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and serum levels in patients with
anorexia nervosa or obesity and
in lean individuals
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Context: The bone-derived adipokine lipocalin-2 is relevant for body weight

regulation by stimulating the leptin-melanocortin pathway.

Objective: We aimed to (i) detect variants in the lipocalin-2 gene (LCN2) which

are relevant for body weight regulation and/or anorexia nervosa (AN); (ii) describe

and characterize the impact of LCN2 andMC4R variants on circulating lipocalin-

2 level.

Methods: Sanger sequencing of the coding region of LCN2 in 284 children and

adolescents with severe obesity or 287 patients with anorexia nervosa. In-silico

analyses to evaluate functional implications of detected LCN2 variants. TaqMan

assays for rare non-synonymous variants (NSVs) in additional independent study

groups. Serum levels of lipocalin-2 were measured by ELISA in 35 females with
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NSVs in either LCN2 orMC4R, and 33 matched controls without NSVs in the two

genes.

Results: Fourteen LCN2-variants (five NSVs) were detected. LCN2-p.Leu6Pro

and p.Gly9Val located in the highly conserved signal peptide region may induce

functional consequences. The secondary structure change of lipocalin-2 due to

LCN2-p.Val89Ile may decrease solubility and results in a low lipocalin-2 level in a

heterozygotes carrier (female recovered from AN). Lean individuals had lower

lipocalin-2 levels compared to patients with obesity (p = 0.033).

Conclusion: Lipocalin-2 levels are positively associated with body mass index

(BMI). Single LCN2-variants might have a profound effect on lipocalin-2 levels.
KEYWORDS

Energy homeostasis, bone marrow, secondary structure of protein, GWAS, lean body
mass (LBM)
1 Introduction

Body weight regulation is based on energy intake and

expenditure. When energy balance is disturbed, a number of

disorders can ensue, such as obesity (1) and anorexia nervosa

(AN). Obesity is a global health hazard and is in adults

commonly defined with a body mass index (BMI, kg/m2) at or

above 30 kg/m2 (2–4), and with BMI at or above the 97th percentile

(5) in children and adolescents. AN is a life-threatening disorder

accompanied with severely low body weight (6) (DSM-IV (7) and

DSM-5 criteria (8). Genetic and environmental factors influence

energy homeostasis (9).

Lipocalin-2 was initially considered as an adipokine highly

expressed by murine fat cells (10) and later recognized as a bone-

derived hormone associated with appetite regulation (11). A study in

mice demonstrated that lipocalin-2 could reduce appetite and

decrease fat mass via crossing the blood-brain barrier and binding

to the melanocortin 4 receptor protein (MC4R) in the hypothalamus

(11). Mosialou et al. showed that MC4R is necessary for lipocalin-2 to

regulate appetite in a Mc4r knockout mouse model (11).

The MC4R plays an essential role in the leptin-melanocortin

pathway and thus in energy homeostasis (12). Mutations in theMC4R

gene (MC4R) display the most common cause of monogenic obesity

(13) and affect 2-4% of severely obese individuals (14). Patients with

AN show increased a-MSH-reactive IgG, leading to rapid MC4R

internalization and potentially improved satiety and reduced hunger

(15). The firstMc4r knockout mouse model was generated in 1997. A

dominant effect of Mc4r mutations of body weight was reported,

whereby the effect was more pronounced in female mice (16). In

humans, different mutations in MC4R have a major gene effect in

obesity (17–20). Up to now more than 160 different mutations in

MC4R had been reported mainly in severely obese individuals (12).

We had shown that MC4R and lipocalin-2 gene (LCN2)

mutations were detected in 2.42% and 0.84%, respectively, of

Spanish children with obesity. Some individuals with functionally
02
relevant mutations in MC4R or LCN2 were able to reduce their

BMI-SDS in a lifestyle intervention (21). We hypothesized that

mutations in MC4R or LCN2 may have an effect on the lipocalin-2

level and thus influence weight regulation.

Bone marrow, where lipocalin-2 is mainly expressed, consists of

red (hematopoietic) and yellow (adipose tissue) components.

Although lipocalin-2 can be secreted by both hematopoietic and

bone marrow adipose tissue (BMA) cell types, the expression level is

significantly higher in osteoblasts (22). Therefore, the expression

level of lipocalin-2 may be affected by the phase of accelerated

marrow adiposity accumulation and the total bone mass. BMI is a

proxy indicator for body weight without describing the

composition. Body weight is composed of body fat (BF) and lean

body mass (LBM). LBM has been declared to be positively

associated with measurements of bone mass or density for

decades (23, 24). Thus, we expect a correlation between lipocalin-

2 level and BMI or LBM.
2 Methods

2.1 Study population

2.1.1 Mutation screen and TaqMan assay
To detect variants in LCN2, 571 German individuals consisting

of (i) 287 females with diagnosed AN [acute or recovered,

diagnosed with DSM-IV criteria (7)], (ii) 284 children,

adolescents and young adults (younger than 25 years of age (25)

with (severe) obesity [91.7% individuals were severely obese with

BMI percentage ≥ 97th percentile (5)] were Sanger sequenced.

TaqMan assays for detected rare non-synonymous variants

(NSVs) were performed in additional independent study groups

consisting of (i) 170 German females with AN, (ii) 200 children or

adolescents with severe obesity (99.5% individuals younger than 25

years of age).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1137308
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zheng et al. 10.3389/fendo.2023.1137308
2.1.2 LBM calculation for all analyzed individuals
LBM was calculated for each individual with the equations

shown in the Supplementary Material (Method 1). The LBM

percentage (LBM%) refers to the percentage of LBM within the

total body weight.
2.1.3 ELISA assay
For the analysis of lipocalin-2 level in female individuals of

whom serum was available, we used (i) two heterozygous carriers of

NSVs in LCN2 (n = 2), (ii) individuals heterozygous for 12 MC4R

NSVs (n = 33) and (iii) matched (for disorder, sex, age (± 3 years),

LBM% (± 3%)) controls homozygous for a reference genotype at the

respective genes (n = 33).

MC4R NSVs were derived from our previous studies (Rajcsanyi

et al. unpublished data (14, 19, 26, 27), which contained mutation

screens for a total of 4,985 individuals of German descent. All

individuals involved in the LCN2 mutation screen and ELISA assay

were sequenced for MC4R variants in our previous studies.

Additional Sanger sequencing for LCN2 was performed for the

individuals for whom LCN2 genotypes were not available: (i) female

patients with AN (n = 7), (ii) children or adolescents with obesity (n

= 39), and (iii) healthy-lean individuals (BMI percentage ≤ 15th

percentile, n = 9).

Briefly, the 464 unrelated female patients with AN included 381

individuals with acute AN and 83 individuals with AN history were

recruited in our study. The patients with acute AN had a mean age

of 19.47 (SD = 7.68) years and a mean BMI of 15.6 (SD = 1.8) kg/m2.

The individuals recovered from AN had a mean age of 27.09 (SD =

9.88) years and a mean BMI of 20.56 (SD = 2.75) kg/m2. The

phenotype distribution of analyzed study groups is shown in

Table 1. All participants gave written informed consent in case of

minors their parents. The study was approved by the Ethics

Committees of the Universities of Aachen, Dresden, Essen,

Frankfurt, Hannover, Heidelberg, Marburg, Tübingen and

Würzburg, and was performed in accordance with the

Declaration of Helsinki.
2.2 Mutation screen

The transcript variant 1 (LCN2-201, ENST00000277480.7) of

LCN2 (Chr9: 128,149,071 ~ 128,153,453, GRCh38.p13) was extracted

from the Ensembl Database (28) (http://www.ensembl.org/index.html).

Its coding region was divided into four PCR fragments [(primers

located in the introns, Supplementary Material Method 2)]. The

polymerase chain reaction (PCR) amplified DNA samples were

sequenced unidirectional by Microsynth Seqlab GmbH (Göttingen,

Germany). All sequenced samples passed internal quality control and

were genotyped with SeqMan Pro software (v.11.0.0, DNAstar, Inc.,

Madison, WI, USA) by two experienced individuals independently.

Samples with variant pattern were confirmed with sequencing of the

other strand. Hardy-Weinberg Equilibrium (HWE) was performed for

all analyzed variants.
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2.3 In-silico functional analyses on
detected variants in LCN2 and MC4R

2.3.1 GWAS look-up for detected variants in
GWASs and linkage disequilibrium analysis

Detected variants with dbSNP numbers were looked up in the

GWAS for BMI by Pulit et al. (for females, males and combined

sexes) (29) and in the GWAS for AN byWatson et al. (30). The data

of variants located in the genomic region upstream and downstream

(±) 500kb of LCN2 was extracted from GWAS summary statistics

(Supplementary Material Tables 1, 2) and plotted in GraphPad

Prism 9.4.0. The detected LCN2 variants were analyzed for LD

scores with genome-wide significant variants in GWAS for BMI

(29) which were located in the genomic ± 500kb region in LD

matrix (31) (https://ldlink.nci.nih.gov/?tab=ldmatrix, population:

European, genotype data from 1000G Project). If the LD scores

between detected variants and GWAS hits were D’ > 0.6 and R2 >

0.3, the paired variants were analyzed for haplotype in LDpair (31)

(https://ldlink.nci.nih.gov/?tab=ldpair).

2.3.2 Conservation analysis on detected variants
The conservation analysis for detected single nucleotide LCN2

variants was performed by human LCN2 gDNA and 30 different

species from three superorders (ten primates, ten rodents and

related species, ten laurasiatherian, Supplementary Material

Table 3). The gDNA sequences align was utilized the cluster W

method in the software MegAlign by DNAStar, Inc. (version

10.1.0). The conservation percentiles (Cper.) were calculated for

all detected variants. The variants with a value of Cper. larger than

85% were identified as “highly conserved”.

2.3.3 Recruited in-silico tools analyses
All detected LCN2 variants and the MC4R variants involved in

ELISA analysis were analyzed for deleteriousness and mRNA splicing

pattern alteration due to nucleotide exchange, protein stability and

secondary structure variance caused by non-synonymous variants by

12 in-silico tools. The procedure of variants in-silico analyses can be

found in Supplementary Material Method 3. We then looked up

previous functional analyses for MC4R and classified the tested

mutation in our study into GOF (gain of function), RF (reduce

function), and LOF (loss of function).
2.4 ELISA assays for lipocalin-2
serum levels

The blood sampling of 35 females harboring LCN2 or MC4R

variants and 33 age and sex-matched controls without mutations in

these genes was performed in the morning after an overnight fast.

Serum samples were stored at -80°C and accurate temperature was

controlled by an in-house master display. Six serum samples (two from

LCN2-variant carriers, four from MC4R-variant carriers) were

measured twice. For the repeated samples mean values were

calculated. Circulating serum lipocalin-2 concentrations were
frontiersin.org
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measured using a quantitative sandwich enzyme immunoassay

(Human Lipocalin-2/NGAL Quantikine ELISA Kit, Catalog:

DLCN20, RRID: AB_2894833, R&D Systems, UK, Abingdon) and

optical densities were detected using the SpectraMax M5 microplate

reader (Molecular Devices Germany GmbH, Germany, Munich)

according to the manufacture’s instructions. The intra-assay

variation was < 4.4%, the inter-assay variation was < 7.9% and the

detection limit was 0.012 ng/ml (according to the product insert). The

95% confidence intervals (CI) for matched controls were calculated in

R studio (version: 2022.12.0 + 353 for MAC). ELISA results were

plotted in R studio by the “lattice” package (32). The evaluated samples

with phenotypes are shown in Supplementary Material Table 4.
2.5 TaqMan

The identified rare missense variants in LCN2 (p.Gly9Val,

rs147787222; p.Val89Ile, rs200876706; p.Arg174Ser, rs546790138)

were genotyped in larger study groups by performing TaqMan

assays (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The

phenotypes of the individuals used for the three mutated genotypes

determinations are summarized in Table 1.
2.6 Statistics

Association analyses between the detected variants and

phenotypes were performed with Fisher’s exact test (Supplementary

Material Method 4). Associations between LBM%, BMI and lipocalin-

2 levels were analyzed with non-parametric Spearman correlation

analyses. The differences in measurements for lipocalin-2 levels

between groups were tested with Mann-Whitney U or Kruskal-

Wallis 2-way ANOVA. Analyses were performed using IBM ® SPSS
® Statistics v29.0.0 for Windows. Exact two-sided significances were

calculated, the alpha level was set to 0.05. To control for the overall

type I error rate, Bonferroni correction was applied.
Frontiers in Endocrinology 04
2.7 Study procedure

Our study design is shown in the following workflow

figure (Figure 1).
3 Results

3.1 Detected LCN2 variants

We initially Sanger-sequenced the LCN2 gene in 287 female

patients with AN and 284 children, adolescents with severe obesity.

Seven patients with AN and 39 children or adolescents with obesity

were then Sanger sequenced for ELISA assay. All six coding exons of

LCN2 and intronic parts flanking the coding regions were

sequenced. Fourteen variants were detected, including five coding

non-synonymous variants, six intronic SNPs, two intronic deletions

and one novel intronic insertion (Figure 2). The genotype

distribution of all detected variants is shown in Supplementary

Material Tables 5-1).

Three missense variants (p.Leu6Pro, p.Asp44Asn, p.Val89Ile)

were identified in both study groups. Two additional missense

variants (p.Gly9Val, p.Arg174Ser) were only detected once in two

female patients with obesity, each. For these two missense variants

TaqMan assays were performed in additional independent study

groups (170 females with AN; 200 children and adolescents with

obesity). To sum up, 464 females with AN and 523 children or

adolescents with severe obesity were genotyped for p.Gly9Val and

p.Arg174Ser (Supplementary Material Tables 5-2). In total, two

females with AN, two females and one male with obesity were

heterozygous for p.Gly9Val. For p.Arg174Ser no additional variant

carriers were identified.

The genotype frequencies of all detected variants were in the

HWE. The genotype distribution of detected missense and

structural variants are shown in Table 2.
TABLE 1 Phenotypes of the study groups.

Diagnosis Sex Statistic Age BMI (kg/m2) LBM (kg)1 LBM%2

AN
100% Female Mean (SD)3 20.8 (8.6) 16.48 (2.76) 38.23 (5.65) 85.14 (5.09)

464 (294)4 [Min, Max]5 [11.7, 67.4] [9.03, 29.22] [22.47, 57.16] [63.51, 96.2]

OB

All Mean (SD) 14.3 (3.7) 33.28 (6.88) 54.8 (12.18) 63.86 (8.45)

523 (323) [Min, Max] [3.4, 39.2] [20.3, 63.42] [18.43, 93.4] [33.46, 79.12]

59.7% Female Mean (SD) 14.4 (3.7) 33.39 (7.24) 52.56 (9.7) 61.98 (9.48)

312 (190) [Min, Max] [5.6, 24.4] [20.35, 63.42] [20.41, 77.12] [33.46, 79.12]

40.3% Male Mean (SD) 14.2 (3.8) 33.13 (6.32) 93.4 (13.82) 77.32 (5.6)

211 (133) [Min, Max] [3.4, 39.2] [21.88, 56.86] [18.43, 93.4] [47.85, 77.32]

Lean
100% Female Mean (SD) 21.7 (1.9) 17.2 (0.61) 42.96 (1.32) 84.17 (1.53)

9 (9) [Min, Max] [19.6, 24.1] [16.16, 18.17] [40.88, 44.39] [81.68, 86.82]
1LBM: Lean body mass in kg; 2LBM%: the percentage of LBM in the total body weight; 3Mean (SD): average value (standard deviation); 4j(k): total samples used for TaqMan analyses and Sanger
sequencing; in brackets: Sanger sequenced samples; 5[Min, Max]: the interval of value from minimum to maximum.
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FIGURE 1

Workflow of our study.
FIGURE 2

Chromosomal structure of LCN2 (GRCh38.p13, Ensembl) and genomic location of 14 detected variants (28).
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3.2 In-silico analyses

3.2.1 Analyses for LCN2 variants
3.2.1.1 Association analysis for detected LCN2 variants
and obesity or AN

All detected variants were in HWE. None of the detected

variants was associated with AN nor obesity (Supplementary

Material Tables 6-1, 2).

3.2.1.2 Two missense LCN2 variants with putative
functional consequences

The in-silico analyses were applied in three dimensions

deleteriousness analyses on nucleotide changes (seven predictors),

putative splicing site alteration analyses (two predictors) and

likelihood of protein stability reduction due to single amino acid

changes (four predictors). When the detected variants were

predicted as pathogenic in at least one predictor of all three

dimensions and Cper. value higher than 85%, we assumed that

the variant may have functional consequences. As shown in Table 3

(detailed data shown in Supplementary Materials Tables7–9), the

two missense variants (p.Leu6Pro and p.Gly9Val) are highly

conserved with Cper. values above 90% and were predicted as

pathogenic in all in-silico analyses dimensions.

3.2.1.3 One detected intronic variant in strong linkage
disequilibrium with one BMI GWAS hit

Two GWAS summary statistic datasets [BMI GWAS by Pulit

et al. (29) and AN GWAS by Watson et al. (30)] were used to

analyze the putative association between LCN2 and the two traits.

Thus, the plots of the LCN2 genomic region ± 500kb denoted that

no AN and BMI GWAS hit located within LCN2 and a few variants

in the downstream ~ 100kb associated with BMI [(plots are shown

in Supplementary Material Figure 1)], data extracted from GWAS

were collected in Supplementary Material Tables 1, 2. The detected

variants with dbSNP IDs and those BMI GWAS hits were calculated

LD scores in LDmatrix (Supplementary Material Figure 2, Table 10-

1, 2).

One detected frequent intronic SNP rs11794980 and one

GWAS hit rs2502728 are in strong linkage disequilibrium (R2 =

0.346; D’ = 0.622). LDpair showed the haplotypes of these two SNPs

(Supplementary Material Figure 3]). BMI GWAS hit rs2502728(T)

minor allele is in LD with rs11794980(C) allele (c2 test for

haplotypes p < 0.0001, distance between two SNPs: ~ 59 kb). The

allele T of rs2502728 is associated with increased BMI in the

combined sexes GWAS (p = 3.28 × 10-8, b = 0.0097) (29). Other

detected variants with known dbSNP IDs were analyzed for

haplotype formation with rs11794980 (LDpair tool). All of them

are in linkage equilibrium with rs11794980 (Supplementary

Material Tables10-3.

3.2.1.4 Missense variants causing secondary structure
changes in LCN2

All five mutated and wildtype amino acid sequences of

lipocalin-2 were evaluated in PredictProtein (44). The secondary

protein structure is relatively robust and over 50%-80% of point

variants may not significantly change the two- and three-
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TABLE 3 In-silico analyses for detected variants in LCN2 and those MC4R variants subjected to ELISA assays.

Analyzed variants in MC4R

dbSNP ID AA change
Deleteriousness Splicing site Protein

stability

Functional
analyses

i/n j/k z/g Prediction

rs13447323 p.Ser30Phe 3/6 0/2 1/2 RF9 (33)

rs13447324 p.Try35stop 7/7 NA. NA. LOF10 (33, 34)

rs121913557 p.Val50Leu 5/6 2/2 3/4 RF (33)

rs2229616 p.Val103Ile 5/6 1/2 3/4
GOF11 (35,

36)

rs13447329 p.Thr112Met 2/6 2/2 2/2 RF (14, 37)

rs13447330 p.Ile121Thr 7/7 1/2 4/4 RF (19, 35)

rs13447331 p.Ser127Leu 7/7 2/2 2/4 LOF (38)

rs13447332 p.Arg165Trp 7/7 2/2 3/4 LOF (39, 40)

rs121913563 p.Ala175Thr 3/6 2/2 4/4 RF (34)

rs13447338 p.Leu211fsx 1/1 NA. NA. LOF (41)

rs52820871 p.Ile251Leu 3/7 2/2 3/4 GOF (42, 43)

rs13447339 p.Ile251fsx 1/1 NA. NA. LOF (19)

teriousness of nucleic acid change was evaluated in seven in-silico predictors; 4i/n: i = the number of tools which predicted the tested
sted variants on splicing site of mRNA; 6j/k: j = the number of online software which denoted the splicing site may change due to the
t based on amino acid sequence or 3D model of protein; 8z/g: z = the number of predictors which declared the stability of protein
in bold: pathogenic in all available predictors; 13NA.: not applicable.
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Detected variants in LCN2

dbSNP ID AA change1 Cper.2

(%)
Deleteriousness3 Splicing site5 Protein stability

i/n4 j/k6 z/g8

rs139418967 p.Leu6Pro 100 4/7 2/212 2/2

rs147787222 p.Gly9Val 93.55 2/6 1/2 1/2

rs141366243 p.Asp44Asn 80.65 1/7 1/2 3/4

rs2232623 NA.13 41.94 0/7 1/2 NA.

rs200876706 p.Val89Ile 16.13 1/7 2/2 4/4

rs141802032 NA. 35.48 3/7 2/2 NA.

rs11794980 NA. 61.29 1/7 1/2 NA.

rs940097410 NA. 61.29 2/7 1/2 NA.

rs374443333 NA. 45.16 1/7 1/2 NA.

rs2232629 NA. 9.68 1/7 2/2 NA.

rs546790138 p.Arg174Ser 77.42 0/7 1/2 4/4

rs1469124637 NA. 58.06 0/7 1/2 NA.

rs549486362 NA. NA. 0/1 1/1 NA.

Del_G NA. NA. 0/1 1/1 NA.

Inser_GCGCCT NA. NA. 0/1 1/1 NA.

1AA change: amino acid exchange; 2Cper(%): conservation percentile among human gDNA and other 30 species; 3Deleteriousness: the del
variant as pathogenic based on single nucleotide changing, n = the number of accessible predictors; 5Splicing site: the putative changes of te
tested variant, k = the number of accessible software; 7Protein stability: the likely changes on protein stability caused by the tested varian
decreased, g = the number of accessible software; 9RF: reduced function; 10LOF: loss of function; 11GOF: gain of function; 12Parameters
7
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dimensional structure of a protein (45). For all five detected point

missense variants in LCN2 the secondary elements were not altered

(Supplementary Material Tables 9-4). Only the solvent accessibility

of polymorphism p.Val89Ile was predicted as ‘exposed’ instead of

‘buried’. Solvent accessibility is essential for determining protein

folding patterns and stability in structural bioinformatics (46).

Variants p.Leu6Pro and p.Gly9Val are located in the signal

peptide region of lipocalin-2. Signal peptides mediate the

targeting of precursor secretory proteins to the correct organelle,

such as cell membrane or endoplasmic reticulum (47). Besides, it

was demonstrated that signal peptides control the secretion of

protein by preventing the premature or misfolding of secretory

proteins (48).
3.2.2 Analyses for MC4R missense variants
Twelve NSVs inMC4R were analyzed with ELISA assays. Based

on the previous studies on functions of variants, including three

frameshift variants, they were classified into GOF (two NSVs), RF

(five NSVs) and LOF (five NSVs). Based on the in-silico prediction

eight of the nine single nucleotide alterations were predicted as

pathogenic in all dimensions [(Table 3, detailed information in

Supplementary Material Tables 11, 12)].
3.3 ELISA assays for lipocalin-2 serum
levels

Circulating lipocalin-2 levels were measured in two

heterozygous LCN2-variant carriers (p.Val89Ile and p.Asp44Asn),

33 MC4R-variant carriers and 33 female matched controls (age/

LBM%/diagnosis) without MC4R or LCN2 variants.
3.3.1 Negative correlation between BMI
and LBM%

All 68 analyzed individuals were plotted in Figure 3 with

lipocalin-2 levels and BMI or LBM%. The analyzed group was

firstly divided by diagnosis, no difference could be observed between

healthy-lean individuals and the females with acute or recovered

AN (Supplementary Material Figure 4, Supplementary Material

Tables 13-2). The analyzed group was then divided into lean

(both healthy lean individuals and females with AN were

included) and obese groups (the patients with obesity). There was

no overlap between the lipocalin-2 serum concentrations between

the two groups. The opposite pattern of lipocalin-2 scaled by BMI

and LBM% were shown. BMI was negatively correlated with LBM%

(Spearman’s rho = -0.975, p < 0.001), whereas BMI was positively

correlated with LBM (Spearman’s rho = 0.866, p < 0.001) based on

33 individuals without variants in theMC4R and LCN2 genes. Thus,

the LBM of patients with obesity increased with BMI, while the

percentage of LBM decreased (Supplementary Material Tables 13-

1). However, no correlation between BMI or LBM% and lipocalin-2

serum levels could be observed (Supplementary Material

Tables 13-1).
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3.3.2 Low lipocalin-2 level in the LCN2-p.Val89Ile
carrier

The genotypes and phenotypes of included individuals are shown

in the Supplementary Materials Tables 4-1. In two individuals who

carried LCN2 variants (p.Asp44Asn heterozygote in a female with

acute AN and p.Val89Ile heterozygote in a female recovered from

AN) lipocalin-2 levels were analyzed. We detected a low

concentration of serum lipocalin-2 in the p.Val89Ile heterozygous

carrier. This female had a lower lipocalin-2 level (average value: 12.5

ng/ml) than the lower bound of the 95%CI for lean individuals (50.47

ng/ml), and its matched controls (average value: 57.36 ng/ml)

(Supplementary Material Tables 4-1-3).

3.3.3 No significant effect of MC4R missense
variants on lipocalin-2 levels

The MC4R variants with functional classifications were divided

into three groups (GOF: gain of function, RF: reduced function,

LOF: loss of function) and concentration of lipocalin-2 in serum

(ng/ml) within each group was described (Supplementary Material

Tables 4-1). The two non-synonymous MC4R polymorphisms

(p.Val103Ile and p.Ile251Leu) lead to a gain of function (19, 35,

36, 42, 43). Detected LOF MC4R mutations in our previous studies

consisted of two non-synonymous variants [p.Ser127Leu (38),

p.Arg165Trp (39, 40)] and three frameshift mutations

[p.Try35stop (33, 34), p.Leu211fsX (41), p.Ile251fsX (19)].

Besides, five non-synonymous variants [p.Ser30Phe (33),

p.Val50Leu (33), p.Thr112Met (14, 37), p.Ile121Thr (19, 35),

p.Ala175Thr (34)] with reduced MC4R protein function were

included. The MC4R variants which lead to reduced function

were considered together (RF and LOF) in Figure 3. However,

there is no significant difference between RF/LOF and GOF.

3.3.4 Positive correlation between BMI and
lipocalin-2 levels

Figure 3 showed a clear difference between patients with obesity

and those with low BMI (healthy lean and patients with AN). The

independent samples Mann-Whitney U tests were applied in

subgroups to reveal the impact of MC4R variants or body shape

on lipocalin-2 levels. To exclude the effects of variants, the test was

first examined in individuals with normal LCN2 and MC4R

genotypes (Supplementary Material Tables 13-3). Increased

lipocalin-2 levels (p = 0.033) could be observed between

individuals with obesity (n = 18) compared to lean individuals (n

= 15). When the effects of MC4R variants were considered, BMI in

the individuals with MC4R variants between lean (n = 11) and

individuals with obesity (n = 22) was not significant (p = 0.105)

(Supplementary Material Tables 13-4).
3.4 Additional genotyping for the LCN2-
p.Val89Ile variant

The circulating lipocalin-2 level of the patient recovered from

AN who carried the rare LCN2 NSV p.Val89Ile heterozygously
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(12.5 ng/ml) was reduced compared to the lower bound of 95% CI

of lean individuals (lower bound: 50.47 ng/ml), the mean value of

two matched controls (57.36 ng/ml), and one female with acute AN

who carried another LCN2missense variant (p.Asn44Asp, 58.45 ng/

ml). Thus, a TaqMan assay ensued for p.Val89Ile in an additional

study group (170 female patients with AN [acute and recovered]

and 200 children or adolescents with severe obesity). We detected a

female patient with severe obesity also heterozygous for p.Val89Ile.

However, a serum sample of this patient was not available (Table 2).
4 Discussion

Numerous studies showed elevated lipocalin-2 levels in patients

with obesity (11, 49, 50). Lipocalin-2 is highly expressed by fat cells

both in-vivo and in-vitro (10). Mosialou et al. described that

lipocalin-2 regulates body weight by binding to the MC4R in the

hypothalamus (11). In our study, Sanger sequencing for the LCN2

gene, in-silico analyses for detected variants, and ELISA assays for

LCN2 or MC4R variants carriers and matched controls

were performed.
4.1 LCN2 is associated with both body
weight regulation and AN

By Sanger sequencing, 14 variants were detected in LCN2. Two

missense variants (p.Leu6Pro and p.Gly9Val) were highly conserved.

predicted as pathogenic in all dimensions of in-silico tools and located

in the signal peptide structure of lipocalin-2. Thus, they are highly

likely to induce functional consequences for protein structure and

function. A detected frequent intronic SNP rs11794980 strongly

linked to one BMI GWAS hit rs2502728 (R2 = 0.346, D’ = 0.622)

(29). Allele C of rs11794980 is likely to be inherited with the minor

allele T of rs2502728 which is associated with increased BMI

(combined sexes BMI: b = 0.0097, p = 3.3 x 10-8) (29). Thus, the
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infrequent C allele rs11794980 may be associated with increase

body weight.
4.2 Non-synonymous variant p.Val89Ile
in LCN2 may decrease circulating
lipocalin-2 level

Due to the serum sample limitation, only for two of five non-

synonymous LCN2 variants (p.Asp44Asn and p.Val89Ile) ELISA

assays were used to evaluate circulating lipocalin-2 levels in

heterozygous carriers. Lipocalin-2 is mainly secreted by

osteoblasts and the ratio of adipocytes to bone cells can be

reflected by adipose marrow (22). MRI assessments showed that

the adipose marrow increased in patients with acute AN (51, 52),

and no difference was observed between patients with recovered AN

and healthy individuals (53). Moreover, the two variants were

predicted as pathogenic in all three dimensions of computational

annotations, whereas p.Asp44Asn is in a higher conservation

position (80.65%) than p.Val89Ile (16.13%). Thus, we expected

p.Asp44Asn may decrease the stability of lipocalin-2 and

downregulate lipocalin-2 levels. However, lower serum level of

lipocalin-2 was detected in the heterozygote of p.Val89Ile.

LCN2-p.Val89Ile may change the solvent accessibility of protein

from ‘buried’ to ‘exposed’. Around 67% of wild type amino acid

residues related to diseases were located in the buried position of

protein (54), which may imply that the solvent accessibility of the

89th amino acid of lipocalin-2 has an impact on protein structure

and might be associated with diseases. Moreover, the hydrophobic

scale of isoleucine is higher than valine depending on all five

popular calculation methods (55–59). ELISA assays of the

p.Val89Ile NSV carrier (one female recovered from AN) showed

a lower lipocalin-2 level in serum than all other comparable groups

(lower bound of 95% CI, matched controls, another LCN2 NSV

carrier). The low expression level of lipocalin-2 may be due to the

changed solvent accessibility and decreased protein stability.
A B

FIGURE 3

Circulating lipocalin-2 level in 68 analyzed individuals including LCN2-variant carriers (n = 2), MC4R-variant carriers (n = 33), and individuals without
variant in these two genes (n = 33). (A): The pattern of lipocalin-2 levels of all samples was shown along with BMI. (B): LBM% as a scaled parameter
for lipocalin-2 levels (one sample, p.Val103Ile_k, was excluded from this figure due to missing LBM% value). Dashed lines indicate the 95% CI of
lipocalin-2 in serum in groups of individuals with leanness or obesity. Black symbols indicate obese individuals and grey symbols indicate individuals
with leanness.
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4.3 Multiple factors can influence lipocalin-
2 levels in wildtype LCN2 individuals

Lipocalin-2 is secreted by hematopoietic and BMA cell types. The

bone mass of young premenopausal women is significantly correlated

to LBM (22–24, 60). Thus, when bone mass cannot be measured,

LBM can be used as an indicator of presumed bone mass and the

amount of lipocalin-2 secretion. LBM is influenced directly by body

weight. Thus we used normalized LBM (LBM%, normalized by body

weight). LBM% and BMI are significantly negatively correlated. Here,

we analyzed LBM% and BMI in all individuals screened for lipocalin-

2 level. However, the calculation of LBM in our study is based on

formulas and might lead to inaccurate or ambiguous results. In future

investigations, an actual bone mass and body composition could be

determined by MRI and may show a more defined correlation

between body composition and lipocalin-2 levels.

4.3.1 High BMI is a factor that can influence
lipocalin-2 serum levels

A previous study reported that lipocalin-2 levels were positively

correlated to BMI (50). We hypothesized significantly different

lipocalin-2 levels existed in individuals with low BMI (healthy

lean individuals and females with AN) and patients with obesity.

Mean serum lipocalin-2 levels were increased in obese versus lean

individuals (p = 0.033). Thus, lipocalin-2 levels in individuals

(normal genotypes at LCN2 and MC4R, excluded the impact of

NSVs) with a BMI above 30 kg/m2 or BMI percentile greater than

97th are likely to have a higher lipocalin-2 concentration in serum

than controls with normal body weight. In future investigations, it

might be possible to use MRI or dual-energy X-ray absorptiometry

to determine the actual bone mass of individuals, which may show a

clearer pattern between body composition and lipocalin-2 levels.

Previous studies reported that the putatively negative correlation

between BMA percentile and lipocalin-2 levels (22, 61) and the

increased BMA percentile in patients with acute AN and severe

obesity (22, 52, 62), determination of the bone components may

reveal the impact of diseases on lipocalin-2 secretion.

4.3.2 MC4R variants may influence
lipocalin-2 levels

Although tests for the impact of MC4R variants were not

significant in both groups (lean or obese individuals), the non-

significance might be due to the multi-direction of MC4R variants

on the protein function (GOF, RF, or LOF). The small sample size

reduces the power of our analysis and limits the analysis methods

that can be used. Thus, it is impossible to analyze the impact of

MC4R variants according to variants catalogs or single variants.

Many genes are involved in the leptin-melanocortin pathway

that has been associated with monogenic obesity through their

influence on food intake and energy expenditure (63). Thus, the

varied expression of MC4R may affect lipocalin-2 expression and

the increasing BMI or decreasing LBM% can elevate lipocalin-2 in

serum secretion. However, the mutations of diminished function
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may be compensated by other factors so that the potential pattern of

lipocalin-2 secretion is not observed. Thus, we cannot confirm that

a feedback loop exists between lipocalin-2 and MC4R, but the

results of ELISA implied that protein function changes of MC4R

might influence lipocalin-2 concentration in serum.

Limitations of our study include the relatively low number of

mutation carriers that could be used for the lipocalin level analyses

and the lack of functional in-vitro studies.
5 Conclusion

We detected fourteen variants in LCN2, including five non-

synonymous variants. The highly conserved variants p.Leu6Pro and

p.Gly9Val are located in the signal peptide region of the lipocalin-2

and might result in functional consequences. According to the

GWAS datasets, LD analyses, and gene network look-up, LCN2

might be relevant for both AN and body weight regulation. A low

lipocalin-2 level in the female who carried LCN2 NSVp.Val89Ile

and recovered from AN was observed. This might be caused by

decreased protein stability, the increased hydrophobic scale of the

protein and altered solvent accessibility. The ELISA assays of all

MC4R and LCN2 wildtype samples implied increased lipocalin-2

levels in the individuals with high BMI (p = 0.033). Although no

clear pattern of impacts of single MC4R variants on lipocalin-2

levels was found, an additional ELISA assay with an expanding

sample size of variant carriers may reveal the masked pathway

between LCN2 and MC4R.
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