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Abstract

Stellar obliquity, the angle between a planet’s orbital axis and its host star’s spin axis, traces the formation and
evolution of a planetary system. In transiting-exoplanet observations, only the sky-projected stellar obliquity can be
measured, but this can be deprojected using an estimate of the stellar obliquity. In this paper, we introduce a
flexible, hierarchical Bayesian framework that can be used to infer the stellar obliquity distribution solely from sky-
projected stellar obliquities, including stellar inclination measurements when available. We demonstrate that while
a constraint on the stellar inclination is crucial for measuring the obliquity of an individual system, it is not required
for robust determination of the population-level stellar obliquity distribution. In practice, the constraints on the
stellar obliquity distribution are mainly driven by the sky-projected stellar obliquities. When applying the
framework to all systems with measured sky-projected stellar obliquity, which are mostly hot Jupiter systems, we
find that the inferred population-level obliquity distribution is unimodal and peaked at zero degrees. Misaligned
systems have nearly isotropic stellar obliquities with no strong clustering near 90°. The diverse range of stellar
obliquities prefers dynamic mechanisms, such as planet–planet scattering after a convergent disk migration, which
could produce both prograde and retrograde orbits of close-in planets with no strong inclination concentrations
other than that at 0°.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Bayesian statistics (1900); Exoplanet dynamics (490)

1. Introduction

Stellar obliquity ψ is the angle between a planet’s orbital axis
norbˆ and the host star’s spin axis n̂ . This angle is an important
tracer of a planetary system’s formation environment and
dynamical evolution. The evolution of stellar obliquity can be
roughly broken down into three stages. First, the formation and
evolution of a protoplanetary disk determine the primordial
stellar obliquity (e.g., Bate et al. 2010; Lai et al. 2011; Batygin
2012). Second, post-formation dynamical evolution in the
planetary system, such as planet–planet scattering (e.g., Rasio
& Ford 1996; Chatterjee et al. 2008; Nagasawa et al. 2008;
Beaugé & Nesvorný 2012), von Zeipel–Lidov–Kozai (ZLK)
mechanisms (e.g., Wu & Murray 2003; Naoz 2016), and
secular chaos (Wu & Lithwick 2011), can excite the mutual
inclinations between planetary or stellar companions and alter
the stellar obliquity. Lastly, tidal force can reduce the stellar
obliquity by realigning the host star’s spin axis with the
planet’s orbital axis, if the tidal dissipation in the star is
efficient (e.g., Winn et al. 2010; Albrecht et al. 2012).
Additionally, massive stars with convective cores could
generate internal gravity waves and dissipate angular momen-
tum to their radiative zones, potentially affecting the stellar
obliquity (Rogers et al. 2012, 2013).

It is as yet unclear if, and to what extent, all of these physical
and dynamic processes apply to exoplanetary systems. These
proposed mechanisms all make different predictions on stellar
obliquity distributions with a focus on hot Jupiter systems (see
Dawson & Johnson 2018; Albrecht et al. 2022, and references
therein). For example, the secular chaos mechanism tends to

produce a stellar obliquity distribution with ψ< 90° (e.g.,
Teyssandier et al. 2019). The stellar ZLK mechanism predicts a
bimodal stellar obliquity distribution, concentrated at 40° and
140° (e.g., Fabrycky & Tremaine 2007; Anderson et al. 2016;
Vick et al. 2019), assuming zero stellar obliquity when the
ZLK oscillation begins, or a broad stellar obliquity peaked near
90° if we drop the assumption (Vick et al. 2023). The multiple-
planet scattering mechanism results in a majority of aligned
systems, with a small fraction of systems at a diverse range of
stellar obliquities (e.g., Beaugé & Nesvorný 2012). With these
predictions in mind, we aim to determine the dominant
mechanisms responsible for shaping close-in planetary systems
by characterizing the stellar obliquity distribution of exoplane-
tary systems through a Bayesian approach.
When observing an exoplanet, typically only the sky-

projected stellar obliquity λ, the angle between the projections
of norbˆ and n̂ onto the plane of the sky, can be measured. This
measurement is primarily obtained via the Rossiter–McLaugh-
lin effect (McLaughlin 1924; Rossiter 1924). The stellar
obliquity ψ for an individual exoplanet system can be inferred,
if both the sky-projected stellar obliquity λ and the stellar
inclination iå are measured precisely. The relationship between
ψ and {λ, iå} is given by (e.g., Fabrycky & Winn 2009)

 i i i icos sin sin cos cos cos , 1orb orb ( )y l= +

where iorb is the inclination angle between the vector norb and
the observer’s line of sight, and iå is the inclination angle
between nå and the observer’s line of sight. If an exoplanet
system transits, the orbit is nearly edge-on (iorb≈ 90°), so in
those cases, the relationship becomes approximately

icos sin cos , 2( )y l»

although this is not a simplification that we are required to
make in this paper.
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In some cases, stellar inclinations can be constrained via, for
example, photometric and spectroscopic rotational modulation
introduced by starspots for cool stars (e.g., Masuda & Winn
2020; Albrecht et al. 2021), gravity darkening for fast-rotating
stars (e.g., Barnes 2009; Barnes et al. 2011), and asteroseis-
mology for bright stars (e.g., Chaplin et al. 2013). However, for
the vast majority of exoplanet systems, iå measurements are not
feasible. In these cases, it is still possible to infer their stellar
obliquities from the sky-projected obliquities, assuming
isotropic stellar inclinations; however, the inferred ψ will have
greater uncertainty than the one inferred with iå measurement
(Fabrycky & Winn 2009).

The relationship between the distributions of stellar
obliquity, sky-projected stellar obliquity, and stellar inclination
is still not fully understood. In this study, we aim to gain a
deeper understanding of this relationship and develop a
statistical approach to inferring the stellar obliquity distribution.
In Section 2, we find the expression of sky-projected stellar
obliquity λ and stellar inclination iå in terms of the orbital
inclination iorb, the stellar obliquity ψ, and the azimuthal angle
of the stellar spin axis θ. In Section 3, we introduce a flexible,
hierarchical Bayesian framework that allows us to infer the
stellar obliquity distribution of a sample. In Section 4, we
examine the framework with simulated data and show that the
inferred stellar obliquity distribution from sky-projected stellar
obliquities is robust even if the iå information is not provided.
Lastly, in Section 5, we apply the framework to real
observations and derive the stellar obliquity distribution for
exoplanets. We discuss the implication of the stellar obliquity
distribution for hot Jupiter origins.

2. Coordinate Setup and Transformation

In this section, we find the expression of λ or iå in terms of
the stellar obliquity ψ, the azimuthal angle of the stellar spin
axis relative to the orbital axis θ, and the orbital inclination iorb.
In Figure 1, we introduce two coordinate systems that describe
the stellar spin axis n̂ and the planet’s orbital axis norbˆ . The
setup is similar to the coordinate system setup in Fabrycky &
Winn (2009) but has a different definition of the azimuthal
angle of the stellar spin and coordinate orientation.

The {ψ, θ} coordinate system, shown in the left panel in
Figure 1, is designed to describe the physical properties of a
system. We set the planetary orbital axis norbˆ as the z-axis. To

define the stellar spin vector, we introduce the azimuthal angle
of the vector around the orbital axis, θ. The stellar spin axis n̂
can be written in terms of ψ and θ as

n x y zsin cos sin sin cos . 3ˆ ˆ ˆ ˆ ( )y q y q y= + +

The {λ, iå} coordinate system, shown in the right panel in
Figure 1, is designed to describe observables of a system. We
set the observer’s line of sight as the x¢-axis. Since only the
difference between the sky-projected orbital axis and the sky-
projected stellar spin axis can be measured, we conveniently
align the projected orbital axis with the z-axis. The stellar spin
axis could be written in terms of λ and iå as

   n x y zi i icos sin sin sin cos . 4ˆ ˆ ˆ ˆ ( )l l¢ = ¢ + ¢ + ¢

To transform the stellar spin vector n̂ from the xyz
coordinates to the x y z¢ ¢ ¢ coordinates, we rotate the xyz
coordinates by an angle π/2− iorb about the y¢-axis (the same
as the y-axis). Conventionally, the inclination angle of the
orbital axis norbˆ is assumed to be less than 90°, as we adopt
here. Applying the rotation matrix such that

 n n
i i

i i

sin 0 cos
0 1 0

cos 0 sin
, 5

orb orb

orb orb

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ˆ ˆ ( )¢ =
-

we find the expression of n̂¢ in x y z¢ ¢ ¢ coordinates in terms of ψ,
θ, and iorb:

n x
y

z

i i

i i

sin cos sin cos cos

sin sin

sin cos cos cos sin . 6

orb orb

orb orb

ˆ ( ) ˆ
ˆ

( ) ˆ ( )

y q y
y q

y q y

¢ = + ¢
+ ¢
+ - + ¢

Equating Equations (6) and (4), we find the expression of λ
or iå in terms of ψ, θ, and iorb. First, from the x̂¢ terms, we get

i i icos 1 sin cos sin cos cos . 7orb orb[ ]( ) ( )y q y= - +

Next, dividing the ŷ¢ terms by the ẑ¢ terms, we get

i i
tan 1

sin sin

sin cos cos cos sin
. 8

orb orb
⎜ ⎟
⎛
⎝

⎞
⎠

[ ] ( )l
y q

y q y
= -

- +

These two relations will be used in the hierarchical Bayesian
framework to infer the stellar obliquity distribution.

Figure 1. Two coordinate systems that describe the stellar spin axis n̂ and the planet’s orbital axis norbˆ . The {ψ, θ} coordinate system setup is motivated by the
physical properties of a planetary system. The {λ, iå} coordinate system setup is motivated by observables (✎).
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3. Hierarchical Bayesian Framework

To find the stellar obliquity distribution of exoplanetary
systems, we develop a hierarchical Bayesian framework that
takes measurements of the observed sky-projected stellar
obliquity λ and orbital inclination iorb as input data. If a
measurement of the stellar inclination iå is available, it can be
provided or inferred from the stellar rotation period Prot, stellar
radius Rå, and sky-projected rotational broadening velocity

v isin . In the absence of an iå, Prot, or v isin measurement,
the stellar obliquity ψ distribution is inferred without iå
likelihoods.

Figure 2 illustrates the probabilistic graphical model for our
hierarchical Bayesian framework. We aim to constrain a set of
hyperparameters β that describe the stellar obliquity distribu-
tion. The parameter set β is constrained by N individual
systems, where each ψn is simultaneously fit based on the entire
sample of sky-projected stellar obliquities λn and, if available,
stellar inclinations iå,n. The parameter γå,n contains all stellar
properties other than iå,n, such as the stellar rotation period

Prot,n, radius Rå,n, and projected rotational velocity v isin n, , if
they are known.
In Figure 2, the observed values of λn and iorb,n are indicated

by nl̂ and i norb,
ˆ , respectively. The nl̂ measurements typically

come from the Rossiter–McLaughlin effect or gravity darken-
ing, and i norb,

ˆ is constrained by the transit light curve.
The constraints on stellar inclination are somewhat more

complicated. In Figure 2, the Obså,n node includes any
observed data that directly constrains iå,n. This could include
a direct measurement of i n,

ˆ (via gravity darkening or
asteroseismology; for example Barnes 2009; Chaplin et al.
2013), or a measurement of the sky-projected stellar rotational
line broadening v isin n,ˆ , which is related to iå as v isin =

R P2 rotp (Masuda & Winn 2020).
For the stellar obliquity distribution, we model the cosy

distribution instead of the ψ distribution to understand whether
the stellar obliquity is isotropically distributed. If the stellar
obliquity distribution is isotropic, cosy is uniformly distributed
between −1 and 1. To flexibly model the stellar obliquity
distribution, we select a multicomponent mixture of beta
distributions with hyperparameters β= {w, μ, κ}, where each
hyperparameter has a dimension of the number of components.
For example, for a two-component mixture model, each
hyperparameter has a dimension of 2. We have w= {w0, w1},
μ= {μ0, μ1}, and κ= {κ0, κ1}. The hyperparameter w
describes the weight of each component. The hyperparameters
μ and 1/κ correspond to the mean and variance of each beta
distribution component, respectively, a reparameterization sug-
gested by Gelman et al. (2014). The greater the value of κ, the
smaller the variance (i.e., the distribution is more concentrated).
The relations between μ and κ and the standard α and β
parameters in the beta distribution are α= μκ and β= (1− μ)κ.
This mixture distribution has the capacity to capture anything
from an isotropic distribution to a strongly bimodal population.
Then, under this two-component model, the probability density
function for cosy is

w

u

w u w u

Bernoulli 1 2
Beta , 1

cos 2 1. 9

0,1

0,1 0,1 0,1 0,1 0,1

0 0 1 1

( )
( ( ) )

( ) ( )
m k m k

y

~
~ -
= + -

Since the beta distribution is defined on the interval [0, 1]
whereas the support of cosy is from −1 to 1, we extend the
mixture distribution’s support [0, 1] to [−1, 1] using a linear
transformation (i.e., 2(w0u0+w1u1)− 1). For hyperparameters
μ and κ, we adopt the following priors:





0, 1

log 0, 3 , 10
0,1

0,1

( )
( ) ( )

m

k

~

~

where μ0,1 is uniformly distributed between 0 and 1 and log 0,1k
is normally distributed with a mean of 0 and a standard
deviation of 3. To deal with label switching in the mixture
model, we remove the symmetry by forcing the vector μ to be
ordered. Notably, when applying the framework to a small
sample size with N 50, the choice of hyperpriors for the beta
distribution could impact the inferred distribution (e.g., Gelman
et al. 2014; Nagpal et al. 2022). To ensure the robustness of the
inferred distributions in such cases, it is crucial to test their
sensitivity to different hyperpriors. We also note that our
framework is flexible to customization to distributions other
than the beta distribution for population-level stellar obliquity

Figure 2. A probabilistic graphical model showing the conditional structure of
our hierarchical Bayesian framework for inferring the stellar obliquity
distribution of exoplanetary systems. The population model is parameterized
by hyperparameters β, and it is constrained by the stellar obliquity ψn of each nth
individual system. The stellar obliquity ψn, azimuthal angle θn, and orbital
inclination iorb,n are constrained by the sky-projected stellar obliquity λn and, if
available, the stellar inclination iå,n. Properties of the star other than its
inclination, such as its radius and rotation period, are represented by γå,n, and
these can inform the constraint on iå,n, if available. nl̂ comprises the measured
sky-projected stellar obliquity and its uncertainty, Obså,n contains all observed
properties of the star with uncertainties, and i norb,ˆ comprises the measured orbital
inclination and its uncertainty (✎).
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distribution inference. For example, if instead studying the
stellar obliquity distribution in the ψ–angle space, a von Mises
distribution could be used to evaluate the mean value and the
dispersion of the angle.

Next, the model parameter priors are the following:


i

0,
cos 0, 1 . 11

n

norb,

( )
( ) ( )

q p~
~

If γå,n is available, we construct normal distributions with
means and standard deviations from measurements. For the
orbital inclination iorb, following the convention, we limit it to
0, 2[ ]p , i.e., the orbital axis always points to us. To not
underestimate ψ, we then set iå to vary from 0° to 180° such
that the stellar spin axis could either point to us or point away
from us. Besides, since λ and −λ correspond to the same ψ

solution, we limit λ to 0,[ ]p and thus θ to 0,[ ]p to avoid
bimodal distributions of λ and θ. We find doing so greatly
improves the sampling performance while not compromising
the inference of the ψ distribution due to the symmetry. The
0,[ ]p support avoids the otherwise-expected discontinuity at
θ= 0 and θ= π.

The likelihood functions follow

 

 

 

  i

i i

,

Obs , optional

, . 12

n

N

n

n

N

n

n

N

n i

1

1
, Obs

orb
1

orb,

n

n

n

,

orb,

( ) ( ˆ )

( ) ( )( )

( ) (ˆ ) ( )

ˆ

ˆ







l l s

s

s

~

~

~

l
=

=

=

The probabilistic model is constructed using the PyMC
package v5. 1. 2 (Wiecki et al. 2022), and the posteriors are
sampled with the No-U-Turn Sampler (Hoffman & Gel-
man 2011), which is a gradient-based Markov Chain Monte
Carlo sampling algorithm. This paper’s figures and simulations
are completely reproducible and are created using the
showyourwork package. The open-source code is available
on GitHub.2

4. Model Performance

4.1. Simulated Data

To investigate the performance of our hierarchical Bayesian
framework, we apply it to simulated data, generated with a
known ground-truth stellar obliquity distribution. We test the
following five cosy distributions: a uniform distribution
bounded between −1 and 1 such that cos 1, 1( )y ~ - , a
beta distribution such that cos Beta 3, 6( )y ~ with the support
being extended linearly from [0, 1] to [−1, 1], and three
truncated normal distributions bounded between −1 and 1,
such that cos 0, 0.2( )y ~ , cos 0.4, 0.2( )y ~ - , and

cos 0.4, 0.2( )y ~ , where the first number is the mean of
the distribution and the second number is the standard
deviation. For each cosy distribution, we randomly generate
400 samples of sky-projected stellar obliquity λ and stellar
inclination iå. We assume the stellar spin axis is uniformly

distributed around the planetary orbital axis in the azimuthal
direction and the orbital inclination is 90°. The sampled iå and
λ here are true values. To simulate the observation process, we
add Gaussian noise to the true λ and iå, using uncertainties of
σλ= 8° and 

10is = , which are typical of the literature
sample (Albrecht et al. 2022). Using these simulated λ
measurements and their uncertainties, we infer the cosy
distribution of the sample with both λ and iå likelihoods or λ
likelihood only.
In Figure 3, we present the results of this experiment,

plotting the inferred stellar obliquity distributions, compared to
the ground-truth distributions. Since the simulated stellar
obliquity distributions only have a single component, we
model the data with a single beta distribution. Each row of
Figure 3 corresponds to a different simulation distribution. The
blue curve and contours in the left column are the median and
1σ and 2σ uncertainties of the inferred cosy distribution when
constraints on stellar inclination are not included. The right
column shows the same inferences (in orange) with stellar
inclination information. Surprisingly, Figure 3 demonstrates
that our inference procedure recovers the true distribution for
cosy equally well, regardless of the inclusion of iå measure-
ments. Despite the fact that the inferred distributions without iå
measurements have marginally wider uncertainties, as indi-
cated by the shallow color contours, the modes and widths of
the inferred stellar obliquity distributions are consistent with or
without iå likelihood. Since the injected distributions in rows
2–4 are normal distributions, it should not be surprising that the
inferred distributions, which are beta distributions, may not
exactly match the injected distributions. Given that the true
distributions are not included within the support of the
distributions we use to fit, it is impressive how well the
underlying distributions could be recovered.
We also examine the role of orbital inclination iorb in the

stellar obliquity distribution inference. Since our study focuses
on transiting-exoplanet systems, we consider an isotropic
orbital inclination distribution between 80° and 90°. This
broad range of inclinations corresponds to an impact parameter
range from 0 to 1 with a planet–star separation a/Rå of 6. We
compare the stellar obliquity distributions obtained by
approximating iorb to 90° with the distributions obtained using
the actual iorb. We find the difference between the two
distributions is negligible. This suggests that for transiting-
exoplanet systems, approximating orbital inclinations as 90°
will not compromise the stellar obliquity distribution inference.
We demonstrate through simulations that the inferred stellar

obliquity distribution is robust even if the iå information is not
provided, and the iå measurement only improves the constraint
on the stellar obliquity distribution.

4.2. Jacobian Transformations between the ψ, λ, and iå
Distributions

Next, we aim to gain insight into the reasons behind the
predominant role of the sky-projected stellar obliquity
distribution and the less significant impact of the stellar
inclination distribution in the inference of the stellar obliquity
distribution. To simplify the problem, the orbital inclination of
the transiting planet is assumed to be 90° in this illustration. As
discussed earlier, the assumption will not compromise the
stellar obliquity distribution inference for transiting planets. We
pair the Cartesian components in Equations (4) and (6),

2 https://github.com/jiayindong/obliquity//tree/24e5afe84650a8b2c5a39
e2c9f71ab52edbf0043/
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assuming iorb= 90°, and get

isin cos cos 13( )y q =

isin sin sin sin 14( )y q l=

icos cos sin . 15( )y l=

First, we derive the λ distribution for a given cosy
distribution. We could find the distribution of cosl using the
Jacobian transformation from cosy and cos q. Since ψ and θ
are assumed to be independent variables, we could marginalize
over θ to find the relation between the probability density
functions between λ and ψ. The Jacobian transformation
follows

p p p dcos
cos

cos
cos cos cos . 16( ) ( ) ( ) ( )òl

y
l

y q q=
¶
¶

Here p(x) denotes the probability density distribution of x. To
find ψ in terms of λ and θ, we replace isin in Equation (15)
using Equation (13) and find

cos
cos

1 1 cos cos
. 17

2 2( )
( )l

y

y q
=

- -

Reorganizing the equation, we get

cos
cos cos cos

cos cos 1
182

2 2 2

2 2
( )y

l q l
l q

=
-

-

and the partial derivative

cos

cos

1 cos

1 cos cos
. 19

2 1 2

2 2 3 2

( )
( )

( )y
l

q
q l

¶
¶

=
-

-

Since θ is uniformly distributed between 0 and π,
p p d dcos cos 1 1 cos2 1 2( ) ( )∣ ∣ ( )q q q q p q= = - . Putting
all the parts together, we get

p p dcos
1

1 cos cos cos cos .

20
1

1
2 2

3 2
⎛
⎝

⎞
⎠

) ( ( )

( )

òl
p

q l y q= -
-

-

In the special case where cosy is uniformly distributed, i.e.,
p cos 1 2( )y = , Equation (20) becomes p cos 1 1 cos2( )l p l= - ,
which is equivalent to  0,( )l p~ . This suggests λ is uniformly
distributed for an isotropic ψ distribution, as expected.
Next, we derive the iå distribution for a given cosy

distribution. Similarly, we first find the Jacobian transformation
of iå from ψ and θ and then marginalize over θ. It is easier to
work on icos than on iå:




p i
i

p p dcos
sin

cos
sin cos cos . 21( ) ( ) ( ) ( )ò

y
y q q=

¶
¶

From Equation (13), we get

isin
cos

cos
22( )y

q
=

and the partial derivative

i

sin

cos

1

cos
. 23( )y

q
¶
¶

=

Figure 3. Inferred stellar obliquity distributions from sky-projected stellar
obliquities without and with information on the stellar inclination, depicted in
blue and orange curves, respectively. Each row presents a set of simulated
data with the true distribution of cosy indicated by gray dashed curves. The
shallow contours represent the 1σ and 2σ uncertainties of the inferred
distribution (✎).
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Again, we assume θ is uniformly distributed, and this gives
p cos 1 1 cos2 1 2( ) ( )q p q= - . Lastly, we transform p sin( )y
to p cos( )y :

p
p

sin
2 cos sin

1 sin
. 24

2
( ) ( ) ( )y

y y

y
=

-

The factor of 2 is from two solutions of cosy to
cos 1 sin2 2y y= - . Combining all the pieces together, we get







25

p i

i

i
p d

cos

2 cos cos

cos cos

1

1 cos
cos cos ,

icos

1, 1

2 2 2

( )

( )

( )òp
q

q q
y q=

- -

-

where the integral is from icos to 1 for cos 0q > , and from
icos to −1 for cos 0q . Note that the lower limit of the

integral is icos instead of 0 since icos cos 1∣ ∣q . If cosy is
uniformly distributed, i.e., p cos 1 2( )y = , the integral gives
1, which suggests icos is uniformly distributed, as expected.

Using Equations (20) and (25), we can now derive the λ and
iå distributions for any given ψ distributions, assuming the
azimuthal angle of the stellar spin axis θ is random. In Figure 4,
we present numerical solutions of the λ and iå distributions for
the four different cosy distributions used in Section 4.1. The
top row of Figure 4 shows an isotropic ψ distribution, where

cos 1, 1( )y ~ - . The second, third, and fourth rows of
Figure 4 present truncated normal distributions of cosy
following  0, 0.2( ),  0.4, 0.2( )- , and  0.4, 0.2( ), respec-
tively. The blue curves in each row show the numerical
solutions of the λ and iå distributions, while the gray
histograms show the sampling of λ and iå from the cosy and
θ distributions. For a uniform cosy distribution, the λ
distribution is uniform, and the iå distribution is isotropic,
proportional to isin , as expected.
Interestingly, the λ distribution is closely related to and

sensitive to the underlying ψ distribution, as demonstrated in
the first and second columns in Figure 4. For different stellar
obliquities, the λ distributions are distinguishable, making it

Figure 4. Simulated cosy distributions (first column) and the corresponding distributions of sky-projected stellar obliquity λ (second column) and stellar inclination iå
(third column). The gray histograms present the random samplings of λ and iå from the cosy distributions, and the blue curves present the numerical solutions (✎).
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possible to infer the ψ distribution from the λ distribution. On
the other hand, the iå distributions are less dependent on the
underlying ψ distribution. Compared to an isotropic iå
distribution, the curvature of the iå distributions for different
ψ distributions differs the most at low iå values (i.e., iå< π/4),
which places a challenge to observational detections. Addi-
tionally, the degeneracy of the solution could be a significant
issue when attempting to infer the ψ distribution from the iå
distribution. For example, when cos 0.4, 0.2( )y ~ - or

cos 0.4, 0.2( )y ~ , two iå distributions are exactly the same,
since the corresponding iå distributions are identical for ψ
distributions symmetric around ψ= π/2.

The ψ distribution can be inferred from the λ distribution
without loss of information due to the strong dependency of the
λ distribution on the ψ distribution. It is also worthwhile to
note that although we could find a mathematical expression of
ψ with λ and θ, the ψ distribution cannot be inferred from the
two variables since they are not independent variables.

5. Application to Exoplanetary Systems

We next apply our hierarchical Bayesian framework to a
sample of 161 exoplanetary systems with sky-projected stellar
obliquity measurements, primarily consisting of hot Jupiter
systems, as summarized in Albrecht et al. (2022, Table A1).
We use a two-component model here for its flexibility in
describing both an aligned-system population and a mis-
aligned-system population that may or may not be concentrated
at a certain angle. The inferred cosy distribution is shown in
Figure 5. The cosy distribution is peaked at 1, with nearly flat
behavior between −0.75 and 0.75 and no significant clustering.
The distribution suggests that there is a pileup of planetary
systems with stellar obliquities less than 40° and an isotropic
distribution for obliquities between 40° and 140°. The fraction
of aligned systems w1 dominates the distribution, with
w1= 0.719± 0.085. The corresponding posteriors for the
parameters of the population’s beta distribution are
μ1= 0.976± 0.022 and κ1= 14.1± 26.6. On the other hand,
the fraction of misaligned systems is estimated to have

w0= 0.281± 0.085, with posteriors of μ1= 0.434± 0.088 and
κ1= 4.2± 5.6. Note that μ0,1 needs to be transformed by
2μ− 1 to represent the true means of the cosy distributions.
The discrepancy between this inference for the full sample of

exoplanet systems and the previous analysis of the subsample
with iå measurements (Albrecht et al. 2021) warrants further
investigation. The earlier study identified a concentration of
perpendicular planets and disfavored an isotropic stellar
obliquity distribution. Indeed, when we apply our framework
to this subsample, a concentration near cos 0.2y = - is found
in models including or excluding the stellar inclination
information, as shown in Figure 6. There are at least two
potential explanations for this difference: (1) the subsample
with iå measurements is small and only includes about 20
misaligned systems, and (2) the requirement for iå measure-
ments could introduce selection biases in the sample. First,
since the sample size of the misaligned sample with iå
measurements is relatively small (N< 30), the observed
sample, even if it is unbiased, may not be able to represent
the underlying distribution. The small sample size leads to a
large uncertainty on the inferred stellar obliquity distribution,
shown by the 1σ and 2σ contours in Figure 6. Second, the
requirement of iå measurements could introduce selection
biases. The rotation modulation technique is most applicable to
cool stars with spots, but misaligned hot Jupiters are mostly
found around hot stars. To measure the stellar inclinations of
the hot-star hosts of misaligned hot Jupiters, the gravity
darkening technique is commonly used, but the technique is
biased toward detecting polar-orbit planets.
The inferred stellar obliquity distribution indicates that

approximately 72%± 9% of the systems have a stellar
obliquity of less than 40°, and approximately 28%± 9% of
the systems follow a nearly isotropic stellar obliquity
distribution ranging from ∼40° to ∼140°. These findings
could have significant implications for the formation and
evolution of close-in planetary systems, particularly of hot
Jupiters. The diverse distribution disfavors dynamical mechan-
isms, such as secular chaos, which tends to produce stellar
obliquities less than 90°, or stellar Kozai, which tends to
produce stellar obliquities clustered at certain angles. The broad
distribution of misaligned systems is in good agreement with
the predicted outcome of multiple giant planets scattering after
a convergent disk migration, as proposed by various studies,
such as Nagasawa & Ida (2011) and Beaugé & Nesvorný
(2012). The intriguing result should be further examined with a
more carefully selected sample of hot Jupiters and provides
opportunities to place constraints on the origin channels of hot
Jupiters.

6. Summary and Discussion

In this work, we demonstrate that the stellar obliquity
distribution could be robustly inferred from sky-projected
stellar obliquities purely. We introduce a flexible, hierarchical
Bayesian framework for stellar obliquity distribution inference.
Stellar inclination measurements are optional input in the
model, and if not available, they are assumed to be isotropically
distributed. Our open-source hierarchical Bayesian model,
available on GitHub3, can be customized to different stellar
obliquity distributions and priors for specific target samples.

Figure 5. Inferred stellar obliquity distribution for all exoplanetary systems
with sky-projected stellar obliquity measurements. This inference is based
purely on the observed sky-projected obliquities using a two-component
model. The blue line and shallow contours represent the median and 1σ and 2σ
uncertainties of the inferred distributions. The medians of the two components
are shown as dashed and dotted–dashed lines (✎).

3 https://github.com/jiayindong/obliquity
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It is crucial to consider the representativeness of the iå
sample when jointly modeling the stellar obliquity distribution
from two data sets, one with and one without iå measurements.
An unrepresentative iå sample could tighten the constraints on
the stellar obliquities and bias the interpretation of the overall
distribution.

Finally, we apply the framework to all exoplanetary systems
with available sky-projected stellar obliquities and find that
approximately 72%± 9% of the systems have a stellar
obliquity less than 40°, and approximately 28%± 9% of the
systems follow a nearly isotropic stellar obliquity distribution
between ∼40° and ∼140°. The distribution could have
important implications for the formation and evolution of
close-in planetary systems and is worth further investigation.
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