, according 

to the Decomposition Theorem, we suppose that f(z)=
 zpec1 , g(z)= 

 zpec 
2 , where p(z) is a polynomial. 

Since that f and g are zero orders, then p(z) is a constant. Therefore, f is a constant, too, which is impossible.  
 

Case 2. If 0b . The equation (3.5) gives that 
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and the second main theorem gives that 
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The above four inequalities and Lemma 2.2 provide us that 
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contradicting with 14n . This completes the proof of Theorem 1.2. 
 

Proof of Theorem 1.3. By the same arguments as in the proof of Theorem 1.1, noting that f  and g  share 

1 CM, using Lemma 2.6 instead of Lemma 2.5, (3.4) turns out to be 
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Similarly, 
 

  grT ,        grSfrSgrTfrT ,,],,[6   

 
Combining the above two inequalities with (3.2), (3.3), we get 
 

         grSfrSgrTfrTn ,,],,[13   

 

Which is a contradiction since 14n . Lemma 2.6 gives gf    or 1. gf  . 

Therefore, Theorem 1.3 is thus proved. 
 

Proof of Theorem 1.4. Let f and g  be defined as in (1.1). By the same arguments as in the proof of 

Theorem 1.1, noting that f and g are entire functions, (3.7) becomes 
 

  frT ,        grSfrSgrTfrT ,,],,[3   

 
We insert the above inequality into (3.2), resulting in 
 

           grSfrSgrTfrTfrTn ,,],,[3,1   

 
The same inequality holds for T(r,g), then 
 

         grSfrSgrTfrTn ,,],,[7   

 

which contradicting with 8n . Then from Lemma 2.4, we have gf    or 1. gf  , which 

means that (1.2) or (1.3) holds. 
 
The following proof is similar with that of proof of Theorem 1.2, we omit it here. 
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4 Conclusion 
 
In this paper, we introduce uniqueness problems of two q-difference polynomials sharing one value and 
obtain four results. They will be very useful for us to solve this kind functions.    
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