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Abstract 
 
The paper deals with the effects of radiation and Soret number variation in the presence of heat 
source/sink on unsteady laminar boundary layer flow of a chemically reacting fluid along a 
semi-infinite vertical plate, taking the term Eckert number into account. A magnetic field of 
uniform strength is applied normal to the flow. The governing boundary layer equations are 
solved numerically, using Crank-Nicholson method and the simulation is carried out by coding 
in C-Programme. Graphical results for velocity, temperature and concentration fields and tabular 
values of Skin-friction, Nusselt and Sherwood numbers are presented and discussed at various 
parametric conditions. From this study, it is found that the Skin–friction, Nusselt number, 
temperature and velocity of the fluid increase in the presence heat source and for increasing 
values Eckert number (Ec).  

Keywords: Thermal diffusion (Soret), magnetic field, chemical reaction, Crank-Nicholson method, 
chemical reaction, radiative heat flux, heat source/sink. 

 

1 Introduction 
 
Several authors have dealt with heat flow and mass transfer over a vertical porous plate with 
variable suction, heat absorption/ generation, radiation and chemical reaction. Actually, many 
processes in engineering areas occur at high temperature and knowledge of radiation heat transfer 
becomes very important for the design of the pertinent equipment, Nuclear power plants, gas 
turbines and the various propulsion devices for air craft, missiles, satellites and space vehicles are 
examples of such engineering areas. In such cases one has to take into account the effects of 
radiation.   
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NOMENCLATURES 
 

ρ              Density   
Cp              Specific heat at constant pressure   
v                Kinematic viscosity   
k               Thermal conductivity   
 Gr              Free convection parameter due to temperature   
Gm              Free convection parameter due to concentration   
A              Suction parameter   
n               A constant exponential index   
D              Molar diffusivity   
NR                 Thermal radiation parameter   
M Magnetic parameter   
σ  Electrical conductivity  

mD
   

Mass diffusion coefficient  

TK  
Thermal diffusion ratio  

 mT
 

Mean fluid temperature  

 S      Heat source/sink parameter  
 Ec   Eckert number  

∗β  
Volumetric coefficient of expansion with concentration  

β      
Coefficient of volumetric thermal expansion of the fluid  

Kr            Chemical reaction rate constant   
Sc              Schmidt number   
T              Temperature   
 Pr             Prandtl number   
∈              Small reference parameter << 1   
So            Soret number   
Uo  Mean velocity   

Ra         
Rosseland radiation absorbtivity          

  

 
Several authors have considered effects of radiation on Newtonian flows. Perdikis et al. [1] 
illustrated the heat transfer of a micropolar fluid in the presence of radiation. Raptis [2] studied the 
effect of radiation on the flow of a micro-polar fluid past a continuous moving plate. Raptis et al. 
[3] studied the viscoelastic flow by the presence of radiation. Elbashbeshby [4] and Kim et al. [5] 
have reported the effects of radiation on the mixed convection flow of a micro-polar fluid. 
Chamkha et al. [6] analyzed the effects of radiation on free convection flow past a semi infinite 
vertical plate with mass transfer. Ganesan and Loganathan [7] studied the radiation and Mass 
transfer effects on flow of a viscous incompressible fluid past a moving cylinder. Ramachandra 
Prasad et al. [8] considered the effects of radiation and Mass transfer on two dimensional flow 
past an infinite vertical plate. Raptis [9] discussed the effect of radiation on steady flow of a 
viscous fluid through a porous medium bounded by a porous plate subjected to a constant suction 
velocity.  
 
Abdus Sattar and Hamid Kalim [10] investigated the unsteady free convection interaction with 
thermal radiation in the boundary layer flow past a vertical porous plate. Makinde [11] examined 
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the transient free convection interaction with thermal radiation of an absorbing-emitting fluid. 

Prakash and Ogulu [12]   have studied the effects of thermal radiation, time-dependent suction and 
chemical reaction on two-dimensional flow of an incompressible Boussinesq fluid. Moreover, 
when the radiative heat transfer takes place, the fluid involved can be electrically conducting in 
the sence that it is ionized owing to high operating temperature. In such case one cannot neglect 
the effect of magnetic field on the flow field. Taking magnetic field into account, Sharma et al. 
[13] discussed the effect of radiation on free convective flow, along a uniform moving porous 
vertical plate. Sharma et al. [14] have reported on the radiation effect with simultaneous thermal 
and mass diffusion in MHD mixed convection flow from a vertical surface with ohmic heating. 

Chaudhary and Preethi Jain [15] presented an analysis to study the effects of radiation on the 
hydromagnetic free convection flow of an electrically conducting micropolar fluid past a vertical 
porous plate through a porous medium in slip-flow regime. Takhar et al. [16] considered the effect 
of radiation on free-convection flow of a radiation gas past a semi infinite vertical plate in the 
presence of magnetic field. Raptis and Massalas [17] studied the magneto-hydrodynamic flow past 
a plate by the presence of radiation. Sudheer Babu and Satyanarayana [18] discussed the effects of 
the chemical reaction and radiation absorption in the presence of magnetic field on free 
convection flow through porous medium with variable suction. Dulal Pal et al. [19] has made the 
Perturbation analysis to study the effects thermal radiation and chemical reaction on magneto-
hydrodynamic unsteady heat and mass transfer in a boundary layer flow past a vertical permeable 
plate in the slip flow regime. Ibrahim et al. [20] analysed the effects of the chemical reaction and 
radiation absorption on transient hydro-magnetic free-convention flow past a semi infinite vertical  
permeable moving plate with wall transpiration and heat source. 
 
Due to the importance of Soret (thermal-diffusion) and Dufour (diffusion-thermo) effects for the 
fluids with very light molecular weight as well as medium molecular weight, several investigators 
like Eckert and Drake [21], Dursunkaya and Worek [22],  Anghel et al. [23], Olanrewaju and 
Makinde [24], Makinde [25], have studied and reported the results for these flows. In addition to 
this, Anand Rao et al. [26] analysed the effects of Viscous dissipation and Soret on an unsteady 
two-dimensional laminar mixed convective boundary layer flow of a chemically reacting viscous 
incompressible fluid, along a semi-infinite vertical permeable moving plate. Recently, The Soret 
and Dufour effects on unsteady MHD mixed convection flow past an infinite radiative vertical 
porous plate embedded in a porous medium in the presence of chemical reaction have been 
studied Sharma et al. [27]. More recently, Srihari and kesavareddy [28] have made the 
investigation to study the effects of Soret and Magnetic field on unsteady laminar boundary layer 
flow of a radiating and chemically reacting viscous incompressible fluid along a semi-infinite 
vertical plate. 
 
In most of the earlier studies there seems to be no significant consideration of the effects radiation 
and Soret in the presence of heat source/sink, which plays a vital role in maintaining heat transfer 
at desired level in the applications of Nuclear power plants, gas turbines and the various 
propulsion devices for aircraft, missiles, satellites and space vehicles. Fluid supports an 
exothermic chemical or nuclear reaction is very common today and the correct processes design 
requires accurate correlation for the heat transfer coefficients at the boundary surfaces. Despite of 
its increasing importance in technological and physical problems, the magneto-hydrodynamic 
flow of a dissipative fluid past an infinite plate have received much attention because of the non-
linearity of the governing equations. 
 
Hence based on the above discussion in the present paper a numerical attempt is made to study the 
effects of radiation and Soret number variation in the presence of heat source/sink on unsteady 
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laminar boundary layer flow of chemically reacting incompressible viscous fluid along a semi-
infinite vertical plate, taking the term viscous dissipation (Eckert number) in to account. A 
magnetic field of uniform strength is applied normal to the fluid flow.  
 

2 Mathematical Formulation 
  
An unsteady laminar, boundary layer flow of a viscous, incompressible, electrically conducting 
fluid along a semi-infinite vertical plate, in the presence of thermal and concentration buoyancy 
effects has been considered. The x'- axis taken along the plate in the vertically upward direction 
and y'-axis normal to it. A magnetic field of uniform strength applied along y' -axis. Further, due 
to the semi-infinite plane surface assumption, the flow variables are functions of normal distance 
y' and t' only. A time dependent suction velocity is assumed normal to the plate. Now, under the 
usual Boussinesq’s approximation, the governing boundary layer equations are: 
 
Continuity 
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Diagram 2.1. Schematic diagram of flow geometry 
 

The radiative flux ( qr) by using the Rosseland approximation [29] is given by 
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The boundary conditions suggested by the physics of the problem are 
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It has been assumed that the temperature differences within the flow are sufficiently small and T4 

may be expressed as a linear function of the temperature T. This is accomplished by expanding T4 
in a Taylor series about T∞∞∞∞  as follows [30] 
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Where   f(T)=T4 then  f'(T)=4T3, f''(T)=12T2                           
Simplifying (7), we get 
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In the above Taylors expansion, neglecting the higher order terms, we have     
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Using (8) in (5) and then (5) in (3), equation of Energy (3) is transformed to 
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Integration of continuity equation (1) for variable suction velocity, normal to the plate gives 
 

              ( )tnAeUv ′′+−=′ ε10                                  (10) 
where A is the suction parameter and εA is less than unity. Uo is mean suction velocity, which is a 
non-zero positive constant and the minus sign indicates that the suction is towards the plate. 
 
 Using the equation (10) and introducing the following non-dimensional quantities    
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into equations (1),(2),(4) and (9), we get the equations in non-dimensional form as follows   
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with the boundary conditions 
 

      
tntn eeu ε+=φε+=θ= 1,1,1    at y = 0 

0,0,0 →→→ φθu                     as y → ∞                                         (15) 
 
In order to establish a mathematical convenience of converging the solution at a finite point 
(η→1), equations (12)-(15) should be transformed to a new system of coordinates.  So, employing 
the transformation η=1-e-y on the equations (12)-(15), the following are obtained   
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with corresponding boundary conditions                                                      
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3 Method of Solution 
The equations (16)-(18) are coupled, non-linear partial differential equations whose exact solution 
is difficult to obtain, hence the problem is solved numerically, using the following finite 
difference formulae 
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into the equations (16), (17) and (18) and simplifying according to the Crank and Nicholson 
method , we get the following system of equations 
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with boundary conditions in finite difference form  
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Here ∆η and ∆t are mesh sizes along η and time t- direction, respectively. Index i refers to space 

and j for time.  
 
To obtain the difference equations, the region of the flow is divided into a grid or mesh of lines 
parallel to η and t-axe with ∆η=0.1 and ∆t=0.005. Solutions of difference equations are obtained 
at the intersection of these mesh lines called nodes. The finite-difference equations at every 
internal nodal point on a particular n-level constitute a tri-diagonal system of equations. These 
equations are solved by using the Thomas algorithm [31] and the simulation is carried out by 
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coding in C-Program. In order to prove the convergence of finite difference scheme, the 
computation is carried out for slightly changed values of ∆η and ∆t, and the iterations on until a 

tolerance of 810−  is attained. Negligible change is observed in the values of u, θ and φ .Thus, it is 
concluded that, the finite difference scheme is convergent and stable.  
 
From the technological point of view, after knowing the velocity, temperature and concentration 
profiles, it is important to know the skin-friction, rate of heat and mass transfer between the plate 
and the fluid. 
 
3.1 Skin-friction 
 
The Skin friction coefficient τ is given by 
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3.2 Nusselt Number 
 
The rate of heat transfer in terms of Nusselt number is given by 
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Diagram. 3.1. Grid meshing for finite difference method 
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3.3 Sherwood Number 
 
The rate of mass transfer in terms of modified Nusselt number is given by   
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4 Results and Discussion 
 
In order to get a physical insight into the problem, the numerical calculations for the distribution 
of the velocity, temperature, concentration, skin-friction coefficient, rate of heat and mass transfer 
across the boundary layer for various values of flow parameters such as heat source and sink 
parameter (S), Grashof number (Gr), Modified Grashof number (Gm), Magnetic parameter (M), 
Prandtl number (Pr) Schmidt number (Sc), Radiation parameter (NR), Soret number (So), Eckert 
number (Ec) and chemical reaction parameter (Kr) have been carried out. During the course of 
numerical calculations, to be realistic, the values of Prandtl number (Pr) are chosen to be 0.71, 7.0 
and 11.4 representing air, water at 200 C and water at 40 C respectively. Also Pr  =1.0 is chosen 
corresponding to electrolytic solution as the propagation of thermal energy through electrolytic 
solution in the presence of heat source, sink and magnetic field has wide range of applications in 
chemical engineering, aeronautical engineering and atomic propulsion science.  
 
The effects of Gr and Gm   in the presence of heat source on velocity field u are shown in the 
(Figs. 1 and 2) respectively. It is observed that an increase in Gr and Gm leads to increase in the 
velocity of the flow because favourable buoyancy force accelerates the flow. It is also observed 
that as the values of Gr (or) Gm   increases, the peak value of the velocity increases rapidly near 
the wall of the plate and then decay to the free stream velocity. Further, it is interesting to note that 
the fluid velocity increases in the presence of heat source, compared to absence of heat source. 
Effects of M and So in the presence of heat source on velocity field u are shown in (Fig. 3) and 
(Fig. 4), respectively. It can be inferred from figures that an increase in So leads to increase in the 
velocity, but an increase in M leads to decrease in the velocity. The presence of magnetic field in 
an electrically conducting fluid introduces a force called Lorentz force which acts against the flow 
if the magnetic field is applied normal to the fluid flow. This type of resistive force tends to slow 
down the flow field.   
 
(Fig. 5) depicts the velocity profile for various values of heat source and sink parameter (S) while 
(Fig. 10) shows the temperature profile for different values of Eckert number (Ec) and heat 
source/sink parameter (S). It is evident from the figures that the temperature and velocity increase 
with an increase in the heat source parameter (S). This result qualitatively agrees with expectation 
since the effect of heat generation is to increase the rate of heat transport to the fluid there by 
increasing the temperature of the fluid and also increasing its velocity. It is also noted that 
temperature and velocity of the fluid decrease in the presence of heat sink as heat absorption is to 
decrease the rate of heat transfer to the fluid. The analysis of (Fig. 10) reveals that the effect of 
increasing values of Eckert number is to increase temperature distribution in the flow region. This 
is due to the fact that heat energy is stored in the fluid due to the frictional heating.  
   
(Figs 6 and 9) are drawn for various values of Pr on velocity and temperature field respectively. A 
comparative study of the graph reveals that the velocity and temperature of the fluid decrease as 
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the value of Prandtl number increases. This is a good agreement with physical fact that an increase 
in Pr leads to decrease in the thermal boundary layer thickness. The reason underlying such 
behavior is that the higher Prandtl number fluid has relatively lower thermal conductivity. This 
results in the reduction of the thermal boundary layer thickness and thereby decreasing its 
velocity. From (Fig. 6) it is cleared that velocity of the fluid increases in the presence of source 
parameter while in the presence of sink it decreases.  
 
From (Figs. 7 and 8), an important observation noted that the temperature and velocity increases 
as the radiation parameter increases. This result can be explained by the fact that an increase in the 

radiation parameter RakTNR 316 3*
∞= σ , forgiven k and T∞, means a decrease in the 

Roseland radiation absorbtivity (aR). In view of equations (3) and (5), it is concluded that the 
divergence of the radiation heat flux ∂qr/∂y*, increases as (aR) decreases and this means that the 
rate of radiative heat, transferred  to the fluid increases and consequently the fluid temperature and 
hence the velocity of its particles also increases.  
 
(Figs. 11 and 12) display the effects of So  and Kr on concentration field respectively. A 
comparison of the curves in the figures shows that a decrease in the concentration distribution 
with the increase of Kr. From the graph, it is found that an increase in the Soret number So results 
in an increase in the concentrations of the fluid while an increasing values of the chemical reaction 
parameter there is a fall in the concentration of the fluid. 
 
Skin-friction coefficient, Nusselt and Sherwood numbers are presented (Tables 1, 2 and 3) 
respectively, for the both the cases of presence/absence of heat source and Eckert number. A 
comparative study of the numerical results in (Tables 1 and 2), reveal that Skin–friction and 
Nusselt number increase in the presence of heat source and Eckert number. This due to the fact 
that internal heat generation is to increase the rate of heat transfer to the fluid and increasing 
values Eckert number is to increase the temperature due to the frictional heating. Further, it is 
interesting to note that Skin-friction increases with increasing values of So, NR, Gr and Gm, but it 
decreases with increasing values of M, Pr and Sc. From table (3), it is observed that Sherwood 
number decreases in the presence of heat source and Eckert number. 
 

Table 1. Effects of Gr, Gm, Pr, Sc, Kr, NR, So and M on skin-friction coefficient 
 

Gr Gm Pr Sc Kr NR  So M τ  
S=0.0,Ec=0.0              
Previous [28]  

τ  
S=2.0,Ec=0.5  
Present    

 5.0 5.0 0.71 0.24 0.5 0.5 0.0 0.0 1.202          1.4032 
5.0          5.0          0.71                0.24 0.5 0.5 0.0 2.0 0.557          0.7413 
5.0 5.0 0.71 0.24 0.5 0.5 2.0 2.0 0.8394        0.9721 
5.0 5.0  0.71 0.24 0.5 1.0 2.0 2.0 0.9183        1.0523 
5.0 5.0 0.71 0.6 0.5 0.5 2.0 2.0 0.7601        0.8423 
5.0 5.0 7.0 0.24 0.5 0.5 2.0 2.0 0.3156        0.3838 
5.0 10.0 0.71 0.24 0.5 0.5 2.0 2.0 2.6542        2.7352 
10.0 5.0 0.71 0.24 0.5 0.5 2.0 2.0 2.0447        2.3597 
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Table 2. Effects of NR and Pr on Nusselt-number 
 

NR Pr Nu  S=0.0,  Ec=0.0 Previous [28]                       Nu  S=2.0, Ec=0.5 Present   
0.0 0.71 -1.4771                           -1.0807 
0.5 0.71 - 1.1621                           -0.8230 
0.5 7.0 - 4.2655                            -3.6770 
0.5 11.4 -5.3251                           -4.7594 

        
Table 3. Effects of Sc, Kr and So on Sherwood number 

 
Sc Kr So    Sh S=0.0, Ec=0.0  Previous[28]                     Sh S=2.0, Ec=0.5  Present                 
0.24 0.5 0.0 -0.5931               -0.59393 
0.24 0.5 2.0 -0.1156               -0.37159 
0.24 1.0 2.0 -0.1858              -0.43987 
0.6 0.5 2.0 -0.00291            -0.55924 

        
Fig 1. Effect of Grashof number Gr on velocity field u in the presence/absence of heat source 

(Gm=5.0, NR=0.5, Pr=0.71, Sc=0.22, Kr=0.5.So=1.0, Ec=0.5, M=1.0, ε=0.01, n=0.1, A=0.3 and t=1.0) 
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Fig. 2. Effect of Modified Grashof number Gr on velocity field u in the presence/absence of 

heat source 
(Gr=5.0, NR=0.5, Pr=0.71, Sc=0.22, Kr=0.5.So=1.0, Ec=0.5, M=1.0, ε=0.01, n=0.1, A=0.3 and t=1.0) 
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Fig. 3. Effect of Magnetic parameter M on velocity field u in the presence/absence of heat 
source 

(Gr=5.0,Gm=5.0,NR=0.5,Pr=0.71,Sc=0.22,Kr=0.5.Ec=0.5,So=1.0,ε=0.01 n=0.1, A=0.3 and t=1.0) 
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Fig. 4. Effect of Soret number So on velocity field u in the presence/absence of heat source  

(Gr=5.0,Gm=5.0,NR=0.5,Pr=0.71,Sc=0.22,Kr=0.5.Ec=0.5,M=1.0,ε=0.01, n=0.1, A=0.3 and t=1.0) 
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Fig. 5. Effect of heat source/sink on velocity field u            
(Gr=5.0,Gm=5.0,NR=0.5,Pr=0.71,Sc=0.22,Kr=0.5.So=1.0,Ec=0.5,M=1.0,ε=0.01, n=0.1, A=0.3 and 

t=1.0) 
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Fig. 6. Effect of Prandtl number Pr on velocity field u in the presence/absence of heat 
source/sink 

(Gr=5.0,Gm=5.0,NR=0.5,So=1.0,Sc=0.22,Kr=0.5.Ec=0.5,M=1.0,ε=0.01, n=0.1, A=0.3 and t=1.0)     
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Fig. 7. Effect of Radiation NR on velocity field u in the presence/absence of heat source/sink              
(Gr=5.0, Gm=5.0, So=1.0, Pr=0.71, Sc=0.22, Kr=0.5.Ec=0.5, M=1.0, ε=0.01, n=0.1, A=0.3 and t=1.0)  
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Fig. 8. Effect of Radiation NR on temperature field in the presence/absence of heat 

source/sink 
(Gr=5.0, Gm=5.0, So=1.0, Pr=0.71, Sc=0.22, Kr=0.5, Ec=0.5, M=1.0, ε=0.01, n=0.1, A=0.3 and t=1.0) 
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Fig. 9. Effect of Prandtl number Pr on temperature field (Gr=5.0, Gm=5.0, So=1.0, NR=0.5, 

S=2.0, Sc=0.22, Kr=0.5, Ec=0.5, M=1.0, ε=0.01, n=0.1, A=0.3 and t=1.0) 
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Fig. 10. Effect of of heat source/sink and viscous dissipation on temperature field 

(Gr=5.0, Gm=5.0, So=1.0, NR=0.5, Pr=0.71, Sc=0.22, Kr=0.5, M=1.0, ε=0.01, n=0.1, A=0.3 and t=1.0) 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

So=0.0

So=1.0

So=2.0

So=3.0

 
              

 Fig. 11. Effect of Soret number So on Concentration field   
               (Gr=5.0, Gm=5.0, NR=0.5, Pr=0.71, S=2.0, Sc=0.22, Kr=0.5, Ec=0.5, M=1.0, ε=0.01, n=0.1, 

A=0.3 and t=1.0)  
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Fig. 12. Effect of chemical reaction parameter Kr on Concentration field 

(Gr=5.0, Gm=5.0, NR=0.5, Pr=0.71, So=1.0, S=2.0, Sc=0.22, Kr=0.5, Ec=0.5, M=1.0, ε=0.01, n=0.1, 
A=0.3 and t=1.0) 

 
The results obtained are compared with those of Srihari and Kesavareddy [28] for Skin-friction, 
rate of heat and mass transfer in the absence of heat source/sink parameter S  and Eckert number 
Ec. The comparisons in all the cases are found to be in very good agreement. 
 

5 Conclusions 
 
Effects of Radiation and Soret number variation in the presence of heat source/sink on MHD 
unsteady laminar boundary layer flow of a chemically reacting incompressible viscous fluid along 
a semi-infinite vertical plate, is analysed. From this study the following conclusions are drawn. 
  

� The temperature and velocity of the fluid increase in the presence heat source.  
� Skin–friction and Nusselt number also increase in the presence of heat source and Eckert 

number. This due to the fact that effect of heat generation is to increase the rate of heat 
transport to the fluid thereby increasing the temperature and its velocity of the fluid  

� Increasing values Eckert number is to increase the temperature of the fluid. This result 
agrees with fact that heat energy is stored in the fluid due to the frictional heating. 

� An increase in So leads to increase in the velocity, but an increase in M leads to decrease 
in the velocity. 

� The effect of heat source/sink on temperature is more significant than in the case of 
velocity field. 

� Temperature and velocity increases as the radiation parameter increases. This due to the 
fact that an increase in the radiation parameter the rate of  radiative heat transferred  to 
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the fluid increases and consequently the fluid temperature and hence the velocity of its 
particles also increases 

� The results obtained are compared with those of Srihari and Kesavareddy [28] for, Skin-
friction, rate of heat and mass transfer in the absence of heat source/sink parameter S and 
Eckert number Ec. The comparisons in all the cases are found to be in very good 
agreement. 
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