Archives of Current Research International

12(3): 1-10, 2018; Article no.ACRI.39504 ISSN: 2454-7077

Estimation of Lung Cancer Risk Due to Radon Exposure in Natural Food Spices

C. P. Ononugbo^{1*} and G. O. Avwiri¹

¹Department of Physics, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.

Authors' contributions

This work was carried out in collaboration between both authors. Author CPO designed the study, performed the statistical analysis, wrote the protocol, wrote the first draft of the manuscript and managed the analyses of the study. Author GOA managed the literature searches. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ACRI/2018/39504 <u>Editor(s):</u> (1) Domenico Antonio Restivo, Department of Internal Medicine, Neurological Unit, Nuovo "Garibaldi" Hospital, Italy. (2) Imran Aslan, Bingol University, Bingol, Turkey. <u>Reviewers:</u> (1) Chong Leong, Gan, Malaysia. (2) Ketan Vagholkar, D. Y. Patil University School of Medicine, India. (3) Guillermo C. Espinosa, Universidad Nacional Autónoma de México, Mexico. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/23300</u>

Original Research Article

Received 19th November 2017 Accepted 19th February 2018 Published 23rd February 2018

ABSTRACT

Estimation of lung cancer risk for internal exposure to naturally occurring ²²²Rn gas in natural food spices was done using mathematical models. A series of equations were used to estimate Rn concentrations indoor and outdoor and the associated annual effective doses and lung cancer risk in some specified population according to their smoking habit. Activity concentration of ²²²Rn in the natural food spices range from 0.57 Bqm⁻³ (in white onions) to 686.19 Bqm⁻³ (in Tomatoes). Green pepper also recorded high value of 583.34 Bqm⁻³ while ²²²Rn in air ranges from 0.0018 to 2.17 Bqm⁻³. ²²²Rn exposure (WLM) in indoor due to ingestion of the natural food spices ranged from 0.0000127 WLM/y in white onions to 0.0153 WLM/y in tomatoes. The exposure from outdoor air due to radon inhalation ranged from 0.0000063 WLM/y in white onions to 0.0000724 WLM/y in tomatoes. The maximum indoor and outdoor values were 137.32 and 651.0 μ Sv/y respectively, detected in tomatoes. The minimum indoor and outdoor values were 0.114 and 0.0.54 μ Sv/y respectively, detected in white onions. The mean annual effective dose from ingestion of ²²²Rn and inhalation from the food spices are 15.39 and 0.72 μ Svy⁻¹ respectively. As regards the estimation of lung cancer attributable to exposure to

smokers, ever smoker and never smoker recorded the maximum indoor and outdoor lung cancer risks of 381, 1144, 738 and 127 per million population and 54, 162, 105 and 4 per thousand populations respectively. The minimum indoor and outdoor risks were 32, 95, 61 and 11 per million population and 4, 13, 8 and 1 per thousand populations respectively. The result revealed a significant lung cancer risk for the current smokers.

Keywords: Indoor radon; lung cancer; food spices; effective dose.

1. INTRODUCTION

Radon is a naturally occurring radioactive gas with the chemical symbols of Rn and atomic number of 86. ²²²Rn is the most stable isotope of radon with a half-life of 3.8 days [1]. ²²²Rn originates from the decay of ²²⁶Ra, an element in the decay series of ²³⁸U and it is the heaviest gaseous element in natural sequential decay series of uranium, thorium, and actinium. ²²²Rn and its progeny are major factors for radiation exposure to humans, and are what increases the risk of lung cancer [2]. DNA damage caused by the interaction of the charged alpha particles from the inhalation of radon with lung tissue can increase the risk of lung cancer, depending on the radon concentration and exposure time [3,4]; however, in accordance to the United States Environmental Protection Agency (EPA) report, radon is the second leading cause of lung cancer, after smoking [5]. ²²⁶Ra is one of the commonly naturally occurring radioactive materials in the Earth's crust (rocks, stones, soils, etc.) [6].

Exposure to a low level of outdoors radon concentration, due to its naturally occurring property, is likely impossible to avoid, while most exposure to radon originates from being within dwellings [7]. Several studies show that cigarette smoke and radon exposure can separately increase the risk of lung cancer; however, exposure to both greatly enhances the risk of lung cancer [8]. It is well known that inhalation of the short-lived decay products of ²²²Rn provides the main pathways for radiation exposure of the lungs [3,7]. When ²²²Rn gas itself is inhaled, most of it is exhaled before it decays but ²²²Rn progeny may be deposited on the cells lining the airways where they can damage the DNA and potentially cause lung cancer. It is recognized that ²²²Rn is a health hazard in both mining and non-mining environments [9,10]. ²²²Rn is the second most important risk factor for lung cancer after smoking, and causes between 6% and 15% of all cases [11]. Exposure to ²²²Rn in the home and workplace is one of the main risks of exposure to ionizing radiation, causing tens of thousands of deaths from lung cancer each year

[12,13]. The concentration of ²²²Rn and ²²²Rn daughters in the indoor air depends on the amount of ²²⁶Ra in the soil and how easily ²²²Rn products can move through soil and walls and mix with room air. Because ²²²Rn is a gas, changes in the atmospheric pressure also affect its emission from the ground and its accumulation in the indoor air [14].

Risk assessment is a method to assess the likelihood that exposure to hazardous agents will harm people or the environment and is conducted to estimate the probability of specific harm to an exposed individual or population [15]. The purpose of our study was to calculate the from concentration the radon activity concentration of 226 Ra in all the food spices in order to determine the health risk of exposure to radon. This will estimation the lung cancer risk associated with internal radon exposure for different categories of population; the general population, current smokers, those who have ever smoked and never smokers. The annual effective dose received by consumers was calculated to assess the potential of long term effects.

2. MATERIALS AND METHODS

2.1 Sampling and Sample Preparation

The activity concentration of ²²⁶Ra in all the natural food spices was measured by means of a high resolution, low background gamma spectrometer. A total of nineteen natural food spices samples were purchased from different traders at the mile 1 market. They includes; Achi, Tomatoes, Ehuru, Garlic, Ginger, Ashanti Pepper, Green Pepper, Uda, Offor. Ogbono, Uziza seed, Cameroon pepper, Red Onions, Short pepper, Tatashey, White Onions, Chobo, Nutmeg, Egusi, and four liquid natural samples includes Vegetable oil, groundnut oil and Palm oil. These samples were taken to National Institute for Radiation Protection and Research (NIRPR), University of Ibadan, Nigeria. The samples were open air dried on trays for a period of one week and then oven dried at a temperature of 105°C (± 5°C) for 2 to 4 hours at the laboratory. The oven dried samples were then grounded into fine powder with a stainless steel ball grinder. The prepared samples, in powdered form, were packed into weighed one (1) liter Marinelli plastic beaker, hermetically sealed, reweighed and stored prior to counting [16,17,18]. The containers were sealed to avoid any possibility of out-gassing of radon and kept for a period of 1 month to make sure the samples attained radioactive equilibrium between Ra-226 and its decay products in the uranium series, and Ra-228 and its decay products in the thorium series [19].

2.2 Gamma Spectroscopy

The samples were counted using a gamma-ray spectrometry. The gamma-ray spectrometry system consists 3" × 3" Thallium-activated Sodium lodide [Nal (TI)] detector and installed in a 100 mm thick lead castle. The detector is connected to an amplifier linked to a computer program GENIE 2K Window that correlated gamma energies to a number of possible isotopes. The sample was placed the marginally beaker and then made to sit on the Nal (TI) detector. Shielding from background (environmental) radiation was achieved by counting in Canberra 100 mm thick lead castle. The energy resolution for the detector using Cs-137 from International Atomic Energy Agency (IAEA) is 7.5% at 662 Kev Cs-137 line [20]. The energy and efficiency calibration of the system was carried out before sample analysis using the multinuclear reference standard solution supplied by the International Atomic Energy Agency, IAEA. This was to enable identification and quantification of the radionuclides. The standard and the sample were counted for a period of 36,000 seconds to acquire spectral data for a better counting statistics and evaluation. The activity concentration of $^{\rm 238}{\rm U},\,^{\rm 232}{\rm Th}$ and $^{\rm 40}{\rm K}$ were determined after correction for background and inhomogeneity [21,22].

The specific activity concentration of ²³⁸U (²²⁶Ra), ²³²Th and ⁴⁰K in the medicinal plants were determined from the quantitative analysis of the spectra acquired from the Gamma-ray spectrometry using the Gamma-ray spectrum analysis software, Ortec MAESTRO–32 at specific energies. ²³⁸U was calculated from the average of ²¹⁴Pb at energies of 251.9 Kev and 295.2 Kev and ²¹⁴Bi at energies of 609.3 Kev and 1764.5 Kev. ²³²Th was determined from the average of ²⁰⁸TI at energies of 2614.5 Kev and 583.2 Kev, ²¹²Pb at the energy of 238.6 Kev and

²²⁸Ac at the energy of 911.2 Kev and ⁴⁰K at 1460.0 Kev. The specific activity (A_{sp} (*E*, *i*) in Bq kg⁻¹) of the radionuclide *i* in the samples were calculated after decay correction using the expression in equation [23].

$$A_{sp}(E, i) = \frac{N_{sam}(E,i)}{\epsilon \gamma(E)TcP\gamma(E,i) M_{sam}}$$
(1)

where; N_{sam} (E,i) is the net counts for the radionuclide *i* at energy *E*, $\varepsilon_{\gamma}(E)$ is the photo peak efficiency at energy *E*, T_c is the counting live-time (s), P γ (E, i) is the gamma emission probability of the radionuclide *i* for a transition at energy *E*, M_{sam} is the dry-weight of samples (kg).

3. RESULTS AND DISCUSSION

The original values used in these calculations are taken from published data of radionuclide concentration in natural food spices consumed in Nigeria [24]. The activity concentration of ²²⁶Ra in natural food spices were measured by means of a high resolution, low background gamma spectrometry [25].

3.1 Determination of the Activity Concentration of ²²²Rn

The activity concentration of ²²²Rn present in the sample was calculated from the activity concentration of ²²⁶Ra in the spices, dose from inhaling radon gas and doses resulting from these food spices consumption.

$$Gs(n) = Fr \cdot \rho \cdot C_{Ra}(n)$$
(2)

where Gs(n) is the radon concentration (Bqm⁻³), Fr is the constant of emission of ²²²Rn from the sample, given as 0.1 [26], ρ is the bulk density of sample and C_{Ra}(n) is the activity concentration of ²²⁶Ra in sample (Bgkg⁻¹).

The expense radioactivity in samples can be calculated by using:

$$C_{p} = A_{n} \cdot C_{Ra}(n) \tag{3}$$

 C_p = the concentration of ²²⁶Ra in sample in Bq/Kg and A_n = transfer coefficient of ²²⁶Ra which is given as 0.04 [26].

The concentration of ²²²Rn in air can be calculated using Quindos et al, [27]:

$$Ca(n) = Gs(n) \cdot (d_{sample}/D_{air})^{1/2}$$
(4)

Where Ca (n) is the activity concentration of ^{222}Rn in air for sample (Bq/m³), d_{sample} = diffusion

rate constant of 222 Rn in sample which is given as $(0.5x10^{-4} \text{ m}^2/\text{s})$ [26] and D_{air} = diffusion rate constant of 222 Rn in air given as $(5m^2/\text{s})$. The results are presented in Table 2.

3.2 Risk Assessment from Radon

The absence of experimental data on equilibrium factor between radon and its progeny in the representative houses, the EPA recommended value was used to estimate annual human exposure rate [28].

$$WLM(Y) = CRn \times F \times (2.7 \times 10^{-4}) \times S \times (H_{Year}/170)$$
(5)

Where WLM(Y) is the annual human exposure rate to radon decay products, CRn is the average of radon concentration (Bq.m⁻³), F is the equilibrium factor as 0.4 for indoor and 0.6 for

outdoor, 2.7×10^{-4} is the radon progeny concentration in equilibrium (WL.Bq.m⁻³), S as 0.7 is the fraction of spending time indoors, and H_{Year} is annual hours.

The annual effective dose from inhaled radon is calculated with Equation (6) [29,30]:

$$HA = WLM(Y) \times I \tag{6}$$

Where HA is annual effective dose $(mSv.y^{-1})$ and I is the conversion factor of 9 (mSv per WLM).

The risk factors provided by ICRP and EPA were used to estimate the risk of lung cancer from radon inhalation for: the general population, current smokers, ever smokers, and never smokers. Table 1 presents the risk factors in terms of organizations and individual status.

Organization	Status	Risk factor
ICRP	General Population	5×10-4
	Current Smoker	1.5×10-3
EPA	Ever Smoker	9.68×10-4
	Never Smoker	1.67×10-4

Table 1. The lung cancer risk factors by individual status

S/N	Sample	Initial mass of sample in	Volume of sample ml	Density of sample	²²² Rn conc in sample	²²² Rn conc in
		gram (g)	-	kg/m ³	Bqm ⁻³	air (Bqm ⁻³
1	Achi	132.9g	305	435.74	167.76	0.53
2	Chobo	88.9g	335	265.37	0.61	0.0019
3	Tomato	37.6g	120	313.33	686.19	2.17
4	Egusi	156.3g	325	480.92	1.01	0.0032
5	Ehuru	135.4g	360	376.11	0.75	0.0024
6	Garlic	168.5g	270	624.07	1.44	0.0046
7	Ginger	132.6g	330	401.82	0.88	0.0028
8	Green pepper	15.8g	50	316	583.34	1.84
9	Nut meg	131.1g	290	452.07	0.90	0.0028
10	Long pepper	116.7g	375	311.2	0.65	0.0021
11	Uda	153.5g	370	414.86	1.00	0.0032
12	Offor	161.1g	335	480.90	1.11	0.0035
13	Ogbono	102.5g	205	500	0.95	0.0030
14	Vegetable oil 1	200g	215	930.23	2.23	0.0071
15	Vegetable oil 2	200g	215	930.23	2.23	0.0071
16	Groundnut oil	200g	215	930.23	2.23	0.0071
17	Uziza seed	163.7g	320	511.56	0.92	0.0029
18	Palm oil	200g	215	930.23	168.37	0.53
19	Cameroon pepper	108.7g	325	334.46	0.77	0.0024
20	Red onion	86.2g	260	331.54	37.46	0.12
21	Short papper	102.9g	315	326.67	106.17	0.34
22	Tatashey	66.2g	215	307.91	0.77	0.0024
23	White onion	69.6g	245	284.08	0.57	0.0018

Table 2. Calculated radon concentration from the activity concentration of ²²⁶Ra

The annual risk of lung cancer from inhaled radon and its progeny is calculated by equation number (7) [31]:

 $R = WLM(Y) \times D \times K$ (7)

where R is the risk of lung cancer per year, WLM(Y) is the annual cumulative radon and its progeny exposure rate, D is the exposure time (Year) and K is the risk factor.

3.3 Discussion

The investigation of ²²²Rn emanation and exhalation rates showed the same patterns between the ingested radon through food spices and inhalation from the spices. This may be due to the presence of uranium in the natural food emanating from the spices soil. The concentration of ²²²Rn present in the food spices samples was calculated from the activity concentration of $^{\rm 226}{\rm Ra}~(^{\rm 238}{\rm U})$ in the food spices and in the air using equations 2 and 4 and are presented in Table 2. Health risk assessment was determined from radon and its progeny using equation 5 for the general population and their smoking habits.

Activity concentration of ²²²Rn in the natural food spices range from 0.57 Bqm⁻³ (in white onions) to 686.19 Bqm⁻³ (in Tomatoes). Green pepper also recorded high value of 583.34 Bqm⁻³ while ²²²Rn in air ranges from 0.0018 to 2.17 Bqm⁻³. ²²²Rn exposure (WLM) in indoor due to ingestion of the natural food spices ranged from 0.0000127 WLM/y in white onions to 0.0153 WLM/y in tomatoes. The exposure from outdoor air due to radon inhalation ranged from 0.00000063 WLM/y in white onions to 0.0000724 WLM/y in tomatoes (Table 3). The annual effective doses from ²²²Rn exposure both indoor (ingestion) and outdoor (inhalation) are shown in Tables 3 and 4 respectively. The maximum indoor and outdoor values were 137.32 and 651.0 uSv/v respectively, detected in tomatoes. The minimum indoor and outdoor values were 0.114 and 0.0.54 µSv/y respectively, detected in white onions. The mean annual effective dose from ingestion of ²²²Rn and inhalation from the food spices are 15.39 and 0.72 µSvy⁻¹ respectively.

As regards the estimation of lung cancer attributable to exposure to ²²²Rn and its progeny to the general public, current smokers, ever smoker and never smoker recorded the maximum indoor and outdoor lung cancer risks of 381, 1144, 738 and 127 per million population and 54, 162, 105 and 4 per thousand populations respectively. The minimum indoor

and outdoor risks were 32, 95, 61 and 11 per million population and 4, 13, 8 and 1 per thousand populations respectively (Tables 3, 4). As seen in the Tables, large differences were observed between the smokers and never smoked. Figs. 1 and 2 show the variations in the lung cancer risk according to smoking status with annual effective dose from the samples (indoor) and air (outdoor) respectively. The lowest risk was detected in white onions for all the population class while tomatoes presented the highest risk of lung cancer especially to current smokers.

The estimated indoor ²²²Rn concentration were higher than the recommended upper limit of 148 Bqm⁻³ [8] and 200-400 Bqm⁻³ ICRP, [18] in some natural food spices. Tomatoes, green peppers, Achi and palm oil recorded higher activity concentration of ²²²Rn (686.19, 583.34, 167.76 and 168.37 Bqm⁻³) respectively. The main contribution to the exposure of population to natural radiation comes from ingestion and inhalation of short-lived decay products of ²²²Rn decay products. Direct measurements of the concentration of all short-lived decay products of ²²²Rn are difficult and limited. They are estimated from consideration of equilibrium between ²²²Rn its decay products. Applying the and classification of indoor exposure of Walsh and Lowder [32], where an exposure around 0.05 WL is considered high and 0.5WL extremely high, the estimated exposure levels in this study are all less than this guidelines. Walsh and Lowder also noted that the outdoor exposure is generally near 0.001 WL. The outdoor exposure levels are below this guidelines and EPA recommended value of 0.004 WL.

The annual effective doses from ²²²Rn exposure in the samples and air in this study are consistent with the world wide values of 1.0 and 0.1 mSvy⁻¹ for indoor and outdoor exposures respectively. The calculated annual effective doses are below the recommended dose. The US regulatory agencies assumed in cancer risk assessment that risk is directly proportional to dose and that there is no threshold of carcinogenesis [9,11,26]. In recent years, it has been established that there is a threshold of lung cancer induction by ²²²Rn inn humans of around 600 to 1000 Bqm-3 in air for permanent intake in particular at home and offices. All the estimated values in this work were below this threshold range. For current smokers the risk of lung cancer is significantly higher than nonsmokers due to synergistic effects of ²²²Rn and smoking [8,17] as shown in the result of this study.

Ononugbo and Avwiri; ACRI, 12(3): 1-10, 2018; Article no.ACRI.39504

S/N	Sample Id	²²² Rn conc.	Human	Annual	Annual risk of lung cancer per year			
		in sample (Bqm ⁻³)	exposure rate WLM _(v)	effective dose (H _A) µSvy⁻¹	General population	Current smokers	Ever smoker	Never smoker
1	AC	167.76	3.73E-03	33.572	9.32548E-05	0.28E-03	181.0E-06	3.11471E-05
2	СН	0.61	1.36E-05	0.122	3.39088E-07	1.02E-06	6.56E-07	1.13255E-07
3	ТО	686.19	15.258E-03	137.319	3814.41E-07	1.144E-03	738.0E-6	1274.01E-07
4	EG	1.01	2.25E-05	0.202	5.61441E-07	1.68E-06	1.09E-06	1.87521E-07
5	EH	0.75	1.67E-05	0.150	4.16912E-07	1.25E-06	8.07E-07	1.39249E-07
6	GA	1.44	3.2E-05	0.288	8.00471E-07	2.4E-06	1.55E-06	2.67357E-07
7	GI	0.88	1.96E-05	0.176	4.89176E-07	1.47E-06	9.47E-07	1.63385E-07
8	GP	583.34	12.971E-03	116.737	3242.68E-07	0.973E-03	628.0E-06	1083.06E-07
9	NM	0.9	2.00E-05	0.180	5.00294E-07	1.5E-06	9.69E-07	1.67098E-07
10	LP	0.65	1.45E-05	0.130	3.61324E-07	1.08E-06	7E-07	1.20682E-07
11	UD	1.00	2.22E-05	0.20	5.55882E-07	1.67E-06	1.08E-06	1.85665E-07
12	OF	1.11	2.47E-05	0.222	6.17029E-07	1.85E-06	1.19E-06	2.06088E-07
13	OG	0.95	2.11E-05	0.190	5.28088E-07	1.58E-06	1.02E-06	1.76381E-07
14	VO1	2.23	4.96E-05	0.446	1.23962E-06	3.72E-06	2.4E-06	4.14032E-07
15	VO2	2.23	4.96E-05	0.446	1.23962E-06	3.72E-06	2.4E-06	4.14032E-07
16	GO	2.23	4.96E-05	0.446	1.23962E-06	3.72E-06	2.4E-06	4.14032E-07
17	UZ	0.92	2.05E-05	0.184	5.11412E-07	1.53E-06	9.9E-07	1.70812E-07
18	PO	168.37	3.744E-03	33.694	9.35939E-05	0.281E-03	0.000181	3.12604E-05
19	CP	0.77	1.71E-05	0.154	4.28029E-07	1.28E-06	8.29E-07	1.42962E-07
20	RO	37.46	0.833E-03	7.496	2.08234E-05	6.25E-05	4.03E-05	6.955E-06
21	SP	106.17	2.361E-03	21.246	5.9018E-05	0.177E-03	0.000114	1.9712E-05
22	TT	0.77	1.71E-05	0.154	4.28029E-07	1.28E-06	8.29E-07	1.42962E-07
23	WO	0.57	1.27E-05	0.114	3.16853E-07	9.51E-07	6.13E-07	1.05829E-07
AV.		76.88	1.709E-03	15.385	4.27362E-05	0.128E-03	8.27E-05	1.42739E-05

Table 3. Health risk assessment due to ingestion of the samples

S/N	Sample Id	²²² Rn conc. in air (Bqm ⁻³)	Human exposure rate WLM _(y)	Annual effective dose (H _A) μSvy ⁻¹	Annual risk of lung cancer per year			
					General population	Current smokers		Never smoker
1	AC	0.53	1.76771E-5	159.0	13.25E-03	39.75E-03	25.65E-03	442.6E-05
2	СН	0.0019	6.33706E-8	0.57	4.75E-05	0.143E-03	9.2E-05	1.59E-05
3	TO	2.17	7.23759E-05	651.0	54.25E-03	162.75E-03	105.03E-03	442.6E-05
4	EG	0.0032	1.06729E-07	0.961	8.00E-05	0.24E-03	0.155E-03	1.59E-05
5	EH	0.0024	8.00471E-08	0.72	6.00E-05	0.18E-03	0.116E-03	181.2E-05
6	GA	0.0046	1.53424E-07	1.38	11.50E-05	0.345E-03	0.223E-03	2.67E-05
7	GI	0.0028	9.33882E-08	0.84	7.00E-05	0.21E-03	0.136E-03	2E-05
8	GP	1.84	6.13694E-05	552.0	46.0E-03	138.00E-03	89.06E-03	3.84E-05
9	NM	0.0028	9.33882E-08	0.84	7.00E-05	0.21E-03	0.136E-03	2.34E-05
10	LP	0.0021	7.00412E-08	0.63	5.25E-05	0.158E-03	0.102E-03	153.6E-05
11	UD	0.0032	1.06729E-07	0.961	8.00E-05	0.24E-03	0.155E-03	2.34E-05
12	OF	0.0035	1.16735E-07	1.05	8.75E-05	0.263E-03	0.169E-03	1.75E-05
13	OG	0.003	1.00059E-07	0.901	7.50E-05	0.225E-03	0.145E-03	2.67E-05
14	VO1	0.0071	2.36806E-07	2.13	17.80E-05	0.533E-03	0.344E-03	2.92E-05
15	VO2	0.0071	2.36806E-07	2.13	17.80E-05	0.533E-03	0.344E-03	2.51E-05
16	GO	0.0071	2.36806E-07	2.13	17.80E-05	0.533E-03	0.344E-03	5.93E-05
17	UZ	0.0029	9.67235E-08	0.871	7.25E-05	0.218E-03	0.14E-03	5.93E-05
18	PO	0.53	1.76771E-05	159.0	13.25E-03	39.75E-03	25.65E-03	5.93E-05
19	CP	0.0024	8.00471E-08	0.72	6.00E-05	0.18E-03	0.116E-03	2.42E-05
20	RO	0.12	4.00235E-06	0.36	3.00E-05	9.00E-03	5.81E-03	442.6E-05
21	SP	0.34	1.134E-05	102.0	8.50E-03	25.50E-03	16.46E-03	2E-05
22	TT	0.0024	8.00471E-08	0.72	6.00E-05	0.18E-03	0.116E-03	100.2E-5
23	WO	0.0018	6.00353E-08	0.54	4.50E-05	0.135E-03	8.71E-05	283.9E-05
AV.		0.24	8.00471E-06	0.72	6.0E-03	18.00E-03	11.62E-03	2E-05

Table 4. Health risk assessment due to radon inhalation

Ononugbo and Avwiri; ACRI, 12(3): 1-10, 2018; Article no.ACRI.39504

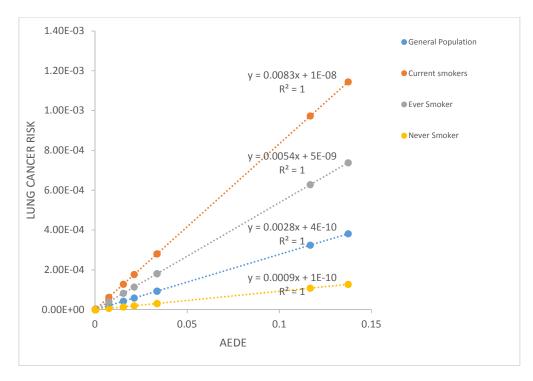
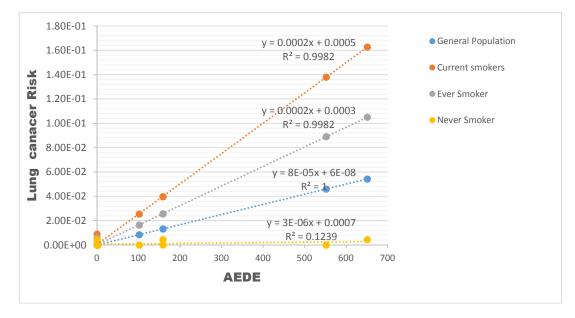



Fig. 1. The annual risk of lung cancer versus annual effective dose equivalent from samples (indoor)

4. CONCLUSION

Radon is a naturally occurring hazardous, radioactive pollutants that is always present in our surroundings and is one of the causes of lung cancer. The estimated radon concentration in natural food spices were lower than the recommended safe limits except in Tomatoes and green pepper. The human exposure rate and annual effective dose due to ingestion of ²²²Rn in natural food spices and the air (outdoor) were less than the upper limit. The risk of lung cancer

estimated for the general population and other groups according to their smoking habits revealed a significant lung cancer risk for the current smokers. The result of this study has shown the correlation between tobacco exposure and radon exposure. There is therefore, the need to curb smoking habit of the general population and save them from death from lung cancer. It is imperative to note at this point that the results of all the radiological parameters were based on mathematical models, therefore further clinical comparative studies on patient samples are necessary before drawing definitive conclusions.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Duggal V, Rani A, Mehra R. Measurement of indoor radon concentration and assessment of doses in different districts of Northern Rajasthan, India. Indoor Built Environ. 2014;23:1142-1150.
- Lecomte JF, Solomon S, Takala J, Jung T, Strand P, Murith C, Kiselev S, Zhuo W, Shannoun F, Janssens A. Radiological protection against radon exposure. Ann ICRP. 2014;43(3):5-73.
- 3. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. United Nations. 2000;1.
- Saada AF, Al-Awamia HH, Husseina NA. Radon exhalation from building materials used in Libya. Radiat Phys Chem. 2014;101:15-19.
- Kapdana E, Altinsoy N. A comparative study of indoor radon concentrations between dwellings and schools. Radiat Phys Chem. 2012;81(4):383-386.
- Wichmann HE, Rosario AS, Heid IM, Kreuzer M, Heinrich J, Kreienbrock L. Increased lung cancer risk due to residential radon in a pooled and extended analysis of studies in Germany. Health Phys. 2005;88:71-75.
- Tarsheen KS, Moataz NE, Goetz H, Kloecker HK. Radon and lung cancer. Clin Adv Hematol Oncol. 2012;10(3):157-164.
- Environmental Protection Agency (EPA). EPA assessment of risks from radon in homes. U.S. Environmental Protection Agency; 2003.

- Shahrokhi A, Szeiler G, Rahimi H, Kovács T. Investigation of natural and anthropogenic radionuclides distribution in arable land soil of south eastern European countries. IJSER Research. 2014;5(11): 445-449.
- Canadian Centre for Occupational Health and Safety. Physical agents, radon in buildings; 2005. Available:<u>http://www.ccohs.ca/oshanswers/ phys_agents/radon.html</u> (Accessed 9th February 2008)
- 11. International Commission on Radiological Protection. Limits on inhalation of radon daughters by workers. Oxford, Pergamon Press; 1981. (Publication 32).
- 12. International Commission on Radiological Protection. Protection against radon-222 at home and at work. Oxford, Pergamon Press; 1993. (Publication 65).
- 13. WHO. Launches project to minimize risks of radon. Geneva, World Health Organization; 2005. (Notes for the Media 2005).
- World Health Organization. Ionizing radiation in our environment: Radon; 2008. Available:<u>http://www.who.int/ionizing radia</u> <u>tion/env/radon/en/index.html</u> (Accessed 9th February 2008)
- 15. Technical Support Document for the 1992 Citizen's Guide to Radon. Washington DC, US Environmental Protection Agenecy; 1992. (EPA 400-R-92-011).
- Shashikumar TS, Ragini N, Chandrashekara MS, Paramesh L. Radon in soil and its concentration in the atmosphere around Mysore city, India. Indian J Phys. 2009;83:1163–1169.
- Chen J, Moir D. An updated assessment of radon exposure in Canada. Radiat Prot Dosim. 2010;140:166–170.
- ICRP. International Commission on Radiological Protection – protection against radon-222 at home and at work. ICRP Publ., 65. Ann ICRP. 1994;23:1–38. Available:<u>http://dx.doi.org/10.1016/0146-6453(93)90002-P</u>
- Choubey VM, Ramola RC. Correlation between geology and radon lvels in ground water, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. Environ Geol. 1997;32:258–262.
- 20. Faj Z, Planinic J. Dosimetry of radon and its daughters by two SSNT detectors. Radiat Prot Dosim. 1991;35:265–268.
- 21. Kranrod C, Chanyotha S, Chankow N, Tokonami S, Ishikawa T, Sahoo SK. A

simple technique for determining the equilibrium equivalent Thoron concentration using a CR-39 detector: Application in mineral treatment industry. Radioprotection. 2009;44:301–304.

- 22. Oni OM, Isola GA, Oladapo OO, Oni EA. Estimation of lifetime fatality risk from indoor radon in some offices in a Nigerian university. Res J Environ Earth Sci. 2012;4:131–133.
- 23. Peterson E, Aker A, Kim J, Li Y, Brand K, Copes R. Lung cancer risk from radon in Ontario, Canada: How many lung cancers can we prevent? Cancer Causes Control. 2013;24:2013-20.
- 24. Murray CJ, Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S. Comparative quantification of health risks conceptual framework and methodological issues. Popul Health Metr. 2003;1:1.
- 25. Amin S, Forough S, Ali R, Hasn R. Health risk assessment of household exposure to indoor radon in association with the dwellings age. Journal of Radiation Protection and Research. 2015;40(3):155-161.
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000). Sources and effects of ionizing radiation. Report to the General Assembly of the United Nations with Scientific

Annexes. New York, United Nations Sales Publication. 2000;1.

- 27. World Health Organization. WHO handbook on indoor radon: A public health perspective. Geneva: World Health Organization; 2009. Available:<u>http://whqlibdoc.who.int/publicati</u> ons/2009/9789241547673 eng.pdf (Accessed on 21st February 2014)
- 28. Ravikumar P, Somashekar RK. Estimation of the dose of radon and its progeny inhaled inside buildings. European Journal of Environmental Science. 2015;3(2):88-95.
- 29. El-Gamal A, Hosny G. Assessment of lung cancer risk due to exposure to radon from coastal sediments. Eastern Mediterranean Health Journal. 2008;14(6):1257-1269.
- 30. Rogers RG, Powell-Griner E. Life expectancies of cigarette smokers and nonsmokers in the United States. Social Science & Medicine. 1991;32:1151–9.
- Chauhan RP, Kant K, Nain M, Chakarvarti SK. Indoor radon remediation: Effect of ventilation. Env. Geochemistry. 2006;9: 100-104.
- 32. Walsh PJ, Lowder WM. Assessing the risk from exposure to radon in dwellings. Oak Ridge, Tennessee, Oak Ridge National Laboratory, Health and Safety Research Division; 1983.

© 2018 Ononugbo and Avwiri; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history/23300