

SCIENCEDOMAIN international

Coefficients Bounds for Certain Classes of Analytic Functions of Complex Order

B. A. Frasin¹, T. Al-Hawary² and M. Darus^{3*}

¹ Faculty of Science, Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan.
² Irbid National University, Faculty of Science and Technology, Department of Mathematics, P.O. Box: 2600 Irbid, Jordan.
³ School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor D. Ehsan, Malaysia.

Original Research Article

> Received: 18 March 2014 Accepted: 17 May 2014 Published: 30 June 2014

Abstract

In this paper, we determine coefficients bounds for functions in certain subclasses of analytic functions of complex order, which are introduced here by means of the nonhomogeneous Cauchy-Euler differential equation of order m. Our main result contain some corollaries as special cases.

Keywords: Analytic functions, Coefficient bounds; Starlike functions of complex order; Convex functions of complex order; Nonhomogeneous Cauchy-Euler differential equations 2010 Mathematics Subject Classification: 30C45

1 Introduction and Definitions

Let $\ensuremath{\mathcal{A}}$ denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

which are analytic and univalent in the open disk $\mathcal{U} = \{z : |z| < 1\}$. A function $f(z) \in \mathcal{A}$ is said to be

starlike of complex order $\gamma(\gamma \in \mathbb{C}^* := \mathbb{C} \setminus \{0\})$ and type $\beta(0 \leq \beta < 1)$, that is $f(z) \in \mathcal{S}^*_{\gamma}(\beta)$, if and only if

$$\mathsf{Re}\left\{1+\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-1\right)\right\} > \beta \qquad (z \in \mathcal{U}; \gamma \in \mathbb{C}^*),$$
(1.2)

*Corresponding author: E-mail: maslina@ukm.edu.my

and is said to be convex of complex order $\gamma(\gamma \in \mathbb{C}^*)$ and type $\beta(0 \le \beta < 1)$, denoted by $C_{\gamma}(\beta)$ if and only if

$$\mathsf{Re}\left\{1+\frac{1}{\gamma}\frac{zf''(z)}{f'(z)}\right\} > \beta \qquad (z \in \mathcal{U}; \gamma \in \mathbb{C}^*).$$
(1.3)

The classes $S^*_{\gamma}(\beta)$ and $C_{\gamma}(\beta)$ were introduced by the first author in [1]. Note that $S^*_{\gamma}(0) = S^*_{\gamma}$ and $C_{\gamma}(0) = C_{\gamma}$ the classes considered earlier by Nasr and Aouf [2] and Wiatrowski [3]. Also, $S^*_1(\beta) = S^*(\beta)$ and $C_1(\beta) = C(\beta)$ which are, respectively, the familiar classes of starlike functions of order $\beta(0 \le \beta < 1)$ and convex functions of order $\beta(0 \le \beta < 1)$.

Let $Q(\gamma, \lambda, \mu, \beta)$ denote the subclass of A consisting of functions f(z) which satisfy the following condition

$$\mathsf{Re}\left[1 + \frac{1}{\gamma} \left(\frac{z[\lambda \mu z^2 f''(z) + (\lambda - \mu)z f'(z) + (1 - \lambda + \mu)f(z)]'}{\lambda \mu z^2 f''(z) + (\lambda - \mu)z f'(z) + (1 - \lambda + \mu)f(z)} - 1\right)\right] > \beta$$
(1.4)

where $0 \le \mu \le \lambda \le 1; 0 \le \beta < 1; \gamma \in \mathbb{C}^*$ and $z \in \mathcal{U}$.

For $\mu = 0$, the class $\mathcal{Q}(\gamma, \lambda, \mu, \beta)$ reduces to the class $\mathcal{SC}(\gamma, \lambda, \beta)$ introduced by Altintaş et al. [4]. Clearly, we have $\mathcal{Q}(\gamma, 0, 0, \beta) = \mathcal{S}^*_{\gamma}(\beta)$ and $\mathcal{Q}(\gamma, 1, 0, \beta) = \mathcal{C}_{\gamma}(\beta)$.

In the present paper, we propose to derive some coefficient bounds for the class $\mathcal{Q}(\gamma, \lambda, \mu, \beta)$ and also for functions in the subclass $\mathcal{H}(\gamma, \lambda, \mu, \beta, m; \zeta)$ of \mathcal{A} , which consists of functions $f(z) \in \mathcal{A}$ satisfying the following nonhomogeneous Cauchy-Euler differential equation of order m:

$$z^{m}\frac{d^{m}w}{dz^{m}} + \binom{m}{1}(\zeta + m - 1)z^{m-1}\frac{d^{m-1}w}{dz^{m-1}} + \dots + \binom{m}{m}w\prod_{j=0}^{m-1}(\zeta + j) = g(z)\prod_{j=0}^{m-1}(\zeta + j + 1)$$
(1.5)

 $(w = f(z); g(z) \in \mathcal{Q}(\gamma, \lambda, \mu, \beta), \zeta \in \mathbb{R} \setminus (-\infty, -1]; m \in \mathbb{N}^* := \mathbb{N} \setminus \{1\} = \{2, 3, \dots\}).$

2 Coefficient Estimates

We begin by obtaining coefficient bounds for functions in the class $Q(\gamma, \lambda, \mu, \beta)$.

Theorem 2.1. Let the function $f(z) \in A$ be given by (1.1). If $f(z) \in Q(\gamma, \lambda, \mu, \beta)$, then

$$|a_n| \le \frac{\prod_{j=0}^{n-2} [j+2|\gamma| (1-\beta)]}{(n-1)! [1+(\lambda\mu n+\lambda-\mu)(n-1)]} \qquad (n \in \mathbb{N}^*),$$
(2.1)

where $0 \le \mu \le \lambda \le 1; 0 \le \beta < 1$, and $\gamma \in C^*$.

Proof. Let the function F(z) be defined by

$$F(z) = \lambda \mu z^2 f''(z) + (\lambda - \mu) z f'(z) + (1 - \lambda + \mu) f(z) \quad (f \in \mathcal{A}; z \in \mathcal{U}).$$
(2.2)

Then F(z) is analytic in \mathcal{U} with F(0) = F'(0) - 1 = 0. From (1.1) and (2.2) it is easily seen that

$$F(z) = z + \sum_{k=2}^{\infty} A_k z^k \qquad (z \in \mathcal{U}).$$

where

$$A_k := [1 + (\lambda \mu k + \lambda - \mu)(k - 1)]a_k \quad (k \in \mathbb{N}^*).$$
(2.3)

2517

Define the function p(z) by

$$p(z) = \frac{1 + \frac{1}{\gamma} \left(\frac{zF'(z)}{F(z)} - 1\right) - \beta}{1 - \beta}$$

or, equivalently,

$$zF'(z) - F(z) = \gamma(1 - \beta)(p(z) - 1)F(z)$$
(2.4)

then $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is analytic in \mathcal{U} and $\mathsf{Re}\{p(z)\} > 0$. Therefore, we have $|c_n| \leq 2$ $(n \in \mathbb{N})$. From (2.4), it follows that

$$(n-1)A_n = \gamma(1-\beta)(c_{n-1}+c_{n-2}A_2+\cdots+c_1A_{n-1}).$$

In particular, for n = 2, 3, 4, we have

$$\begin{aligned} |A_2| &\leq 2 |\gamma| (1-\beta), \\ |A_3| &\leq \frac{2 |\gamma| (1-\beta) [1+2 |\gamma| (1-\beta)]}{2!}, \end{aligned}$$

and

$$|A_4| \le \frac{2|\gamma|(1-\beta)[1+2|\gamma|(1-\beta)][2+2|\gamma|(1-\beta)]}{3!}$$

respectively. Thus, by using the principle of mathematical induction, we obtain

I

$$A_n| \le \frac{\prod_{j=0}^{n-2} [j+2|\gamma|(1-\beta)]}{(n-1)!} \quad (n \in \mathbb{N}^*).$$
(2.5)

From (2.3) it is clear that

$$A_n = [1 + (\lambda \mu n + \lambda - \mu)(n-1)]a_n \quad (n \in \mathbb{N}^*).$$
(2.6)

Now the inequality (2.1) follows immediately from (2.5) and (2.6). This completes the proof of Theorem 2.1. $\hfill\square$

Putting $\mu = \lambda = 1$ in Theorem 2.1, we get the following corollary.

Corollary 2.2. Let the function $f(z) \in A$ be given by (1.1) and satisfies the condition

$$Re\left[1 + \frac{1}{\gamma} \left(\frac{z[z^2 f''(z) + f(z)]'}{z^2 f''(z) + f(z)} - 1\right)\right] > \beta$$
(2.7)

then

$$|a_n| \le \frac{\prod_{j=0}^{n-2} [j+2|\gamma| (1-\beta)]}{(n^2 - n + 1)(n-1)!} \qquad (n \in \mathbb{N}^*),$$
(2.8)

where $0 \leq \beta < 1$, and $\gamma \in C^*$.

Putting $\mu = 0$ in Theorem 2.1, we get the following result obtained by Altintaş et al. [5].

Corollary 2.3. Let the function $f(z) \in A$ be given by (1.1). If $f(z) \in SC(\gamma, \lambda, \beta)$, then

$$|a_n| \le \frac{\prod_{j=0}^{n-2} [j+2|\gamma| (1-\beta)]}{(n-1)! [1+\lambda(n-1)]} \qquad (n \in \mathbb{N}^*),$$
(2.9)

2518

where $0 \le \lambda \le 1$; $0 \le \beta < 1$, and $\gamma \in C^*$. Finally, we prove the following theorem.

Theorem 2.4. Let the function $f(z) \in A$ be given by (1.1). If $f(z) \in \mathcal{H}(\gamma, \lambda, \mu, \beta, m; \zeta)$, then

$$|a_n| \le \frac{\prod_{j=0}^{n-2} [j+2|\gamma|(1-\beta)] \prod_{j=0}^{m-1} (\zeta+j+1)}{(n-1)! [1+(\lambda\mu n+\lambda-\mu)(n-1)] \prod_{j=0}^{m-1} (\zeta+j+n)} \qquad (m,n\in\mathbb{N}^*),$$
(2.10)

where $0 \le \mu \le \lambda \le 1; 0 \le \beta < 1; \gamma \in C^*$ and $\zeta \in \mathbb{R} \setminus (-\infty, -1]$.

Proof. Let the function $f(z) \in A$ be given by (1.1). Also let

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in \mathcal{Q}(\gamma, \lambda, \mu, \beta).$$

Then from (1.5), we get

$$a_n = \begin{pmatrix} \prod_{\substack{j=0\\m-1\\ j=0}}^{m-1} (\zeta+j+1) \\ \prod_{j=0}^{m-1} (\zeta+j+n) \end{pmatrix} b_n \qquad (n \in \mathbb{N}^*; \zeta \in R \setminus (-\infty, -1])$$

Thus, by using Theorem 2.1, we readily obtain the inequality (2.10).

Putting $\mu = \lambda = 1$ in Theorem 2.4, we get the following corollary.

Corollary 2.5. Let the function $f(z) \in A$ be given by (1.1). If f(z) satisfies the equation (1.5) and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ satisfies the condition (2.7), then

$$|a_n| \le \frac{\prod_{j=0}^{n-2} [j+2|\gamma| (1-\beta)]}{(n^2-n+1)(n-1)!} \prod_{j=0}^{m-1} (\zeta+j+1) \qquad (m,n\in\mathbb{N}^*),$$
(2.11)

where $0 \leq \beta < 1; \gamma \in C^*$ and $\zeta \in \mathbb{R} \setminus (-\infty, -1]$.

Putting $\mu = 0$ and m = 2 in Theorem 2.4, we get the following result obtained by Altintaş et al. [5].

Corollary 2.6. Let the function $f(z) \in A$ be given by (1.1). If f(z) satisfies the nonhomogeneous Cauchy-Euler differential equation of order 2, given by (1.5) and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ satisfies the condition (2.7), then

$$|a_n| \le \frac{(\zeta+1)(\zeta+2)\prod_{j=0}^{n-2} [j+2|\gamma|(1-\beta)]}{(n-1)![1+(\lambda\mu n+\lambda-\mu)(n-1)](\zeta+n)(\zeta+n+1)} \qquad (n\in\mathbb{N}^*),$$
(2.12)

2519

where $0 \leq \lambda \leq 1; 0 \leq \beta < 1; \gamma \in C^*$ and $\zeta \in \mathbb{R} \setminus (-\infty, -1]$.

A similar work can also be referred to Eker et al. [6]. In this article they studied the Dziok-Srivastava operator.

Open problem: Is it possible to solve problems related to the Fekete-Szegö theorem as given in [7]? It is yet to be solved.

Acknowledgment

The second and third authors are partially supported by LRGS/TD/2011/UKM/ICT/03/02. We also would like to thank the referees for some suggestions to improve the content of the manuscript.

Competing Interests

The authors declare that no competing interests exist.

References

[1] Frasin BA. Family of analytic functions of complex order. Acta Mathematica Academiae Paedagogicae Nyíegyháziensis. 2006;22(2):179-191.

[2] Nasr MA, Aouf MK. Starlike functions of complex order. J. Natur. Sci. Math. 1985;1-12.

[3] Wiatroski P. On the coefficients of some family of holomorphic functions. Zeszyty Nauk. Uniw. Lődz Nauk. Mat.-Przyrod. 1970;2(39):75-85.

[4] Altintaş O, Oskan O, Srivastava HM. Neighborhoods of a class of analytic functions with negative coefficients. Applied Mathematics Letters. 2000;13(3):63-67.

[5] Altintas O, Irmak H, Owa S, Srivastava HM. Coefficient bounds for some families of starlike and convex functions of complex order. Applied Mathematics Letters. 2007;20:1218-1222.

[6] Eker SS, Seker B, Acu M. Coefficient bounds for some families of starlike and convex functions of complex order. General Mathematics. 2009;17(4):195-204.

[7] Khaled AA, Darus M. On the Fekete-Szegö theorem for the generalized Owa-Srivastava operator. Proceedings of the Romanian Academy-series A: Mathematics. 2011;12(3):179-188.

©2014 Frasin et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=583&id=6&aid=5128