

British Journal of Mathematics & Computer Science

9(4): 328-356, 2015, Article no.BJMCS.2015.207

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: danielmakanjuola@salemuniversity.edu.ng;

Software Quality Improvement Using Force-field Analysis

Makanjuola Daniel1*

1Computer Science Department, Salem University, Lokoja, Kogi State, Nigeria.

Article Information

DOI: 10.9734/BJMCS/2015/14714
Editor(s):

(1) Qiang Duan, Information Sciences & Technology Department, The Pennsylvania State University, USA.
(2) Ke-Lin Du, Chief Scientist, Enjoyor Labs, Hangzhou, China, Department of Electrical and Computer Engineering,

 Concordia University, Canada.
(3) Sun-Yuan Hsieh, Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan.

Reviewers:
(1) Anonymous, The University of the West Indies, Jamaica.

(2) Anonymous, California State University, USA.
(3) Anonymous, University of Pennsylvania, Indiana, USA.

(4) Anonymous, Universidade do Algarve, Portugal.
Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=1145&id=6&aid=9524

Received: 15 October 2014
Accepted: 09 April 2015
Published: 01 June 2015

Abstract

Today, global demands for quality products and services have moved quality assurance to the forefront.
Just as quality is a determining factor for the survival of a product in a competitive market, quality system
will be a requirement for the competitive survival of Information Technology (IT) firms in the future.
In my plight to improve the performance of software systems, I began by seeking the opinions of software
developers, having conducted personal interview with some of the developers; It was perceived that some
of the software developers were being exaggerative about the processes of software development. This
made me to change my target audience from software developers to the users of software systems. The
reason for this is because it is the software users that are always at the receiving end of every lapses,
failure, error and mistakes incurred in the cause of developing software systems.
From my experience in this research, it was observed that, there are two categories of users; the power
users who made use of software systems to render services and the common users who are the receiving
audience of the services rendered by the power users.
The information received from the common users apparently reflects the level of performance of the
software systems, thus I decided to work with the information received from them.
In the plight of improving the current level of performance of the software systems, I perceived that the
best way to accomplish this is by shedding away the wrong practices and pattern of software development
process by the developers, as well as the unethical ways of using the software systems (by the software
users) and also to promote the supporting factors that influence the performance of software systems.
Using the requirement negotiation process embedded in win-win spiral model of software development,
and with the aid of force field analysis, I have been able to establish a bench-mark that forms a
foundational model for every software development project.

Empirical Brief Research Article

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

329

Keywords: Software quality; force field analysis; software improvement.

1 Introduction

For a few golden moments after the inception of the water-fall model [1], it appeared that the software field
had found a sequence of common anchor points around which people could plan, organize, monitor and
control their projects. These anchor points functioned as the milestones that enabled companies, government,
organizations and standard groups to establish a set of interlocking regulations, specifications and standards
that covered a full set of software project needs, such as cost and schedule estimation, project plans, reviews
and audits, configuration management, and quality assurance. Extensive completion criteria were established
for each milestone, such as completeness, consistency, traceability, testability and feasibility. As the usage of
software product progresses, it appeared that, water-fall software development model could not meet users’
immediate needs, hence the emergence of Evolutionary software development model which appears to be
faster than waterfall model in terms of “time-to-market” schedule with the aid of rapid prototyping but the
short fall of this model was later identified as most software systems produced are always poorly structured.
Later, the use of Formal methods was produced which was soon criticized to be too expensive to adopt.

Boehm [2] incorporated risk analysis into software development model which was helpful for a while, but
soon enough researchers have come to realize that the problems with software products is not with the
development models, but with the issue of software quality produced. Hence, there is an emergent need and
interest of ensuring the quality of the software produced is good enough to make it perform efficiently and
optimally in every task it is designed for.

2 Background of Study

In her article published in 1994 [3], Capper Jones reported that poor quality was one of the most common
reasons for schedule overruns. She also reported that quality is implicated in close to half of all canceled
projects.

June Verner (2006) [4] of the National Information and Communication Institute of Australia, when carrying
out a risk management campaign on software development noted that most developers believed they would
achieve success in their respective projects because of one or more of the following reasons:

i. They had a sense they had delivered a quality product
ii. They had a sense of achievement

iii. They had enough independence to work creatively
iv. The requirements were met and the system worked as intended at the point of installation.

However, the research conducted revealed the following significant information:

i. 33% of projects said they had no risk but 62% of those failed
ii. 60% of organizations have no process to measure benefits and risk associated with a software

projects
iii. 86% of projects had a business case, but 60% ignored it
iv. 5% of projects had no Project Manager and 16% change Project Manager at least once (and that

was correlated to project failures).

Verner concluded in her report that, very few organizations use risk management in their software
development project and those that do rarely manage those risks.

It is therefore of great significance to develop a concept that will reveal the value of each software projects
in (in terms of cost and benefits) as well as the risk involved in each software project, because success comes
from a culture that investigates and deals with problems.

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

330

Hence, there is an emerging need for software quality improvement methodology that checkmates the basic
activities in each phase of the software development. This makes modified version of spiral model (win-win)
sufficiently good enough for the analysis of risks involved in the software development process.

3 Motivation of Research

Software quality improvement has been one of the major concerns in the software industries. The issues of
software quality improvement boil down to the stage of requirement identification, software requirement
gathering and specification, risk analysis and management, and system delivery.

The prolific measures of the above-mentioned factors could only be realized by making intensive analysis of
the supporting and restraining factors that influence the improvement of any software product.

Force-field [5] analysis is a Physics concept that set up a stage to show-case the supporting and restraining
forces against a proposed project. It is an important concept mostly used by project managers for building an
understanding of the forces that will drive or resist a proposed change. Force field analysis helps to weigh
the importance of the factors relating to a particular decision and to know whether a plan is worth
implementing. It is a specialized method of weighing pros and cons of a proposed project.

4 Statement of Problems

Many software developing institutes and researchers have been able to incorporate a number of alternative
process models: risk-driven (spiral), reuse-driven, legacy-driven, demonstration-driven, design to cost or
schedule, incremental and hybrid combination of these with the waterfall or evolutionary development
models.

Also, they have been able to use a risk-driven software development model [6] to explicitly enhance good
feasibility and the risk involved in each phase (loop) of the software development process. Furthermore,
spiral models have been modified to win-win spiral model to identify the win-win factors, win-lose factors
and the lose-lose factors.

Egbokhare [7] also came out with series of analysis to identify the roles, perceptions, interactions and
experiences in software development process. In her publication, she was able to identify the problems and
give suggestive clues on how to take care of some of the factors contributing to a poor performance or
failure in software systems, especially in the area of human resources which is the fundamental structural
elements for any “people intensive” activity such as software development.

All of these authors, developers and engineers have contributed immensely to providing quality software
products interms of showing us a supportive and restraining factors to providing a quality software product,
but they have not been able to give clues on how to trade-off those restraining factors by providing
reinforcing concepts that could be help reduce the possibility of those restraining or demoting factors.

5 Aim and Objectives

The aim of this research is to study the present state of software development in Nigeria with special focus
on the process involved in developing software systems. Our area of special concentration will be channeled
toward identifying the following vital factors:

i. Identifying the helping or supportive factors in the software development process.
ii. Identifying the restraining or demoting factors in the software development process.

iii. Reduce the strength of the forces opposing the development of quality software systems.
iv. Increase the forces pushing or supporting the development of quality software systems.

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

331

The above mentioned objectives are to be worked on, in order to improve the quality of the overall software
products.

6 Significance of Study

Every software process improvement effort begins with a process assessment, which involves an honest
introspection and careful analysis of an organization’s software development process to identifying factors
contributing to a successful software development project and also the constraints and restraining factors that
lead to a deficient software product.

At the end of the research, I was able to come out with a quality development model adaptable by various
software industries and research institutes. This will go a long way in reducing or perhaps eliminating the
demoting factors contributing to poor quality software products. Also the model promises to promote the
supporting factors by consistently applying a process improvement framework that could be used to
continuously improve on the existing software development techniques.

7 Scope of Study

This research identified the base practices adopted in software development process. The significant factors
affecting development of software systems were looked into. Also, the research paves way for the analysis
of supporting factors and constraints involved in the software development processes. The research was
mainly carried out to determine the supporting factors that should be strengthen and the constraints
necessary to be reduced, in order to produce a quality and reliable software product.

8 Limitation of Research

In the cause of carrying out this field research, few establishments deprived us from accessing their software
systems (e.g Central Bank of Nigeria, PHCN, and UAC Foods). The reason was tagged to some securities
and logistics issues. This actually deprived me from accessing the set of software systems that most people
criticize and complaint about.

Also, many software users had their software systems developed from outside the country (e.g Banks,
Capital Trust Stock Exchange, Starcomms, TMS Travels etc.) This also deprived me from reaching their
software developers to actually study and access the software development processes from their respective
developers.

9 Methodology of Research

Today’s global demand for quality products and services has moved quality assurance to the forefront. Just
as quality is a requirement in the modern market-place, quality systems will be a requirement for the
competitive survival of corporations and organization in the future. To have quality systems, companies
need to develop specific plans for gathering software requirement, designing software, writing programs and
compilers and linking the software package together to form a whole system.

Quality assurance in software development is becoming more and more synonymous with ensuring the flow
of critical information in methodology observed, management techniques and technical approaches. To
incorporate good quality methodology into the software development process in developing country like
Nigeria, we need to:

i. Know the current level of performance of the existing software systems used in Nigeria
ii. Identifying the pro’s and con’s in each software development project

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

332

iii. Identifying the actions involved in software development process and the resulting reactions or
consequences associated to each action on every software development project

iv. To compare the ideal situations and realties in each software development process.
v. Attempt to bridge the gap between the user’s priority and developer’s views.

To achieve the above-listed goals, structured questionnaires and key informant interviews were used to elicit
necessary data from project managers, software developers and users of software systems. The organizations
visited include:

i. Software Development Organization
ii. Educational Institutions

iii. Banks
iv. Research Institutes
v. State Government Parastatals

The heterogeneous sample indulged in this research consists of the following:

i. Software team leaders of Software Development Organizations
ii. Software Developers

iii. Users of Software Systems

10 Survey Instruments

The two main survey instruments used for this research area as listed below:

i. Questionnaires
ii. Key Informant Interview

10.1 Questionnaires

180 structured questionnaires containing questions related to some selected software quality attributes were
administered to users of software systems. For the purpose of this study, we grouped users into two main
categories:

i. Power Users
ii. Common or End Users

10.1.1 Power users

These are the personnel who make use of the software systems to render services to the populates.

10.1.2 Common or end users

These are the receiving audience who make use of the services being rendered by the power users.

The categorization became necessary because the people in different categories share different views about
the software systems they use. Also, the common users mostly do not understand the technical terms and the
functionality of various parts of the system they use. Although they can sense if their software systems are
having problems but they do not know how to explain exactly what is wrong with their systems. Power users
sometimes take part in the technicality and maintenance of the software systems but common users do not.
The main aim of the questionnaire was to identify the current level of performance of the existing software
systems in Nigeria. To enhance the content validity, the questionnaires were presented to some IT experts

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

333

and the suggestions made were effected before the final copies were distributed. Five States in Nigeria where
there is high level of software usage were randomly selected for this study.

Firstly, to affirm the reasons of this research, we started with the common users. About 180 structured
questionnaires on the software qualities of our interest (about 14 of them) were administered, of which 150
were usable for the analysis. The first part of the questionnaires sought information about demography of the
users in order to know their level of relevance with IT tools. The second part sought information about the
type (and purpose) of the software systems while the third part sought opinions from the respondents on their
software quality assessment. The following sections constitute the analysis of the questionnaires.

10.2 Demographic Information

Table 1 to Table 5 reflects the demographic profile of the common users. Table 1 enumerates the academic
profile of the common users interviewed; the information obtained from the Table 1 reflects that only 1
personnel which constitutes just 0.7% has a primary school certificates, about common users (52%)
possessed Senior Secondary School Certificates while 71 of our common users have minimum of Bachelor
Degree Certificates (47.3%).

Also Table 2 reflects the gender information about the common users. There are about 120 Males which
constitutes about (68.0%), as well as 48 Females (32.0%).

Table 3 gives account of several age-bracket within our common users. About 25 people (16.7%) fall within
18-20 years. Also, 104 users covered 21-30 (about 69.3%), 18 people (12%) constitutes 31-40 year age
bracket, and finally, 3 common users which constitutes (2.0%) fall within 41-50 years.

Furthermore, Table 4 gives account of the relevant job experiences of our common users. About 51 people
(37%) acquired between 1-5 years job experiences, 78 people equivalent of (52%) of our common users
claimed between 6-10 years, while up to 28 users (14%) claimed they have acquired above 10 years job
experience.

Finally, Table 5 recorded the employment status of the common users interviewed, in this segment; about 30
common users which constitute (20.0%) are employers of labour while 120 common users (about 80%) are
employees.

The main focus of this analysis is to seek the opinions of the common users on the qualities of the software
systems enumerated. Table 6 represents a five-point scale describing the views of the common users. From
this analysis, it was established that most of the software qualities are just performing at average rate. It was
observed that, since the common users could not only directly influence the optimal performance of their
respective software systems, they are forced to work along with whatever they are provided.

10.3 Necessity of Software Quality Optimization

The respondents also talked about their interest/views in optimizing each of the software qualities. Their
views and responses as it is related to the necessity to optimizing each software quality are represented in the
Table 7.

10.4 Conclusion of the First Analysis

At the end of the first analysis, the following points were extracted:

i. All respondents agree that virtually all the highlighted qualities need to be optimized
ii. Good percentage of our respondents picked “NO” as response to the highlighted qualities

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

334

iii. Even those who acknowledge excellent performance in some software qualities they are familiar
with, still agree that there is a need for improvement

iv. A considerable percentage of our respondents (mostly students) always give out the work they are
supposed to do on-line to somebody else because they do not understand the functionalities of the
online applications.

The above conclusions and observations established a need for this research and also reflect how significant
a quality software system could impact the working condition of an average user. In the plight to improving
the quality of software systems at least the commonly used ones in our immediate environment, about fifteen
companies making use of software systems to render different types of services to the general populates
(These are categories of Power Users) were visited.

Questionnaires containing three parts were administered by the researcher to the power users who were
charged with the responsibilities of developing optimal software systems for end users. Based on the
demands on indigenous software systems to reach optimal performance by the common/end users initially
interviewed especially with special consideration to the constraints attached to each software quality and
feature in consideration, series of questions were structured into questionnaires. The set of questions in the
questionnaires were channeled towards common user’s view on the software systems. The reason why I had
to attached top priority to users is because the developers initially interviewed are being exaggerative about
their mode of development and as such, are reluctant to relay information about the weaken aspects of
software development. It is believed that the users are always at the receiving end of every software failure
and would be happy to accommodate prospective researchers who want to work on their software failures.
The second phase of information gathering was channeled towards the power users. The questionnaires were
personally distributed in order to have an informal interaction with the users who were very happy to talk
about the problems they encountered while working on the software systems.

The first part of the questionnaire sought information about demographic information of the power users in
order to know their level of relevance with IT tools. The second part sought information about the type (and
purpose) of the software system while the third part sought the opinions of the respondents on the
emphasized software qualities in their products. A questionnaire was designated to each organization. The
initial aim was to carry out research on sixteen companies but eventually only fourteen of them were usable
for the analysis.

Table 8 to Table 11 capture the analysis of the data gathered during my second phase of field research.

The data gathered in Table 8 confirms that 8 (57.1%) of the respondents would prefer a better software
package, while 6 (42.9%) do not prefer a better software package. This implies that majority of software
power users would prefer a better software package.

Table 11 information shows that 1 (7.1%) of the respondents would like to change their software developers,
while 13 (92.9%) would not want to change their software developers.

Table 1. Showing the academic profile of the examined common users

Academic/Professional Qualification(s)

 Frequency Percentage
Primary 1 0.7
Secondary 78 52.0
Post-Secondary 71 47.3
Total 150 100

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

335

Table 2. Displaying the gender status of the common users

Sex
Gender Frequency Percentage
Male 102 68.0
Female 48 32.0
Total 150 100.0

Table 3. Showing the age-range of the common users

Age
 Frequency Percentage
18-20 25 16.7
21-30 104 69.3
31-40 18 12.0
41-50 3 2.0
TOTAL 150 100.0

Table 4. Displaying the years of experience of the examined common users

Job Experience

Years of experience Frequency Percentage
1-5 years 51 34
6-10 78 52
Above 10 years 28 14
Total 150 100

Table 5. Illustrating the job status of the common users

Employment Status

Job status Frequency Percentage
Employer 30 20.0
Employee 120 80.0
Total 150 100

Table 6. Describing the views of the common users

S/N Total The extent of each software quality
Qualities Excellent Very good Average Poor Very poor
Understandability 150 9 22 94 9 16
Completeness 150 7 21 68 11 43
Conciseness 150 14 18 71 10 37
Interoperability 150 15 18 58 6 53
Reusability 150 13 32 48 17 40
Integrability 150 15 22 55 16 42
Portability 150 11 20 74 13 32
Consistency 150 19 23 69 12 27
Maintainability 150 24 19 79 15 27
Testability 150 9 14 69 30 28
Usability 150 8 20 61 8 53
Reliability 150 20 31 43 35 21
Efficiency 150 8 15 55 16 56
Security/maintenance 150 3 2 35 32 78

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

336

Table 7. Describing the qualities that common users want to optimize

Qualities (S/N) Yes, I will like to optimize it. No, it is not necessary
Understandability 132 18
Completeness 126 24
Conciseness 109 41
Interoperability 130 20
Reusability 117 33
Integrability 124 26
Portability 126 24
Consistency 123 27
Maintainability 121 29
Testability 123 27
Usability 128 22
Reliability 133 17
Efficiency 129 21
Security/Maintenance 138 12

10.5 Key Informant Interviews

The researcher personally conducted informant interviews with the power users and the IT experts in order
to get details on the methods adopted in the developments of the software systems. This was ensured in order
to know the lapses, weaknesses and inadequacies in the methods adopted.

This method was adopted to obtain information on user’s perception of the software development process.
Other questions not listed on the questionnaire for the software users but necessary to obtain a clearer picture
of the state of the software performance in Nigeria were also asked.

The questions were open and close-ended with frequent probing to elaborate and clarify meaning. Responses
were precise in identification of factors required. The Head of IT/ Heads of Operation of the neighboring
software firms to the University metropolis were informally interviewed.

The duration of each interview was between thirty to forty-five minutes. The interviews were not rushed and
the interviewees were allowed enough time to express their opinions. All interviews were conducted at the
interviewees’ offices. All respondents were promised protection of privacy and confidentiality.

The interviewees also gave their consent that the result can be published as long as the agreement of
confidentiality and secrecy is maintained. The interview sessions demanded considerable skills which
included avoiding one’s own constructions into the interview, rather, allowing the interviewees to speak,
determining the people to be interviewed, employing effective listening techniques and reflecting back on
what a participant said, looking for opportunities to clarify meaning and evaluate the interviews.

At the end of the studies, I was able to identify the lapses, errors, mistakes, assumptions and realities taken
place in the exercise of software development projects in Nigeria. Also, with the information obtained from
the investigations and studies, precise analysis was made and I was able to compare the ideal situations and
realities in each software development project.

Another important factor I observed is that there is always a conflict between developer’s view and users’
priorities. Common users share different views of software systems from the power users and also power
users share different views from developers. This is the ultimate problem that this research is applied to
solve (i.e bridging the gap between the user’s priorities and developer’s views).

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

337

Table 8. The above table reflects the data gathered from our investigation from the power users. The table represents the level of performance of each software
quality in their software systems

Analysis of software qualities present in the software systems used by respondents
Quality (S/N) EX % of Ex V.G % of

V.G
Good % of

Good
Poor % of

Poor
Very
Poor

% of
Very
Poor

No % of No

Understandability 3 21.4 9 64.3 2 14.3
Completeness 6 42.9 3 21.4 4 28.6 1 7.1
Conciseness 6 42.9 4 28.6 2 14.3 1 7.1 1 7.1
Interoperability 6 42.9 4 28.6 1 7.1 1 7.1 2 14.3
Reusability 1 7.1 8 57.1 1 7.1 4 28.6
Integrability 7 50.0 4 28.6 3 21.4
Portability 8 57.1 2 14.3 2 14.3 1 7.1 1 7.1
Consistency 7 50.0 5 35.7 2 14.3
Maintainability 7 50.0 4 28.6 1 7.1 1 7.1
Testability 6 42.9 4 28.6 1 7.1 3 21.4
Usability 9 64.3 3 21.4 1 7.1 1 7.1
Reliability 5 35.7 7 50.0 1 7.1 1 7.1
Efficiency 7 50.0 4 28.6 2 14.3 1 7.1
Security/Integrity 7 50.0 3 21.4 3 21.4 1 7.1

Notable Keys: EX = Excellent; V.G = Very Good; % of = Percentage of

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

338

Table 9. Also the above table reflects the data gathered from the respondents who are interested in
optimizing one or more software qualities in their software systems.

Indication of interest in optimizing siftware qualities

Qualities (S/N) Yes, I want it
optimized

Percentage of yes No, it is not
necessary

Percentage of no

Understandability 9 64.3 5 35.7
Completeness 7 50.0 7 50.0
Conciseness 7 50.0 7 50.0
Interoperability 9 64.3 5 35.7
Reusability 6 42.9 8 57.1
Integrability 8 57.1 6 42.9
Portability 8 57.1 6 42.9
Consistency 9 64.3 5 35.7
Maintainability 10 71.4 4 28.6
Testability 7 50.0 7 50.0
Usability 9 64.3 5 35.7
Reliability 9 64.3 5 35.7
Efficiency 9 64.3 5 35.7
Security/Integrity 10 71.4 4 28.6

The following table indicates the number of power user companies who prefer a better software package(s)

Table 10. Signifying users who prefer a better software packages

 Frequency Percentage
Yes 8 57.1
No 6 42.9
Total 14 100.0

The following table indicates the number of power users companies who would want to change their
software developers due to one reason or the other;

Table 11. Indicating the power user company having interest in changing their software developers

 Frequency Percentage
Yes 1 7.1
No 13 92.9
Total 14 100.0

At the end of the informal interview, I was able to confirm that the power users’ point of view of the
software systems is close to what their vendors (software developers) said about the performance and
functionalities of software systems. The software developers have always been found to be exaggerative
about their products and would always want to preach good messages about their products. Hence, the power
users’ inherently share their view about software performance because both parties always work
collaboratively to maintain their software products.

On the other hand, common user’s views are conflicting to the software developers and their corresponding
power users’. This is because they are always at the receiving end of any lapses, mistakes, error and
misconception undertaken during every software development project. As such, they are very excited to
relay information about their software failures to any researcher who wants to embark on a project relating to
software failures and optimization.

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

339

As a result of the above reasons, I concluded in using the common users’ view and analysis as the basis for
the research. I later proceeded to identifying the supportive factors and problems associated with each
software quality. Using the requirement negotiation processes embedded in force field analysis, I was able to
establish a bench-mark that forms a foundational model for every software development project.

10.6 Validity of Research Instruments

The interviews questions and questionnaires were presented to the researcher’s supervisor that made certain
modifications, corrections and directives, which were effected before the research instrument was finally
administered.

10.7 Result and Interpretation

In the section 10.1, I explained different views of Software Stakeholders: The Software Developers,
Software Power Users and the Common Users. I also gave the definition of Power Users as the category of
users who are making use of the software systems to render services for the populates and the common users
as those who are making use of the services rendered by the power users.

Furthermore, I narrated my experiences as regards the opinions of different stakeholders. The power users
often shared “inherited views and beliefs” about software systems with developers because both of them also
shared the responsibility of maintaining software systems. As such, power users are in most cases believe
whatever their developers say about the software systems.

On the contrary, the common users had conflicting beliefs about the performance of the software systems.
This was shown from the analysis of the data which revealed that most common users are not satisfied with
the current level of performance of the existing software systems.

I therefore deduced from the findings that the common users had honest views on the performance of
software systems because they are always at the receiving end. They notice every lapses, failure,
weaknesses, and mistakes incurred in the software systems. As a result of the above reasons, I decided to
walk in line with the views of the common users.

My proposed model of software development embraces the use of win-win software development model.
This is because it is only the win-win software development model that incorporates the requirement
negotiation process which is a significant tool in bridging the gap between the user’s views, I decided to map
these views into the second sector of win-win spiral model.

I believe the most effective way of solving the enumerated problem of software systems’ performance is to
identifying the users motivations, needs and desires as well as the software developers’ priority, using the
requirement negotiation process embedded in win-win software development model, it would be easy to
shed off the unprofessional practices often indulged by the power users as well as unethical pattern of usage
of the common users. Also, using this model one can reinforce the software development practices and
pattern of usage that support the effective and efficient performance of software systems. Before discussing
on the use of win-win software development model, I will like to give some explanations on this model.

11 Details of Win-win Spiral Software Development Model

The developed Win-win Spiral Model [8] uses the theory W (win-win) approach [6] to converge on a
system’s next-level objectives, constraints, and alternatives. In Fig. 1, The Theory W approach involves
identifying the system’s stakeholders and their win conditions, and using requirement negotiation process to
determine a mutually satisfactory set of objectives, constraints, and alternatives for the stakeholders. The
following step reflects the mode of operation of win-win spiral model of software development.

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

340

11.1 The Win-win Spiral Model of Software Development

11.1.1 Determine objectives

Identify the system life-cycle stakeholders and their win conditions. Establish initial system boundaries and
external interfaces.

11.1.2 Determine constraints

Determine the conditions under which the system would produce win-lose or lose-lose outcomes for some
stakeholders.

11.1.3 Identify and evaluate alternatives

Solicit suggestions from stakeholders. Evaluate them with respect to stakeholders’ win conditions.
Synthesize and negotiate candidate win-win alternatives. Analyze, Asses, and resolve win-lose or lose-lose
risks. Record Commitments and areas to be left flexible, in the project’s design record and life cycle plans.

11.1.4 Cycle through the spiral

Elaborate win conditions, screen alternatives, resolve risks, accumulate appropriate commitments, and
develop and execute downstream plans.

Fig. 1 Illustrates the win-win Spiral Model. The original Spiral Model had four sectors, beginning with
“Establish next-level objectives, constraints, alternatives.” The two additional sectors in each spiral cycle, i.e
“Identifying next-level Stakeholders” and “Identifying Stakeholders’ win Conditions”, and the “Reconcile
win Conditions” portion of the third sector, provide the collaborative foundation for the model. They also fill
a missing portion of the original Spiral Model: the means to answer, “Where do the next-level objectives and
constraints come from, and how do you know they are the right ones?” The refined Spiral Model also
explicitly addresses the need for concurrent analysis, risk resolution, definition, and elaboration of both the
software product and the software process.

Fig. 1. The win-win spiral model

11.1.5 My main work in this research starts from the second to fourth sector of the spiral

I have been able to identify the stakeholders’ win conditions in my field survey (which is the second sector
of the spiral). In order to reconcile the stakeholders’ win conditions, establish the next level objectives,

3. Reconcile win conditions.
Establish next level
Objectives, constrains,
Alternatives.

2. Identify Stakeholders’
Win conditions

1. Identify
Next-level
 Stakeholders

6. Review Commitment,
Validate product and
Process definitions

4. Evaluate product and
Process alternatives.
Resolves Risks

5. Define next level of product and
Process-including partitions

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

341

constraints and alternatives, I introduced the concept of Force Field Analysis which views the requirement
negotiation process as a system comprising two main forces (Driving Forces and Restraining Forces). This
process constitutes the impact of this research on the third sector of win-win spiral model of software
development.

11.2 Resolving win Conditions- Establish Next Level Objectives, Constraints and
Alternatives

As specified before, the third and the fourth sector would be looked into in this section. Here, we tried to
identify the supporting factors and the constraints associated with each software quality highlighted and used
requirement negotiation process to establish a benchmark (win-win condition) that satisfies the developers
and the users via force field analysis. Before discussing how it was used in this project, I will like to explain
the concept of force field analysis.

12 Incorporating Force Field Analysis and Its Concepts

Force Field Analysis was a concept firstly pioneered by a Social Psychologist, Lewin Kurt [5]. It was later
incorporated in Physics to show-case the supporting forces and restraining forces against a proposed project.
It is an important concept mostly used by project managers for building an understanding of the forces that
will drive or resist a proposed change. Force Field Analysis helps to weigh the importance of the factors
relating to a particular decision and to know whether a plan is worth implementing. It is a specialization
method of weighing the pro and cons.

By carrying out the analysis, one can plan to strengthen the forces supporting a decision, and reduce the
impact of opposition to it.

12.1 A Conceptual Semantics of Force Field Analysis

The analysis of a force field can be made easy using a force field flow chat. The chat is derived from the
work of social psychologist, Lewin Kurt. Acoording to Lewin’s theories, human behavior is caused by
forces, beliefs, expectations, cultural norms, and the like-within the “life space” of an individual or society.
These forces can be positive, urging us towards a behavior, or negative, propelling us away from a behavior.
A force field diagram portrays these driving forces and restraining forces that affect a central question or
problem.

Fig. 2. Lewin kurt’s model on force-field analysis

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

342

12.1.1 Driving forces

Driving forces are those forces affecting a situation that are pushing a particular decision; they tend to
initiate a change and keep it going. Improving productivity in a work group, pressure from a supervisor,
incentives earnings, and competition may be examples of driving forces.

12.1.2 Restraining forces

Restraining forces are forces acting to restrain or decrease the driving forces. Apathy, hostility and poor
maintenance of equipment may be example of restraining forces against increased production.

12.1.3 Equilibrium

Equilibrium is reached when a sum of the driving forces equal is the sum of the restraining forces. In my
example, equilibrium represents the present level of productivity, as shown in Fig. 3 below;

Fig. 3. A scientific interpretation of Lewin Kurt’s model

This equilibrium, or present level of productivity, can be raised or lowered by changes in the relationship
between the driving and restraining forces. In order to relate the concept of force field analysis to the on-
going project, my procedure demands looking into those software features and qualities in today’s software
systems one-by-one and apply force field analysis concept aimed at improving the necessary software
qualities in the examined software package or system. The force field analysis is to determine the supporting
forces and restraining forces that are significantly affecting the development of a good quality software
system. Force field analysis can help to improve the quality of a software system in two ways:

i. Reduce the strength of the forces opposing a software project
ii. Increase the strength of the supportive forces of a software project

I proceeded by examining the necessary software qualities together with their associated win-conditions one
by one and apply force field analysis concept on them. On each side of the force field analysis, I attach a
total of eight (8) points (e.g eight-point value is attached to the supporting force(s) and the restraining

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

343

force(s)of the force field analysis respectively). A mathematical notation was later developed to display the
overall negotiation process on the restraining forces and the overall improvement sequel to the adoption of
force field analysis. I then concluded the research by giving a framework or model of how each of the
examined software systems should be designed and developed, suggesting the procedures to follow before,
during and after the software development process. The first software quality to examine is
Understandability. Force field Analysis can be applied to this quality as follows;

Supporting Forces (Reasons) Restraining Forces (Limitation)

If we are to assign eight points to both the supporting forces and the restraining forces respectively. The
analysis goes as follows:

 Adequate training for staff increases cost but also enhances knowledge of staff (+1,-1, strength to
the restraining forces but also take care of the limitation of unskilled workers)

 Improve speed of production and reduce work overtime (+1, strengthen to the supporting forces)
 Use of software components authorized by the appropriate organization (ISO) only by the software

developers and experts that are skilled enough in developing a software package will take care of
unauthorized software components and the engagement of unskilled workers, (-2, reduce the
strength of the restraining forces)

The Result:

In the end, the ratio between the supporting forces and restraining forces on software understandability has
changed through this analysis from 8:8 to 10:7. Hence, there is a considerable improvement.

Second on the list is Completeness

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The System needs to be traceable

The System needs to be consistent

System Specification has to be correct

Conflicting System Requirements

Irregularity in Customer’s Demand

Conflicting Programming Languages

Cost
Software System has to be compatible

Completeness

Understandability

Lack of adequate knowledge in
workers

Wrong Software Development Model

Unauthorized Software Components

Cost of Training Staff

The System needs to be consistent

The System needs to be well-
structured

The Software Components needs to
be authorized by the appropriate body

(ISO)

The organization needs to improve on
the speed of production

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

344

If we are to assign eight points to both the supporting forces and the restraining forces respectively. The
analysis goes as follows:

 It is costly to make a complete software product (+1, reinforcing the restraining forces)
 Making use of win-win software development model with the embedded software requirement

negotiation process in the model will checkmate irregularities in customer’s demands (-1, reducing
the strength of the restraining forces)

 Making use of software component authorized by international standard organization (ISO) will
take care of different vendor specification because they are all authorized by the same authorizing
body and as such, will accommodate or permit the same range of functional requirements (+1,-1
reducing the strength of the restraining forces and increasing the strength of the supporting
forces)

 Making use of a software development model that will accommodate a comprehensive deliverable
for each stage of software development will help refine the needs and the requirements (i.e
specification) accurately and will also enhance consistency, (+2, reinforcing the supporting
forces)

 Making use of a compatible programming languages or conventional programming languages that
has extensive library facilities will help incorporate old programming languages e.g Fortran 66-to-
77-to Fortran 7x et.c(-1, reducing the restraining forces)

The Result

In the end, the ratio between the supporting forces and restraining forces on software completeness has
changed through this analysis from 8 :8 to 12 : 5 in favor of the supporting forces. Hence, there is a
considerable improvement

Third on the list is interoperability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

If we are to assign eight points to both the supporting forces and the restraining forces respectively. The
analysis goes as follows:

 Making use of a software packages using the same or upgrade operating systems e.g Window 2003-
to-2007-to-Vista, (-1, reducing the strength of the restraining forces)

 Installation of Gateway software for the conversion and translation of various programming
languages and operating systems into comprehensive and understandable ones (+1,-1, reducing the
strength of the restraining forces and increasing the strength of the supporting)

Systems needs to be in modules for
easy access

Systems need to be compatible with
different computer configuration

There should be data commonality

System Components are built by
different vendors

System Components use different
operating systems

System hardware/software are
configured in different languages

There are different architectural
designs

There should be gateways to
interpret instructions given by

different OS.

Interoperability

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

345

 Making use of a compatible programming languages or conventional programming languages that
has extensive library facilities will help incorporate old programming languages e.g Fotran 66-to-
Fortran 77-to-Fortran 7x et c., (-1, reducing the strength of the restraining forces)

 Making use of software component authorized by international standard organization (ISO) will
take care of different vendor specification because they are all authorized by the same authorizing
body and as such, will accommodate or permit the same range of functional requirements (-1,+1,
reducing the strength of the restraining forces and increasing the strength of the supporting
forces)

The Result: In the end, the ratio between the supporting forces and restraining forces on software
interoperability has changed through the analysis from 8:8 to 10 : 4 in favor of the supporting forces. Hence,
there is a considerable improvement

Fourth on the list is Reusability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

 Making use of intelligent software agents (+2, reinforcing the supporting forces)

 Making use of software components authorized by international standard organization (ISO) will
take care of different vendor specification because they are all authorized by the same authorizing
body and as such, will accommodate or permit the same range of functional requirements (-1,+1,
reducing the strength of the restraining forces and increasing the strength of the supporting
forces)

 Making use of a software packages using the same or upgradable operating systems e.g. Windows
2003-to-2007-to-Vista (-1, reducing the strength of the restraining forces)

 Installation of Gateway software for the conversion and translation of various programming
languages and operating systems into comprehensive and understandable ones (-1,+1, reducing the
strength of the restraining forces and increasing the strength of the supporting forces)

 Making use of a win-win software development model with appropriate delivery for each stage of
the developmental process will make the system accessible in modules (+1, reinforcing the
supporting forces)

Systems needs to be self-descriptive

Systems need to be compatible with
different computer configurations

Systems need to be in modules for
easy access

System Components are built by
different vendors

System Components use different
operating systems

Inappropriate software development
models

There are different architectural
designs

Adoption of Software reusable
components

Reusability

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

346

Fifth on the list is Integrability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Making use of software components authorized by International Standard Organization (ISO) will
take care of different vendor specification because they are all authorized by the same authorizing
body and as such, will accommodate or permit the same range of functional requirements (-1,
reducing the strength of restraining forces)

 Installation of Gateway Software (-1,+1, reducing the strength of the restraining forces and
increasing the strength of the supporting forces)

 Making use of an updated software development method and CASE tools e.g Web-centric software
development method (-1, reducing the strength of the restraining forces)

The Result
In the end, the ratio between the supporting forces and the restraining forces on software integrability has
changed through this analysis ratio 8:8 to 10:5 in favor of the supporting forces. Hence, there is a
considerable improvement.

Sixth on the list is Portability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

Developing system applications that
are self-descriptive

Developing systems that are self-
independent

Developing software systems that are
compatible with different mobile

devices

Software components are designed by
different incompatible programming

languages

Software packages may not relate
well with different operating systems

The software systems may not
perform optimally under different

hardware configuration

Changing Technologies

Developing applications that could
be supported by different script
languages e.g Dream waiver

Portability

Developing a compatible software
components that work with different

products

Making use of software components
authorized by International Standard

Organization (ISO)

Developing systems in modules for
easy access

Different software development
purposes & methods by different

vendors make system impossible to
integrate

System components are of different
incompatible programming

languages

Software components may not relate
well with different operating systems

Changing Technologies

Installation of Gateway Softwares

Integrability

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

347

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Making use of intelligent software agents will enhance certain level of autonomy in software
systems (+1, reinforcing the supporting forces)

 Making use of software component authorized by international standard organization (ISO) will
take care of different vendor specification because they are all authorized by the same authorizing
body and as such, will accommodate or permit the same range of functional requirements (+1,
increasing the strength of the supporting forces)

 Installation of Gateway software (-1, reducing the strength of the limiting forces)
 Installation of the appropriate software user-interface (-1, reducing the strength of the limiting

forces)

The Result

In the end, the ratio between the supporting forces and the restraining forces on software Portability has
changed through this analysis ratio 8:8 to 10:6 in favor of the supporting forces. Hence, there is a
considerable improvement.

The seventh quality is Consistency

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Making use of a conventional programming languages that could be easily be upgraded e.g. C-to -
C+ - to - C# (-1, reducing the strength of the limiting forces)

 Installation of gateway software and appropriate compilers (-1, reducing the strength of the
limiting forces)

 Making use of software components authorized by international standard organization (ISO) will
take care of different vendor specification because they are all authorized by the same authorized by
the same authorizing body and as such, will accommodate or permit the same range of functional
requirements(-1,+1, reducing the strength of the restraining forces and increasing the strength
of the supporting forces)

Developing a traceable/scalable
software with the previous ones

Developing software systems that offer
the same quality of service irrespective

of the location

Developing software systems that
are compatible with different

mobile devices

Different branches of companies mostly
subscribe their product from different

vendors- a practice that leads to different
computer configuration and performance

Software packages may not relate
well with different operating systems

Software packages may be of
different programming languages

Changing Technologies

Data stored in one database should
be made replicable to another

system irrespective of the software
vendors

Consistency

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

348

The Result

In the end, the ratio between the supporting forces and the restraining forces on software Consistency has
changed through this analysis ratio 8:8 to 9:5 in favor of the supporting forces. Hence, there is a
considerable improvement.

The Eighth Quality is Maintainability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis goes as
follows:

 More training for the development staff on software modification. This attracts more cost and bring extra
expenses (-1, strengthening the restraining forces, but also enhancing the supporting forces, +1)

 Making use of the appropriate CASE tools (Reinforcing the supporting forces, +1)

 Making use of updated web-centric software development method would enable easy software refactoring
(This also reinforces the supporting factor, +1)

 Making use of a software product or system built in the same computer configuration (Alleviating the
restraining forces, -1)

The Result

In the end, the ratio between the supporting forces and the restraining forces on software Maintainability has
changed through this analysis ratio 8:8 to 11:6 in favor of the supporting forces. Hence, there is a
considerable improvement.

Developing system that could be
modified to meet the changing

needs and requirements

Developing software systems that
are scalable and easy to upgrade

Software engineers should also be
proficient in validating the modified

software systems

Software maintainability attracts
more costs

Too much modification in the
software systems lead to bad-

structured systems that would not
conform to users specifications

efficiently

Most software engineers do not
have good projections of what the
software systems may need in the

future and as such would not
make good implementation for it

Software engineers need to know
the effects of modifications on the

software systems

Software engineers should know
the effects of modifications on the

software systems

Maintainability

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

349

The Ninth Quality is Testability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Adopting win-win software development model which demands requirement negotiation process
will resolve conflicting software requirements (-1, reducing the strength of the limiting forces)

 The software industries should encourage a development model that requires unit testing for various
software components before integration testing (-1, reducing the strength of the limiting forces)

 Making use of intelligent software agents (+1, reinforcing the supporting forces)
 Adopting well-structured programming languages to enhance modularity (+1, reinforcing the

supporting forces)

The Result

In the end, the ratio between the supporting forces and the restraining forces on software Testability has
changed through this analysis ratio 8:8 to 10:6 in favor of the supporting forces. Hence, there is a
considerable improvement.

The Tenth quality is Usability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

Software developers should have
adequate knowledge about system

performance

Software users should be
knowledgeable about optimal use of
software system. This improves the

speed of production

Software Systems need to be self-
descriptive

Lack of adequate knowledge of
software system by the users

Unskilled Professionals

Irregularity in users’ priority and
developers’ view

Users are frightened of new
technologies Designing and developing user-

friendly applications

Usability

Developing software systems that
are technically compatible with the

hardware

Designing software systems in
modules to enhance simplicity

Software Systems need to be self-
descriptive

 Integration testing sometimes
performs very well but later fail

Inappropriate software development
models may not encourage unit

Most IT experts are unskilled
professionals

Conflicting software requirement
specifications most often result in

poor software performance

Designing and developing user-
friendly applications

Testability

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

350

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Adequate training will enhance knowledge and improve skills in developmental staff (-2, reducing
the strength of the restraining forces and increasing the strength of the supporting forces, +1)

 Making use of recent CASE tools and software development method that allows users and clients to
view the software development growth (e.g Web- centric software development) and hence
contribute (-1,+1, reducing the strength of the restraining forces and increasing the strength of
the supporting forces)

 Application of self-descriptive, sensitive and intelligent software agents (+1, reinforcing the
supporting forces)

The Result

In the end, the ratio between the supporting forces and the restraining forces on software Usability has
changed through this analysis ratio 8:8 to 11:5 in favor of the supporting forces. Hence, there is a
considerable improvement.

The Eleventh quality is Reliability

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Adequate training for software developers and prospective users (+1,-1, raising the strength of the
supporting forces but also reducing the strength of the restraining forces)

 Making use of deliverables that will give good account of each stage of developmental process will
enhance accuracy in the software performance (+1, reinforcing the supporting forces)

 Engage in a win-win software developmental process that facilitate software requirement
negotiation activities (-1, reducing the strength of the limiting forces)

 Incorporation and installation of security-based applications that protect hackers and other intruders
would help sieve out instability in software performance (+1, reinforcing the supporting forces)

Developing robust software that is
able to pick-up exactly from where

it stopped during power outage

Picking interest in time-based
software that is able to perform its

task in spite of the unexpected

Installation of security-based
application that sieve out hackers

and other intruders from accessing
the network

Good number of developmental staff
is not optimally skillful

Most users do not know how to
describe what they do

Shorter” time- to- market” schedule

Inadequate funding and logistics at
the developmental stage

Designing and developing
applications that brings result in the

least time

Reliability

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

351

The Result:

In the end, the ratio between the supporting forces and the restraining forces on software Reliability has
changed through this analysis ratio 8:8 to 11:6 in favor of the supporting forces. Hence, there is a
considerable improvement.

The twelfth quality is Efficiency

 Supporting Forces (Reasons) Restraining Forces (Limitation)

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Designing and implementing a wait-for-graph to detect and break the possible “deadlocks” (-1,
reducing the strength of the limiting forces)

 Making use of a 3-phase commit protocol (-1, reducing the strength of the limiting forces)

 De-centralization of database to enhance a certain level of autonomy within each distributed system
(-1, reducing the strength of the limiting forces)

 The design and development of appropriate compilers for looping optimization that would enable
software programs run faster (-1, reducing the strength of the limiting forces)

The Result

In the end, the ratio between the supporting forces and the restraining forces on software Efficiency has
changed through this analysis ratio 8:8 to 8:4 in favor of the supporting forces. Hence, there is a
considerable improvement.

Developing efficient algorithms for
systems to perform its mandatory

tasks

There should not be wastage of
system resources e.g. memory,

bandwidth, time et.c

Developing applications that are fast
enough to deliver and bring result in

multi-user environments

Deadlock mostly occurs on
distributed systems in a multi-user

environment

There is always a problem on
distributed systems in a multi-user

environment

Heavy work-load reduce system
performance

There is always a problem of
communication bottle-neck in a

multi-user environment

Designing and developing
applications that brings result in the

least time

Efficiency

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

352

The Thirteenth quality is Integrity/Security

 Supporting Forces (Reasons) Restraining Forces (Limitation)

The Analysis

If we are to assign eight points to both supporting forces and restraining forces respectively. The analysis
goes as follows:

 Developing anti-virus to protect hackers’ attack (-1,+1, reducing the strength of the restraining
forces and increasing the strength of the supporting forces)

 Making use of a wireless technology like WLAN with good security features reduce unnecessary
interruption from hackers (+1, reinforcing the supporting forces)

 Software users should be assigned a username and a password only to legitimate users and
recognized by the software systems (-1, reducing the strength of the limiting forces)

 Making use of a “Taylor-made” (customized) software components during the development stage
would protect the software system from being easily predicted by outsiders who may want to know
what is going on within the organization (-1, reducing the strength of the limiting forces)

 Developing a strong fire-wall would prevent unnecessary entrance into a sensitive part of the
software systems (-1, reducing the strength of the limiting forces)

The Result

In the end, the ratio between the supporting forces and the restraining forces on software Efficiency has
changed through this analysis ratio 8:8 to 10:4 in favor of the supporting forces. Hence, there is a
considerable improvement.

13 Discussion of Result(s)

For each software quality, the abbreviated terms are represented as follows; Software quality for
understandability before it was subjected to force field analysis is represented as; QU1(i), after the analysis
QU2(f), and the resultant improvement is represented as QU1(I).

Designing, developing and
implementing a protective access
control for systems in a multi-user

environment

Incorporating inventory software
systems that implement audit feature

Implementing systems that are well
protected against virus and hackers

Developing anti-virus software attracts
more cost!

Some anti-virus wipe away both
unwanted and legitimate files

Hackers can easily get through the
software access using sophisticated

technologies

Most software systems are genetic in
nature and as such, hackers can
easily develop a mimic software
package that can reveal what is

going on in the corporate software
systems

Designing encryption keys that are
difficult to crack by hackers

Integrity/
Security

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

353

It therefore goes for other qualities as shown in the following table;

S/N Software quality Before the analysis After the analysis Resultant improvement
1 Understandability QU1(i) QU1(f) QU1(I)
2 Completeness QC1(i) QC1(f) QC1(I)
3 Interoperability QI1(i) QI1(f) QI1(I)
4 Reusability QR(i) QR(f) QR(I)
5 Integrability QI2(i) QI2(f) QI2(I)
6 Portability QP(i) QP(f) QP(I)
7 Consistency QC2(i) QC2(f) QC2(I)
8 Maintainability QM(i) QM(f) QM(I)
9 Testability QT(i) QT(f) QT(I)
10 Usability QU2(i) QU2(f) QU2(I)
11 Reliability QR(i) QR(f) QR(I)
12 Efficiency QE(i) QE(f) QE(I)
13 Integrity/Security QIS(i) QIS(f) QIS(I)

In line with the force field analysis model developed, it follows that the default value attached to
Understandability is 8:8 (for both the supporting and the restraining force(s)),

 Hence, QU1(i) = 8:8; and QU1(f) = 10:7
Therefore, QU1(I) is however (QU1(f) - QU1(i)) = (10/7 – 8/8) = 4/14

 Again, for the second software quality Completeness QC1(i) = 8:8 and QC1(f) = 12:5
QC1(I) = QC1(f) - QC1(i) = (12/5 – 8/8) = 7/5

 For the third software quality, Interoperability, QI1(i) = 8:8; QI1(f) = 10:4
QI1(I) = (QI1(f) - QI1(i)) = (5/2 -1) = 3/2

 For the fourth software quality, Reusability, QR(i) = 8:8; QR(f) = 13:5
QR(I) = (QR(f) - QR(i)) = (13/5 – 8/8) = 9/5

 The fifth software quality is Integrability; QI2(i) = 8:8 ; QI2(f) = 10:5
QI2(I) = (QI2(f) - QI2(i)) = (2-1) = 1

 For the sixth software quality; Portability, QP(i) = 8:8, QP(f) = 10:6
QP(I) = (QP(f) - QP(i)) = (5/3 – 1) = 2/3

 The seventh software quality is Consistency; and QC2(i) = 8:8, QC2(f) = 9:5
QC2(I) = (QC2(f) - QC2(i)) = (9/5 -8/8) = 4/5

 The eight software quality in consideration is Maintainability. Hence QM(i) = 8:8;
QM(f) = 11:6
QM(I) is however (QM(f) - QM(i)) = (11/6 – 8/8) = 5/6

 The ninth software quality is Testability with QT(i) = 8:8; QT(f) = 10:6
QT(I) = (QT(f) - QT(i)) = (5/3 – 1) = 2/3

 The tenth software quality is Usability with QU2(i) = 8:8; QU2(f) = 11:5
QU2(I) = (QU2(f) - QU2(i)) = (11/5 – 8/8) = 6/5

 The eleventh software quality is Reliability with QR(i) = 8:8; QR(f) = 11:6
QR(I) = (QR(f) - QR(i)) = (11/6 – 8/8) = 5/6

 The twelfth software quality is Efficiency with QE(i) = 8:8 , QE(f) = 8:4
QE(I) = (QE(f) - QE(i)) = (2-1) = 1

 The thirteenth software quality is Integrity/Security with QIS(i) = 8:8; QIS(f) = 10:4
QIS(I) = (QIS(f) - QIS(i)) = (5/2- 1) = 3/2

The overall improvement (QI) of the entire software system will therefore be gathered from the unit
improvement of all the highlighted software qualities as calculated above;
It therefore means that;

QI = ∑ [��1(�) + ��1(�) + ��1(�) + ��(�) + ��2(�) + ��(�) + ��2 (�) + ��(�) + ��(�) +
��2(�) + ��(�) + ��(�) + ���(�)]

QI = ∑ [
�

��
+

�

�
+

�

�
+

�

�
+ 1 +

�

�
+

�

�
+

�

�
+

�

�
+

�

�
+

�

�
+ 1 +

�

�
]

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

354

QI = 5 69/70 + 6 + 2 ½
QI = 14 (34/70)

Meaning that the force field analysis employed has proofed to be a vital tool, improving the current level of
software qualities in the order of 14!. This goes to mean that if the software developers work on the
supporting factors highlighted on the left side of the simulated force field model for each software quality,
the overall productivity of the current level of software systems is bound to increase by fourteen (14) times.

14 Conclusion

The main objective of the research was to design a software quality improvement model. In this project, we
highlighted 14 software qualities. On each software quality, the supporting and restraining factors were
highlighted based on our field research. I have been able to suppress the constraints and reinforce the
supporting factors using force field analysis concepts. However, my plight to improve each software feature
and quality will remain a wishful thinking if the software developers and users do not adhere to the
instructional procedures preached by the model designed from my analysis.

It should be clear from the model designed in this project that, if one uses a defined, reproducible process,
one can always improve on the software product by removing the cause of repeatable problems.
Nevertheless, we also need to be realistic. It is too difficult to develop software that would be free of all risk
and constraints. However, it should be a cardinal sin to reproduce old mistakes. It is a duty of a software
manager to always identify the chances of software improvements and constraints that limit the performance
of a software package.

This will definitely assist the software developers to prevent, detect and react accordingly to the constraints
that threaten the performance of a software package.

15 Recommendations

My recommendations would be based on the facts established in the analysis to improve each software
quality. Hence on each software quality featured in this project, I therefore recommend the following;

1. To improve on Understandability feature of software, I recommend that;

 The software system designed by the developer should be well- structured to accommodate new
features.

 The software developers should use software components authorized by the appropriate body e.g
(ISO).

2. To improve on Completeness attribute in a software product, I recommend that;

 The software system should be designed in models for easy access
 The software developers (or vendors) should make the new software products compatible with old

products and different computer configurations.
 There should be data commonality in the specification of different vendor’s software components.

3. To enhance Reusability feature in a software system, I recommend that;

 The software system should be self-descriptive
 The software system should be compatible with different computer configurations.
 The software package should be designed in modules for easy access.

4. To incorporate optimal Integrability feature in a software system, I recommend that;

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

355

 The software system should be made compatible with different vendor products.
 The software development process should be in modules to enhance incorporation of software

additives.

5. To improve on Portability feature of a software system, I recommend that;

 The software packages should be self-descriptive
 The software system should be self- independent
 The software system should be designed to perform very well irrespective of the hardware vendors.

6. To improve on Consistency feature in a software system, I recommend that;

 The software system should be traceable and scalable with the old software package.
 The software system should be designed to give the same service irrespective of the location
 Data stored in one database should be replicable to another system irrespective of the software

vendor.

7. To improve on Maintainability feature of a software system, I recommend that;

 The software system should be made scalable and easy to upgrade
 The software engineers should be proficient in validating the modified software systems.
 The software engineers should be enlightened to know the aftermath of modifications on the

software system

8. To improve on feature of Testability of a software product, I recommend that;

 The software system should be accurately compatible with the software system
 The software system should be designed in modules to enhance simplicity
 The software system should be self-descriptive
 The software developers should engage in using appropriate software development models.

9. In order to improve Usability feature of a software system, I recommend that;

 The users of software systems should have optimal knowledge of its constituent’s packages.
 Users should be encouraged and motivated about using new technologies.

10. To make software system more Reliable, I recommend that;

 The software system should be designed and developed robustly to be able to continue where it
stopped whenever there is a power outage without any loss of data.

 The software system should be made to perform its tasks accurately
 The developers should be given enough time to prepare and develop the software package. In fact,

it has been observed that short time-to-market schedule degrades the quality of a software product.

11. Also, to enhance Efficiency of a software system, I recommend that;

 There should be efficient use of system resources
 The software system should be designed capable to increase its speed of production in a multi-

user environment.
12. To improve on the Security/Integrity of a software system, I recommend that;

 The software systems, especially the inventory software packages should possess an audit feature.
 The software developers should incorporate strong and sophisticated security mechanisms such as

user authentication, device authentication as well as Advanced Encryption key Standard (AES).
These are to checkmate attacks and threats posed by hackers.

Daniel; BJMCS, 9(4): 328-356, 2015; Article no.BJMCS.2015.207

356

Finally, I wish to conclude this project saying that “the race of software quality has no finish line”. Thus,
for further quality improvement in Nigerian software development organizations, another important area
opened for future research is on the proposition of force-field analysis on software agent activities and
decisions. This would enable the software agents to be more independent, self-descriptive, social and
autonomous.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Royce WW. Managing the department of large software systems: Concepts and techniques. Proc.

Wescon, August 1970. Also available in proceedings, ICSE 9, IEEE/ACM; 1987.

[2] Boehm B. Software risk management. IEEE Computer Society Press, CA; 1989.

[3] Capper Jones. Assessment and Control of Software Risk; Prentice Hall, ISBN 0-13-741406-4;711;
1994.

[4] June Verner. Interim progress report. National ICT, Australia; 2006.

[5] Force Field Analysis for Project Selection. (August, 2014);
 Available:www.brighthub.com/Forcefieldanalysis; www.portal.bright.com/

[6] Boehm BW. Risk management focuses the project manager’s attentions on those portions of the

project most likely to cause trouble and compromise participants’ win conditions. IEEE Computer
Society Press, New York; 1989.

[7] Franca Egbokhare. Analysis of human interactions in software development. Computer Science
Section, Uniben’ Library, Benin city, Nigeria; 2006.

[8] Boehm B, Bose P. A collaborative spiral software process model based on theory W. Proceedings,
ICSP 3, IEEE, Reston; 1994.

© 2015 Daniel; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=1145&id=6&aid=9524

