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Abstract 
 

Consideration of alternative reservoir in reservoir network for flood control is born out of the need to 
provide a complete formulation and provide solution to problem associated with sediment inflow. A set of 

( 2)m  coupled nonlinear ODE is formulated for design and management of reservoir network for flood 

control. At steady state, the normal operating height of each reservoir in the network is determined. 
Linearizing the nonlinear systems and evaluating it at the obtained normal operating height give a clear 
and robust approach to determine the stability of the system. This approach to reservoir network 
modelling with inclusion of alternative reservoir gives a criterion for pump selection, flexible way of 
reservoir location and complete analysis of the network. 

 

Keywords: Mathematical modelling; reservoir; steady state; nonlinear system; ODE; linearization. 
 

1 Introduction 
 
Mathematical modelling has remained efficient and cost effective way of studying a real life problem [1]. 
Reservoir network modelling for flood control cannot be an exception in areas of design and location of 
reservoir for management and control of runoff in this era. The conflicting scenario of scarcity of potable 
water and flooding requires a huge investment in study of reservoir for water use and flood control. The 
interplay between the wet and dry season on one hand and effect of global warming on the other hand should 
therefore be a driving force to invest in sustainable approach to the reservoir management.  
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The diverse nature of environmental modelling has also made the reservoir management imperative to find a 
unified approach to its modelling and eventual analysis. The projection of an annual water to be controlled 
between 9000 km3 and 14000 km3 as discussed by [2] makes management of reservoirs in term of retention 
pond, detention pond and dams to be a necessity. The continuous industrialization and urbanization have 
also made most catchment to be more impervious which has increased the volume of runoff [3-5]. This 
increase has made it impossible for a single reservoir to militate against flooding, rather a network of 
reservoir [6-8]. The new age has also come with sophistication in weather forecast which makes flood 
forecasting a near accurate but still flood in on the increase. The missing link between the weather 
forecasting and increase in incident of flood is therefore an effective management of runoff for domestic use 
and flood control. 
 
The work reported in [9] utilizes the laboratory coupled tank approach to model interrelationship between 
reservoirs in a network for flood control, while the work in [10] determines the normal operating heights of 
the reservoirs in the network. The stability of the network reported in [11] is achieved through linearization 
of the nonlinear system. It was found that for a series connection of reservoirs, the Jacobian matrix 
associated with the linearized system is a tridiagonal diagonally dominant matrix with negative diagonal 
element. For a hypothetical connection of reservoirs on the other hand, the corresponding Jacobian matrix is 
only a diagonally dominant. The former has been proved to be stable [10], while the stability of the later still 
depends on the matrix entries. The results from [10,9] consider only water due to runoff which is the reason 
why there is an increase in flood cases, while the sediment consideration in [11] does not include alternative 
reservoir. The combine effect of increase in rain intensity, short inter-event time and long rain event have 
shown that the control reservoir (retention pond) may reach flood height over a short period. These are in 
addition to continuous sediment inflow which reduces the useful capacity of the reservoir. The excess water 
must be stored in location upland to reduce discharge to the connecting stream thereby preventing 
downstream from flooding. The model presented in this work therefore introduce alternative reservoir to 
serve as storage, control of water level and regulate activities in the retention pond. 
 

2 Mathematical Formulation 
 
The mathematical model presented in [9], which is modified for discharge through a weir in [10], is 
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and sediment consideration in [11] gives  
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(2) 

 
The sediment term in equation (2) consider the sediment inflow and sediment outflow through a weir. This 
equation does not give any information in respect of where the sediment flows to and the quantity discharged 
to the connecting stream. In order to achieve this, sediment transport in the entire catchment is captured from 
the inflow-outflow from the retention pond. The activities in the detention pond in a close cycle will not 
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affect the formulation since detention pond discharges its entire content after the rain event. Equation (2) is 
modified on the retention pond to give 
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area of sub-catchment 
jscA  by 
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where
jj scA A , 1 / 120k    and runoff coefficient is approximately 1 for complete pervious catchment 

[9]. However, the complete list of variables and parameters used in this work is presented in Table 1. The 
difference in the height obtained in equations (3) and (1) gives the effective height of retention pond in the 
nonlinear form. This height corresponds to the effective volume of the retention pond.  
 

Table 1. Variables and parameters 
 

Parameters                               Descriptions 

           Surface area of reservoir  j ( ) 

           Area of sub-catchment  j ( ) 

           Area of orifice j ( ) 

           Surface area of alternative reservoir ( ) 

           Runoff coefficient 

           Discharge coefficient of reservoir j 

           Infiltration rate ( ) 

           Acceleration due to gravity ( ) 

           Height of water in reservoir j in nonlinear form ( ) 

           Normal operating height of reservoir j ( ) 

           Height of water in the stream in nonlinear form ( ) 

          Normal operating height of the stream ( ) 

                                          Height of water in the alternative reservoir in nonlinear form ( ) 
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Table 1 continued…….. 

          Normal operating height of the alternative reservoir (

temp
mH

                                       Temporary height of retention pond (

          Steady state height (

          Height of water in reservoir 

          Height of water in the stream in linear form (

                                     Height of water in th

          Rain rate (

          Pump constant

          Length of weir (

          Average stream discharge (

          Characteristic length of the surface of reservoir (
          Number of r

          Time of concentration (

          Trap efficiency (%)

          Pump voltage (

 

3 Network Modification 
 
The network configurations will determine the complexities of the governing equations as the summation 
sign gives the number of inflow reservoir to the referenced reservoir. In 
connection shows the number of reservoirs that is the same level of the reservoir, while in the hypothetical 
reservoir in  
Fig. 2 it shows that the number of reservoirs is greater than the levels of the reservoirs. 
 

Fig. 1. Series 
 
The continuous flow of water to the stream especially when the inflow is higher than the stream discharges, 
the height of water in the stream continue to rise beyond its normal operating height. To guard against 
overflow, diversion of flow from retention pond becomes necessary as th
level. This diversion cannot be achieved through the free flow any longer as the water has to be pumped to 
the alternative reservoir. The inflow and outflow of water from the alternative reservoir and the outflow from 
the retention pond to the stream and alternative reservoir give a complete formulation. The inclusion of 
alternative reservoir is shown in  
Fig. 3. 
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Normal operating height of the alternative reservoir ( ) 

mporary height of retention pond ( ) 

Steady state height ( ) 

Height of water in reservoir j in linear form ( ) 

Height of water in the stream in linear form ( ) 

Height of water in the alternative reservoir in linear form (

Rain rate ( ) 

Pump constant 

Length of weir ( ) 

Average stream discharge ( ) 

Characteristic length of the surface of reservoir ( ) 
Number of reservoir in the network 

Time of concentration (s) 

Trap efficiency (%) 

Pump voltage (Volt) 
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Fig. 2. Hypothetical connection with 10 res

Fig. 3. Complete network in series and hypothetical 
 
Based on the inclusion of the alternative reservoir in both configurations as shown in 
Fig. 3, equation (3) becomes 
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with alternative reservoir 

                            

(5) 
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Equation (5) is a full description of the network with alternative reservoir, the stream and sediment inflow 
consideration in the network. This can be used to study the entire behavior of the network and each of the 
parameter that contributes to the complete description of the network. 
 

4 Determination of Normal Operating Height 
 
To study the stability of the system represented by equation (5), which is a general equation for reservoir 
network with sediment consideration and connecting stream. The steady state heights are the points in which 
stability of the network will be considered. In this context, the steady state heights are called the normal 
operating heights. Since the network configuration is dependent on the network topology, the hierarchy of 
the reservoirs in the network becomes necessary. A series network connection has the level of reservoir in 
the network the same for the number of reservoirs in the network. But, in a network with multiple reservoir 
inflows, the levels of the reservoirs are less than the number of reservoirs in the network. The hypothetical 
network in Fig. 3 has 10 reservoirs with 4 level hierarchies. This is a useful when studying the optimization 
of the network. 
 
The steady state heights of m connected reservoirs are obtained by solving the system of algebraic equations 

arising from equation (5) when 0jdH dt j  . Starting with reservoirs 1, 2, ..., 1j m   and 

considering the first level of reservoirs without inflow from previous reservoir, 0i  , equation (5) reduces 
to  
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For 0i  , the index of the connected reservoirs changes since the outflow of preceding reservoir is the 
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Where 1 2, ,..., r   count the number of reservoirs that flows into the connected reservoir. The term under 

the summation sign gives all the runoff 
iscA I  for 1,2,..., 1j m   which flows into reservoir j in addition 

to 
jscA I . Hence, the normal operating height of any reservoir between 1 to m-1 is 
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For j m , the runoff from sub-catchment 1 to sub-catchment j is summed up. This makes equation (7) to 
become 
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Equation (8) could have been sufficient to determine the normal operating height of the retention pond 

j m  but it has not taking into account the sediment inflow in the formulation. To do this we ssubstitute 

equation (8) into equation (5) for j = m 
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The inner summation sums up all runoff that flows into reservoirs in the referenced reservoir, the outer 
summation sums up the runoff that flows into the reservoir m and the runoff due to the sub-catchment m 
itself. This becomes  
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Relying on the value of   in [13], we take 2   and equation (9) becomes 
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Seeking the solution to equation (11), the discriminant must be either 
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It can be seen in equation (12) that solution does not exist when trap efficiency is 100%. From equation (10), 
the normal operating height for the mth reservoir is  
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For the alternative reservoir on the other hand, we can see that setting equation(5) to zero we have 
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(14) 

 
This gives the normal operating height of the alternative reservoir. It should be noted that the denominator of 

equation (14) will play an important role in pump selection, that is, 0
rn AV K B B     implies that  

 

rA

n

B
V K

B
                                                                                                                                (15) 

 

This is in addition to appropriate value of 
rAH , i.e. as  0,

r rn A AV K B B H      . This criterion 

can be used to site and select the available location of alternative reservoir. Equations (8), (13) and (14) will 
be used to get all the normal operating heights of the reservoirs in the network. 
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5 Determination of Stability of the Network 
 
The normal operating height is the steady state on which the stability of the network relies, linearizing the 
nonlinear system equation (5) around the normal operating height. This is done as follows;  
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For 
rj A , 
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and for j s  
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                                                                                              (19) 
 
The associated Jacobian matrix [14-17] obtained by linearizing equation (5) is a combination of equations 
(16), (17) and (18) which has been shown to be the best linear approximation of the nonlinear system 
[18,19]. 
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Where, 
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The coefficient matrix associated with equation (20) will produce ( 2) ( 2)m m   matrix with the coefficient 

given in equation (21) and depend on equations (8), (13) and (14). The Jacobian matrix is then used to test 
for stability of the network i.e. a stable network in this case shows that the normal operating heights obtained 
will guarantee free flow of water in the network. A series connection will produce a Jacobian matrix that is 
diagonally dominant tridiagonal matrix with negative entries. This additional property of tridiagonal matrix 
has been shown in [11] to be negative definite for series connection. This is an extension of the work 
reported in [20]. However, this cannot be said of hypothetical network which the Jacobian matrix is not 
tridiagonal. 
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6 Discussion of Result 
 
The extension of the model and results presented in [9,11] give rise to equation (5) which includes the 
introduction of alternative reservoir and sediment inflow in the network. These considerations make the 
determination of normal operating height lead to the quadratic equation (11). This is as a result of taking

2  which satisfy [2,3]   in [21,13]. The result equation (14) is unique due to flexibility it offers for 

the selection of the location of the alternative reservoirs in the face of other reservoir location criterion. 
Moreover, the criterion equation (15) is principally useful in selection of appropriate pump specification. 
Hence, the stability of the network is dependent on the catchment parameters as well as the sediment inflow 
which affect the normal operating height of the retention pond. A series network has been shown to produce 
a diagonally dominant tridiagonal with negative diagonal entries to be negative definite as a criteria for the 
stability of the network. This cannot be said of hypothetical network since the network configuration will 
determine the Jacobian matrix. The only information in respect of Jacobian matrix of hypothetical network is 
negative diagonal diagonally dominant matrix which either similarity transformation or other conversion can 
ascertain its stability properties. 
 

7 Conclusion 
 
A complete model for reservoir network formulation is achieved through system of nonlinear ODE. This 
model has set the pace for several studies ranging from stability, control and optimization of the network for 
flood management. Specifically, in this work, since [2,3]  , there is a need trying 3   which will produce 

a third order polynomial where appropriate criteria will be developed for a feasible solution to obtain the 

normal operating heights. Effort are on to determine the constants  and K from the stability study of the 

catchment using inflow characteristics. The result is catchment dependent and must be between 2   and 

3   
apart from this however, different case studies will eventually give a clear insight into most 

appropriate choice of  . 
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