
*Corresponding author: E-mail: aliyukisabo@yahoo.com, aliyu_bhar@yahoo.com;

Advances in Research

16(4): 1-21, 2018; Article no.AIR.43876
ISSN: 2348-0394, NLM ID: 101666096

 Computing Internal Member Forces in a Bridge
Truss Using Classical Iterative Numerical Methods

with Maple® & MATLAB®

Aliyu Bhar Kisabo1*, Bello Abdulazeez Opeyemi1 and Capt. Olayemi Balogun2

1
Centre for Space Transport and Propulsion (CSTP), Epe, Lagos-State, Nigeria.

2Defence Space Agency (DSA) Abuja, Nigeria.

Authors’ contributions

This work was carried out in collaboration between all authors. All authors read and approved the final
manuscript.

Article Information

DOI: 10.9734/AIR/2018/43876

Editor(s):
(1) Dr. Sumit Gandhi, Department of Civil Engineering, Jaypee University of Engineering and Technology, Madhya Pradesh,

India.
(2) Dr. Carlos Humberto Martins, Professor, Department of Civil Engineering, The State University of Sao Paulo, Brazil.

Reviewers:
(1) Manish Mahajan, IKG- Punjab Technical University, India.

(2) Francesco Zirilli, Universita di Roma La Sapienza, Italy.
(3) Oladele, Matthias Omotayo, The Federal Polytechnic, Ede, Nigeria.

Complete Peer review History: http://www.sciencedomain.org/review-history/26522

Received 22 June 2018
Accepted 06 September 2018

Published 05 October 2018

ABSTRACT

In this study, computation and analysis of internal member forces acting on a bridge truss were
carried out. First, the forces were resolved at each joint and a system of equations was built to
describe the truss as a Linear System of Algebraic Equations (LSAEs). The LSAEs developed here
is of the order 8 x 8 and sparse. Aside from the truss system being a sparse matrix, it is neither
positive definite nor a tridiagonal matrix. Hence, a weakly diagonally dominant matrix characterised
by ρ (A) > 1. Secondly, 3 iterative numerical methods were applied to obtain a solution to the
LSAEs. Third, with Maple®, Jacobi and Gauss-Seidel methods were used with relative ease to the
LSAEs, and its solution converged after 30 and 18 iterations respectively. When Successive Over-
relaxation (SOR) method was applied with ω = 1.25, a solution to the LSAEs failed to converge. In a
novel approach, the error evolution was simulated against iteration number for ω = 0.1 - 0.99 in
Maple

®
. After analysing such results, ω = 0.93 was selected as the optimal value for the Relaxation

Technique and solution to the LSAEs converged after ten iterations. MATLAB
®
 codes were then

written for the three iterative numerical methods to validate the results obtained in Maple®. The
method proposed here proved to be very effective.

Original Research Article

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

2

Keywords: Truss; forces; classical iterative numerical methods; Sparse Matrix; Maple®; MATLAB®.

1. INTRODUCTION

Computing internal member forces in trusses
require good background knowledge of applied
mechanics though; this pre-requisite is
fundamental but is not enough. This means even
if one is well grounded in such subject and
cannot use STEM- based software like Maple

®

MATLAB
®
, Mathematica

®
, Mathcad

®
 etc., to aid

such computations, it will be impossible to carry
out.

As such, the ability to be acquainted with STEM-
based software for STEM computations and
analysis cannot be overemphasise. STEM-
based problems that are in the form of LSAEs
could be easily solved with pen and paper
(manual) if it is of a small order. But when the
order increases, it can become a very irritating or
an impossible task to be manually solved [1].

The need to be acquainted with computer- based
numerical techniques is inevitable especially
when it comes to real- life application problems.
Errors in such computations could lead to
enormous revenue losses, injuries and even loss
in human lives, to mention a few.

It is customary to explore solutions to STEM
problems using more than one STEM- based
software at the same time [2,3,4]. It is necessary
to increase interest in STEM- based courses,
thus, making teaching such subjects more
intuitive. Also, solutions obtained from two or
more different STEM- based software for the
same problem serves as a means of validating
simulation results.

In this study, Maple® was used as the main
STEM software for all the computation. Although
Maple® is viewed as an analytical STEM- based
software; it is also capable of numerical
computations [5]. The study intends to show by
example the ease and intuitive manner with
which Maple

®
 handles classical iterative

numerical computation and analysis.

This paper is divided into four sections. Section 2
highlights the need of determining the internal
member forces on a bridge truss and
development of the mathematical equations that
describe the entire bridge truss. In section 3,
iterative numerical algorithms of Jacobi’s
method, Gauss-Seidel (GS) method and
Successive Over-relaxation (SOR) methods were

described and applied to the solution of the
bridge truss. Results were discussed, and
section 4 concludes the study.

2. BRIDGE TRUSS AND INTERNAL

MEMBER FORCES

Trusses are lightweight structures capable of
carrying heavy loads. A truss is an advantageous
structural configuration in which bars are
connected at joints, and the overall configuration
carries load through axial force in the bars.

Generally, trusses are three-dimensional (3-D)
although, they can be reduced to two-
dimensional (2-D) form as depicted in Fig. 1.
Uses of trusses include bridges, buildings,
cranes, roofs etc. In bridge design, the individual
members of the truss are connected with
rotatable pin joints that permit forces to be
transferred from one member of the truss to
another [6,7]. Wherever trusses are present, the
main objectives for an engineer are:

 To determine the stability and determinacy of
plane trusses;

 To analyse and calculate the internal forces
in truss members;

 To calculate the deformation at any joints.

The present study is limited to the first two
objectives outlined above.

2.1 Static Determinacy and Stability

A structure that can be analysed using the
equations of equilibrium is called statically
determinate. Otherwise, such structures are
termed statically indeterminate. Only statically
determinate trusses can be analysed with the
method of joints. A statically determinate truss
with two reactions must satisfy [8],

 2 3,j m  (1)

Where, j is the number of joints and m is the
number of members. Considering the bridge
truss shown in Fig.1, the number of joints is four,
and it has five members. To answer the question
of whether the truss in Fig. 1 is statically
determinate, the values of j = 4 and m = 5 in (1)
were substituted. What we get after substituting
the values of j and m is that both sides of (1) give
us the number 8. Hence, the truss in Fig. 1 is
statically determinate. This needs to be

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

3

established before one delves into writing
equations of equilibrium for each joint to
determine internal forces.

2.2 Calculate the Internal Forces in Truss
Members

Computing internal forces in trusses are
essential for engineers to determine the factor of
safety (FOS) during their design. Generally,
when FOS is used in the analysis of an existing
structure, the factor of safety is defined as,

 =

Failure Level
Factor of Safety

Actual Level
 (2)

In a truss, the actual force in a member is called
the internal member force, and the force at which
failure occurs is called the strength. Thus,
equation (2) can be rewritten as,

 =

Strength
Factor of Safety

Internal Member Force
 (3)

From (3), the engineer has to determine the
internal member forces of any structure he/she is
designing. For bridges, this is most important to
ensure that the load exerted on the truss
members at any time does not exceed the
strength of the materials and joints. This type of
analysis results in setting a limit to the load
carrying capability of a bridge and also could be
used as bases for computing lifespan (fatigue
analysis) for the bridge.

If the factor of safety is less than 1, then the
member or structure is unsafe and will probably
fail. If the factor of safety is 1 or slightly greater
than 1, then the member or structure is nominally
safe but has minimal margin for error—for
variability in loads, unanticipated low member
strengths, or inaccurate analysis results. Most
structural design codes specify a factor of safety
of 1.6 or larger (sometimes considerably larger)
for structural members and connections [9,10].

To begin the computation of such forces, first,
these forces must be resolved appropriately.
Resolving forces in a member involves summing
forces together. As vectors, direction and
magnitude were taken into consideration. Hence,
for this study, the vertical (y) upwards direction
was taken as the positive vertical force direction.
The horizontal (x) right-hand direction was taken
as the positive horizontal force direction. In Fig.
1, the bridge truss was held stationary at the

lower left endpoint (joint 1) but was permitted to
move horizontally at the lower right endpoint
(joint 4), and had pin joints at 1, 2, 3 and 4. A
load of 10KN was placed at joint 3, and the
resulting internal member forces on the joints are
shown in the Figure [11]. This section
mathematically describes all the forces acting in
the truss, and the study will begin by isolating
each joint and the forces acting on them (free-
body-diagram).

2.2.1 Joint 1

Re-producing the part of Fig.1 that deals with the
forces in joint 1 gives us the image in Fig. 2.
Resolving forces in the x-direction and
considering Δ abc. The second term in (4), f1 is
being resolved along the Δ side ac. Resolving
forces in the y-direction and considering Δ abc

’
in

Fig 2 gives (5). Note, the second term in (5), f1 is
being resolved along the ac

’
 of Δ abc

’
.

 1 1 20 ; cos 45 0xF F f f


     (4)

 2 10 ; sin 45 0.yF F f


    (5)

2.2.2 Joint 2

To compute the forces in this joint all other forces
in other nodes were ignored and re produced
Fig. 1 with only the forces at joint 2. This is
depicted in Fig. 3.

Considering Fig. 3, Resolving forces in the x-
direction. YThe study, considered Δ abc

’
, and

resolved f1 along the side bc’. Secondly,
considering Δ bc’’d and resolving f4 along the side
bc’’. These resolved forces are,

   1 40 ; cos 45 cos 30 0xF f f


    (6)

Resolving forces in the y-direction in Fig. 3. The
study considered Δ abc, and resolved f1 along
the side bc. Secondly, considering Δ bcd and
resolving

f4 along the side bc. These gave the

second and third terms in (7).

   3 1 40 ; cos 45 cos 60 0yF f f f


     (7)

2.2.3 Joint 3

Isolating the forces in joint 3 from Fig. 1 gives
Fig. 4. Forces in x-direction give (8) and
resolving forces in y-direction gives (9).

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

4

2 50 ; 0xF f f
 

    (8)

30 ; 10000 0yF f


   (9)

2.2.4 Joint 4

To resolve the forces in joint 4, this joint from Fig.
1 and Fig. 5 was isolated.

2

1 3 4
F1

f1

f2

F2

f2

f1

f3

f4

f3

f5 f5

F3

f4

10,000

l1
30°45°

Fig. 1. Forces acting on a bridge truss

2

1 3
F1

f1

f2

F2

45°

a
c

b
c’

Fig. 2. Free-body diagram for joint 1

Fig. 3. Free-body diagram for joint 2

2

1 3 4

a

f1

f3

f4

d

f4

l1
30°45°

b
c’ c’’

c

45° 30°

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

5

3
f2

f3

f5

10,000

Fig. 4. Free-body diagram for joint 3

2

3 4
f5

F3

f4
30°

30°

60°

d

c”b

c

Fig. 5. Free-body diagram for joint 4

Resolving forces in the x-direction, first, Δ bcd
was considered, and resolving f4 along the side
cd gave the second term in (10) as;

 5 40 ; cos 30 0xF f f


    (10)

Resolving forces in the y-direction. First,
considering Δ bc

’’
d, and resolving f4 along the

side c’d’ gave the second term in (11) as;

 3 40 ; cos 60 0yF F f


    (11)

2.3 Defining the system Equation

The proposed system variables were x = [F1 F2
F3 f1 f2 f3 f4 f5]

T, we can rewrite (4) to (11) as a
Linear System of Algebraic Equations (LSAEs)
as,

 

 

   

   

 

 

1 1 2

2 1

1 4

3 1 4

2 5

3

5 4

3 4

cos 45 0

sin 45 0

cos 45 cos 30 0

cos 45 cos 60 0

0

10, 000 0

cos 30 0

cos 60 0

F f f

F f

f f

f f f

f f

f

f f

F f

   

  

  

   

  

 

  

  

(12)

To complete the missing variables, equation (12) can be re-written as,

 

 

   

   

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3

0 0 cos 45 0 0 0 0

0 0 sin 45 0 0 0 0 0

0 0 cos 45 0 0 cos 30 0 0

0 0 0 cos 45 0 cos 60 0 0

0 0 0 0 0

F F F f f f f f

F F F f f f f f

F F F f f f f f

F F F f f f f f

F F F f f f

             

             

            

            

         

 

 

4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

0 0

0 0 0 0 0 0 0 10,000

0 0 0 0 0 0 cos 30 0

0 0 0 0 0 cos 60 0 0

f f

F F F f f f f f

F F F f f f f f

F F F f f f f f

   

              

             

             

 (13)

The system of linear algebraic equations in (13) can be written in state-space form as,

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

6

 
 
   
   

 
 

1

2

3

1

2

3

4

4 5

1 0 0 cos 45 1 0 0 0 0

0 1 0 sin 45 0 0 0 0 0

0 0 1 cos 45 0 0 cos 30 0 0

0 0 0 cos 45 0 1 cos 60 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 10,000

0 0 0 0 0 0 cos 30 1 0

0 0 1 0 0 0 cos 60 0 0

F

F

F

f

f

f

f

f f

    
        
     
    

      
    
    
   
    
   

      










 
 
 
 

 (14)

Notice that the last diagonal element in (14) is a zero. For some reasons which will be discussed later,
equation (14) was re-arranged in such a way that (10) and (11) will have their position interchanged in
(14). The result is (15), where all diagonal elements are non-zero. Hence, in State-Space have [12],

2
1 0 0 1 0 0 0

2

2
0 1 0 0 0 0 0 02

01
0 0 1 0 0 0 0

02

02 1
, 0 0 0 0 1 0

02 2

0 0 0 0 1 0 0 1 10,000

0 0 0 0 0 1 0 0 0

02 3
0 0 0 0 0 0

2 2

3
0 0 0 0 0 0 1

2

A b

 
 
 
 

   
   
      
   
         
   

   
   
   
     
 
 

  
 

 (15)

Now successfully resolved all internal forces in
each member of the truss, ended up with a linear
system of algebraic equations a given in (15). It
is important to notice that (15) is an 8×8 matrix
and has 47 zero entries and only 17 nonzero
entries. In MATLAB, the sparsity of a matrix is
the fraction of its elements that are zero. The
MATLAB command nnz counts the number of
nonzero elements in a matrix and defines the
degree of sparsity by ascribing a number. A
sparse matrix is a matrix whose sparsity is nearly
equal to 1[13]. The following MATLAB code was
used to determine whether the system as given
in (15) is sparse:

Density = nnz(A)/prod(size(A))
Sparsity = 1 - density

The above code returned the value 0.7344,
hence, (15) is a sparse matrix. Sparse matrix
patterns that frequently occur are [14];

 Tridiagonal;
 Band diagonal;
 Block diagonal matrices;
 Lower/Upper triangular and block lower/

upper triangular matrices

Conceptually, sparsity corresponds to systems
which are loosely coupled. Large sparse
matrices often appear in the STEM when solving
partial differential equations. When storing and
manipulating sparse matrices on a computer, it is
beneficial and often necessary to use specialised
algorithms, and data structures that take

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

7

advantage of the sparse structure of the matrix
[15] Because (15) is a sparse matrix, the so-
called direct strategies cannot be used to solve it.

Most real-life application problems of LSAEs are
sparse. Some industrial test data that are in this
form can be downloaded from [16]. Two types of
strategies which may be used to solve any
LSAEs are either the direct methods or iteration
methods. Example of direct strategies for solving
LSAEs is Gaussian Elimination, LU factorisation,
Crammer’s rule etc. In the absence of round-off
error, such methods would yield the exact
solution within a finite number of steps. The
second strategy for solving LSAEs is called the
numerical iterative methods. These methods are
useful for problems involving special, huge
matrices, for example, sparse matrices like (15).

Problems posed in large sparse matrices are
efficiently solved using the iterative methods
because of its popularity in many areas of
scientific computing. At the same time, parallel
computing has infiltrated the same application
areas, as inexpensive computer power has
become much available [17].

Iterative numerical techniques are seldom used
for solving LSAEs of small dimension since the
time required for sufficient accuracy exceeds that
is required for direct techniques such as
Gaussian elimination. For large systems with a
high percentage of zero entries, however, these
techniques are efficient regarding both computer
storage and computation.

3. ITERATIVE TECHNIQUES IN
NUMERICAL ANALYSIS

There are two classes of iterative numerical
methods. The stationary (or classical iterative
methods) and the non-stationary methods [18].
The present study, is restricted ourselves with
methods in the former class. Classical numerical
iterative methods can be broadly grouped under
Jacobi’s method, the Gauss-Seidel method, and
the Relaxation technique popularly referred to as
the Successive Over-Relaxation (SOR) method.

3.1 Jacobi’s Method

The Jacobi’s method dates back to the late
eighteenth century. Two assumptions of the
Jacobi’s method, are [19,20];

 the linear system of algebraic equations

generally described as given in (16) must

also fit the state-space definition in (18), and
(18) must have unique solutions.

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   





   



 (16)

Where b1,…,bn and aij, such that 1 ,j n  are

given elements of the system. In concise form,
(16) can be written as,

1

 1, ,
n

ij j i
j

a x b i n


   (17)

Where aij, denotes the coefficient of the jth
unknown xj in the ith equation, and the numbers
aij, and bi, (hence xj) all are real. In matric form,
(17) can be represented as

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a x b

a a a x b
A x b

a a a x b

     
     
       
     
     
     





     



(18)

Note, A denotes the matrix with coefficients aij,, x
the unknown column vector (state variables) and
b the right- hand column vector. The second
assumption for implementing the Jacobi’s
method is,

 The coefficient matrix A has no zeros on its
main diagonal, namely, a11, a22, …, ann are
non-zeros.

It is a method of solving a LSAEs in matrix form
that has no zeros along its main diagonal. This
was the reason, the last two rows in (14) were re-
arranged to (15). Each diagonal element was
solved for, and an approximate value plugged in.
The process was then iterated until it converges.
The Jacobi method was easily derived by
examining each of the n equations in the linear
system of equations Ax = b in isolation. Each
equation was solved for one of the unknowns.

To apply the Jacobi’s method of solving any
system of LSAEs given in the form (18), the first
equation in (18) was used to obtain the value for
x1, the second equation was used to solve for x2
and so on. Mathematically, the process is
expressed as:

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

8

 

 

 

1 1 12 2 13 3 1

11

2 2 21 1 23 3 2

22

1 2 1 1

1

1

1

n n

n n

n n n n n n nn n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

 

  

  

  









 (19)

To begin, an initial guess of the solution
(0) (0) (0) (0) (0)

1 2 3(, , ,...)nx x x x x was made. These

values into the right-hand side of (19) were
substituted to obtain the first approximation,

(1) (1) (1) (1)
1 2 3(, , ,...)nx x x x . This accomplished one

iteration. In the same way, the second

approximation
(2) (2) (2) (2)
1 2 3(, , ,...)nx x x x was

computed by substituting the first
approximation’s x-values into the right-hand side
of (19). By repeated iterations, a form of
sequence of the approximations

() () () () ()
1 2 3(, , ,...)k k k k k t

nx x x x x , k = 1,2,3,…, was

undertaken and was written in a concise form as,

  1()

1

1
, for 1, 2,3,...,

n
kk

i ij j i
jii
i j

x a x b i n
a






 
    
  
 


 (20)

In Matrix form, Jacobi’s method considers to
solving an n x n size system of LASEs given as

,A x b (21)

With

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 





   



 and

1

1

n

b

b
b

b

 
 
 
 
 
 


 for

1

2

n

x

x
x

x

 
 
 
 
 
 


 (22)

Matrix A can be Split into,

11 12 1

2122

1,

1 , 1

0 0 00 0 0

0 00 0 0 0

00 0 0 0 0

n

n n

n n nnn

a a a

aa
A D L U

a

a aa




     
             
    
    
      

 

  

         

 

 (23)

Ax b is transformed into

  D L U x b   (24)

 Dx L U x b   (25)

Assume 1D  exist and,

11

1
22

,

1
0 0

1
0 0

1
0 0

n n

a

aD

a



 
 
 
 
 

  
 
 
 
  





 



 (26)

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

9

then,

 1 1x D L U x D b    (27)

The matrix form of Jacobi iterative method is

 () 1 (1) 1k kx D L U x D b     k = 1,2,3,…

 (28)

The generalised matrix form of (27) can be
expressed in a compact form using the following
definitions:

1 () ,T D L U  (29)

1 ,C D b (30)

Hence, the Jacobi iteration method can also be
written as

() (-1)k kx Tx c  k = 1,2,3,… (31)

In general, the iteration in (31) converges if the
spectral radius (maximum eigenvalues of T), ρ
(T) < 1 [21,22]. Also, if (15) is strictly diagonally
dominant (SDD), then Jacobi’s method will
converge to a solution from any initial guess. An
n x n matrix A is SDD if the absolute value of
each entry on the main diagonal is greater than
the sum of the absolute values of the other
entries in the same row. That is,

11 12 13 1

21 21 23 2

1 2 , 1

n

n

nn n n n n

a a a a

a a a a

a a a a 

   

   

   









 (32)

In concise form, (32) is written as

1

i n

ii ij
j
j i

a a





  (33)

Aside (33), a matrix could be weakly diagonally
dominant (WDD), meaning,

1

i n

ii ij
j
j i

a a





  (34)

Often the term SDD is used instead of WDD [17].
Hence, this study investigated with (15), with the
following:

Row 1:
2

1 1
2

  

Row 2:
2

1
2

 

Row 3:
1

1
2

 

Row 4:
2 1

1
2 2

    

Row 5: 1 1 

Row 6: 1 0

Row 7:
3 2

2 2
 

Row 8:
3

1
2

  

With the result of Row 5, it can be inferred that
(15) is a WDD. Much theory surrounds the
convergence properties of strictly SDD matrices
with iterative numerical methods [23,24,25,26],
typical of which is, an n x n matrix is called
convergent if

 lim 0,k

ijx
A


 for each i = 1, 2, …., n and j = 1,

2,…,n (35)

If (35) holds then,

  1,A  (36)

Where, ρ is the spectral radius of the matrix A.

Surprisingly little or no work was available
relating WDD and its convergence properties as
it was applied to classical iterative numerical
methods. With such type of matrices, the spectral
radius test as given in (36) failed. The modulus
of the maximum eigenvalues of a matrix is called
spectral radius and is denoted by

    max : A A     : (37)

To compute (36) in Maple
®
, the following code

was invoked:

 SpectralRadius(A):
 Evalf(%)

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

10

The result was,

 1.065

With Maple®, one can quickly ascertain this fact
with the following command;

MatrixConvergence(A)

It returned
 false

The results above for (36), buttress that of (34).
From the spectral radius for LSAEs as given in
(15), it is known to be a WDD. The question now
is, how can one determine whether (15) will
converge to a solution?

 
2

,A A A


  (38)

Where,

 max x ,A A
 
 the l∞ norm,

and

2 2x

max x ,A A the l2 norm

In Maple, to evaluate the norms outlined above
the following was done;

 Norm (A, Euclidean);
 evalf(%);

After it execution it returned,

 1.96

With the commands (Norm, 2) and (Norm,
infinity) in Maple

®
, returned 2.71 in both cases.

Hence, (38) is true for this system of equation
(1.065 < 1.96 < 2.71). On this, the study argues
for a WDD, where (36) those not hold, then the
WDD will converge if and only if (38) holds. Thus,
it can safely be concluded that this system matrix
as described by (15), designated as a WDD
matrix will converge to a solution.

Using Maple

®
 2015 version running on a Laptop

with RAM 6.00GB, Intel(R) Core(TM) i5-2430M
CPU @ 2.40GHz, with windows 7, the following
commands were issued to initiate the solution
process [27,28,29];

   :with Student NumericalAnalysis

   

2 2 1 2 1
: 8,8 1, 0, 0, ,1, 0, 0, 0 , 0, 1, 0, , 0, 0, 0, 0 , 0, 0, 1, 0, 0, 0, , 0 , 0, 0, 0, , 0, 1, , 0

2 2 2 2 2

2 3 3
 0, 0, 0, 0, 0, 1, 0, 0,1 , 0, 0, 0, 0, 0,1, 0, 0 , 0, 0, 0, , 0, 0, , 0 , 0, 0, 0, 0, 0, 0, , 1

2 2 2

A
        
                    

  
     

 
;

     

  : 0, 0, 0, 0, 0,10000, 0, 0 ;b Vector

  
  

3, , 1.,1.,1.,1.,1.,1.,1.,1. , 10 ,

max 35, ,

IterativeApproximate A b initialapprox Vector tolerance

iteration stoppingcriterion relative method jacobi

 

   

The above Maple® code computed the internal member forces of the bridge truss as,

3.345909000

-6341.419791

-3658.580792

-8968.121051

6336.846807

10000.00000

-7322.440845

6336.847816

MapleJax

 
 
 
 
 
 
 
 
 
 
 
  

 (39)

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

11

To view the approximate solution with the error at each iteration as a column graph, we used the
following Maple

®
 Code;

  
  

3, , 1.,1.,1.,1.,1.,1.,1.,1. , 10 ,

max 35, , , tan ;

IterativeApproximate A b initialapprox Vector tolerance

iteration stoppingcriterion relative method jacobi output plotdis ce

 

    

Observe that Jacobi’s method converged after 30 iterations as shown in Fig.6. From the fifth iteration,
the trend in Fig. 6 is that of a decaying function. This is expected for errors to approach set tolerance
value (usually less than zero).

Fig. 6. Evolution of the error with the number of iterations for Jacobi’s method

In most situations where researchers work in independently, it is highly recommended to verify results
using another STEM software. The study chose to implement the Jacobi’s method for solving (15) in
MATLAB®. On the same Laptop that gave the above Maple® results running R2018a version of
MATLAB

®
, the following code gave the result in (40):

format long

A(1,1)=-1;

A(1,4)=(sqrt(2))/2;

A(1,5)=1;

A(2,2)=-1;

A(2,4)=(sqrt(2))/2;

A(3,3)=-1;
A(3,7)=1/2;

A(4,4)=-(sqrt(2))/2;

A(4,6)=-1;

A(4,7)=-1/2;

A(5,5)=-1;

A(5,8)=1;

A(6,6)=1;

A(7,4)=-(sqrt(2))/2;

A(7,7)=(sqrt(3))/2;

A(8,7)=-(sqrt(3))/2;

A(8,8)=-1;

b=[0 0 0 0 0 10000 0 0]';

n=length(b);
x=zeros(n,1);

x_0=[1 1 1 1 1 1 1 1]';

x=x_0;

nmaxit=31; % max iteration

tol=10^-2; % error tolerance

 for t=1:nmaxit

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

12

 for j=1:n

 x(j)=(b(j)-A(j,[1:j-1, j+1:n])*x_0([1:j-1,j+1:n]))/A(j,j);

 end

 error=abs(x-x_0)

 x_0=x;

 if error<=tol

 break

 end

 end

display(x)

3.34590843676

-6341.41979036144

-3658.58079229686

-8968.12104822703

6336.84680665998

10000.00000000000

-7322.44084601919

 6336.84781585376

MATLABJax

 
 
 
 
 
 
 
 
 
 
 
  

 (40)

Note, the difference between the Maple® and MATLAB® computed results using Jacobi’s method are
very insignificant.

0.000000563240000

0.000000638559868

0.007130968599995

0.000002772969310
x x

0.000000340020051

0

0.000001019189767

 0.000000146240382

Maple MATLABJa Ja

 
 
 
 
 
  
 
 
 
 
 
  

 (41)

To arrive at a result after 30 iterations seem
sluggish. To compute the same result at faster
pace literature proposes that the Gauss-Seidel
algorithm will do a better job compared to
Jacobi’s method and with a fewer number of
iterations.

3.2 Gauss- Seidel (GS)

The Gauss– Seidel algorithm is a variation of
Jacobi’s algorithm that uses the updated value of
each unknown variable as soon as that value is
computed. Therefore, Gauss-Seidel algorithm

presents a feasible approach to solve many
problems in engineering and science.

With the GS method, the new values (1)k
ix



were used as soon as they are known. For
example, once (1)

1
kx  was computed from the

first equation, its value was then used in the

second equation to obtain the new
(1)
2
kx 

 and so

on. This could be depicted mathematically as,

first iteration:

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

13

 

 

 

(,1) (0) (0) (0)
1 1 12 2 13 3 1

11

(,1) (,1) (0) (0)
2 2 21 1 23 3 2

22

(,1) (,1) (,1) (0)
3 3 31 1 32 2 3

33

(,1) (,1)
1

1

1

1

1

new
n n

new new
n n

new new new
n n

new new
n n n n n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

x b a x a
a

  

  

  

  









 (,1) (,1) (0)
2 3 1 1

new new
n n n nn nx a x a x  

 (42)

In a concise form, the GS method is presented as,

       
1

1

1 1

1
, 1,2,... .

i n
k k k

i ij j ij j i
j j iii

x a x a x b i n
a




  

 
     

 
  (43)

In matrix notation, the solution sorted can be
casted as,

x d Cx  (44)

Where,

1 11

2 22

n nn

b a

b a
d

b a

 
 
 
 
 
 


 (45)

and

12 11 13 11 1 11

21 22 23 22 2 22

31 33 32 33 3 33

1 2 3

0

0

0

0

n

n

n

n nn n nn n nn

a a a a a a

a a a a a a

C a a a a a a

a a a a a a

 
 
 
 
 
 
  







    



 (46)

With the definitions of D, L and U given with the
Jacobi method, the GS method is represented by

     1
x x b,

k k
D L U


   (47)

And

       
1 11

x x b
k k

D L U D L
 

    for each k =

1,2, … (48)

Letting

 
1

,gT D L U


  (49)

And

 
1
b,gc D L


  (50)

Hence,

   1x x .
k k

g gT c


  (51)

Just like the Jacobi’s method, the GS method
wasexpected to converge to a solution based on
the condition put forward in (38). In Maple

®
,

using the built-in GS algorithm, the Maple® code
needed to execute this solution was the same as
the one used for the Jacobi’s method. The only
difference was the replacement of the word
jacobi in the syntax with gaussseidel.

2 .6 3 9 2 9 4 0 0 0

-6 3 3 8 .7 7 9 9 1 4

-3 6 5 9 .6 9 6 2 8 9

-8 9 6 6 .5 4 3 5 0 0

6 3 3 8 .7 7 9 9 1 4

1 0 0 0 0 .0 0 0 0 0

-7 3 2 1 .1 5 2 1 0 7

6 3 4 0 .3 0 3 7 1 1

MapleG Sx

 
 
 
 
 
 
 
 
 
 
 
  

 (52)

The number of iteration versus error plot of the
system approximate solution depicts the number
of iterations (18) for the solution to converge.
Using the GS method, this plot is depicted in Fig.
7. This is similar in trend with Fig. 6. From the
fourth iteration, Fig.7 has a decaying function.
This is expected and appreciated.

The Gauss-Seidel method was able to compute
the results in 18 iterations. (12) iterations was
less compared to the Jacobi’s method. Also, a
difference of about 0.71N in the value of the

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

14

force F1 from both methods was noticed. This
might look quite large because it can be
approximated to 1N. On the other hand, the force
F1 with magnitude 0.71N was just 0.0071% of the
induced force f3 (10KN).

In MATLAB

®
, all the input parameters remained

the same as that of the Jacobi’s method (A
matrix, b vector, and initial guess). For solving
(15) with GS in MATLAB®, the number of
maximum iterations (nmaxit) was only changed.

nmaxit=18; % SOR use 10
w=1; % SOR use 0.93;
 for t=1:nmaxit
 error=0;
 for i=1:n;
 s=0;
 xb=x(i);
 for j=1:n;
 if i~=j,
 s=s+A(i,j)*x(j);
 end
 end
 x(i)=w*(b(i)-s)/A(i,i)+(1-w)*x(i);
 error=error+abs(x(i)-xb);
 end
 if error/n<10^-2, break;
 end
 end

The above MATLAB® code gave the result in
(53). Just like in the case with the Jacobi’s
method, the difference between the Maple® and
MATLAB

®
 computed results are all less than 1,

this is given in (54).

2.63929431481

-6338.77991338833

-3659.69628932854

-8966.54349719603
.

 6338.77991338833

10000.00000000000

-7321.15210820030

6340.30371067146

MATLABGSx

 
 
 
 
 
 
 
 
 
 
 
  

 (53)

5

0.031480999984623

0.061166974774096

0.032853995435289

0.280397034657653
x x 10 .

0.061166974774096

0

0.120030017569661

 0.032853949960554

Maple MATLABSG SG


 
 
 
 
 
   
 
 
 
 
 
  

 (54)

In literature, the Relaxation method suggests
converging solution to a system like (15) faster
than the GS method. The study intended to
explore this fact here. This method is the third in
the class of classical iterative method.

3.2 Successive Over-relaxation (SOR)

Method

Relaxation method represents a slight
modification of the Gauss-Seidel method that
was designed to enhance convergence. After
each new value is computed using (42), that
value was modified by a weighted average of the
results of the previous and the present iterations.
Mathematically, it expressed as,

  01 ,new ld new
i i ix x x    (55)

Where, ω is a weighting factor. If A is symmetric
then,

   2
,A A (56)

With positive diagonal elements and for

0 2  , the SOR converges for any initial
guess. Hence, elaborately the relaxation
algorithm could be written as

Fig. 7. Number of iteration verse error in
Gauss-Siedel Method

           
1

1 1

1 1

1 .
i n

k k k k

i i ij j ij j i
j j iii

x x a x a x b
a





 

  

 
      

 
 

(57)

If ω = 1, (57) reduces to (43). Hence, the Gauss-
Seidel method is a special case of the relaxation
method. For 0 < ω < 1, the procedures are called
successive under-relaxation (SUR) methods,
while choices of 1 < ω < 2 are called successive
over-relaxation (SOR) methods. For the
Relaxation method, no general answer could be

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

15

given to the question of how the appropriate
value of ω is chosen. Literature informs of the
choice of ω via the spectral radius of the system
matrix as described by (58). If the system matrix
is positive definite and tridiagonal, then

   
2

1g jT T     (58)

Then, the optimal choice of ω for the SOR
method is defined as

 
2

2

1 1 jT






    

 (59)

To use (59) for the determination of the optimal
choice of relaxation coefficient ω, the system
matrix must be a tridiagonal matrix and positive
definite (PD). And by definition, an n x n matrix is
Positive Definite if it has the following properties:

 A has an inverse;
 aii > 0 for each i = 1, 2, … n;
 max1 ≤ k,j ≤ n ≤ max1 ≤ i ≤ n |aii|;
 (aij)

2
< aiiaij for each i ≠ j

The above definition of PD requires the matrix to
be symmetric (as given in (56), which does not
hold for (15)), but not all authors make this
requirement. For example, [30] requires only that
xt Ax > 0 for each nonzero vector x. For the
present system as given in (15), by mere
inspection, the second property of PD does not
hold. In Maple

®
, the following command was

used to determine whether (15) is a PD matrix,

 IsMatrixShape(A, ‘positivedefinite’);

It returns false as an indication. Consistent with
the definition, symmetry is required for a true
result to be produced. The study now proceeds
to determine whether this system as given in (15)
is a tridiagonal matrix.

In linear algebra, a tridiagonal matrix is a band
matrix that has nonzero elements only on the
main diagonal (α), the first diagonal below (β)
this, and the first diagonal above (γ) the main
diagonal [31]. Generally, such matrix is square (n
x n) and depicted as,

1 1

2 2 2

3 3

1

0 0

0 0

0 0
n

n n

A

 

  

 



 


 
 
 
 
 
 
  



 



   



 (60)

To determine whether the system as given in
(15) is tridiagonal, the following command in
Maple® was used,

 IsMatrixShape(A,
‘strictlydiagonallydominant’);

The above code returns false. Hence, the system
given by (15), is neither positive definite nor
tridiagonal. This means (59) cannot be used to
determine an optimal value for ω in this study.
Thus, no choice but to go directly to Maple® and
try to solve (15) using the SOR method and see
the result.

To provoke a solution with the SOR method in
Maple®, ω =1.25 was applied as popularly
suggested as the optimal value in literature.
Maple® did not give any result but rather a
warning was prompted, that the iteration number
has been exceeded and the solution did not
converge after 18 iterations. The trend of such
error verse iteration number was visualised, and
depicted in Fig.8. From this figure, it is obvious
that no solution could be reached even if the
iteration number was increased. This is due to
the single fact that error is growing as iteration
number increases.

Fig. 8. SOR (1.25), iteration versus error

As such, in a novel approach, simulation of
iteration number against error for values 0 > ω >
1 was opted. The idea behind this approach was
to get values of relaxation coefficients that will
cause errors of numerical approximation to
decrease as iteration number increases. Also,
the iteration number must be less than 18 for it to
be accepted. The following results were gotten
from such simulations:

It can be seen from Table 1 that the value of F1
for SOR (0.85) was the major indicator for the
simulation. As shown in Fig. 9, the error at each
successive iteration was decreasing as iteration
number increases, and iteration stopped at the
ninth iteration. This phenomenon looks
convincing for a typical desired solution, but SOR
(0.85) gave F1 = -2.26N and the algebraic
difference between this force with that computed

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

16

by the GS method is 4.8985 N. This value of
force also began to decrease from SOR (0.85).
Notice that the result in (39) and (52) have four
forces in tension (F1, f2, f3 and f5) and four in

compression (F2, F3, f1 and f4). This should be
the same in the result sought with the SOR
method. For SOR (0.84) to SOR(0.91), five
forces are in compression and F1 is the culprit.

Table 1. Simulation results for SOR with ω = 0.84-0.99 in Maple

®

Method No. of
iter.

 S O Rx    GS SOR
x x

SOR
(ω = 0.84)

10 [-0.7568799675 -6339.745410 -3660.248047
-8965.7548047 6339.697981 9999.999890
-7320.508078 6339.744305]T

[3.3962 0.9655 0.55176
0.7887 0.91807 0.00011
0.64403 0.55941]T

SOR
(ω = 0.85)

9 [-2.259211359 -6339.739104 -3660.232491
-8965.756926 6339.595385 9999.999616,
-7320.508414 6339.740615]T

[4.8985 0.95919 0.5362
0.78657 0.81547
0.000384 0.64369 0.5631]T

SOR
(ω = 0.86)

9 [-1.448685846 -6339.746631 -3660.242842
-8965.754113 6339.658256 9999.999793
-7320.507753 6339.743008]T

[4.088 0.96672 0.54655
0.78939 0.87834 0.000207
0.64435 0.5607]T

SOR
(ω = 0.87)

9 [-0.8911709843-6339.746178
-3660.248206 -8965.753790 6339.697170
9999.999894 -7320.507443 6339.744174]T

[3.5305 0.96626 0.55192
0.78971 0.91726 0.000106
0.64466 0.55954]T

SOR
(ω = 0.88)

9 [-0.5191194875 -6339.743031
-3660.249985 -8965.755568 6339.718916
9999.999848 -7320.508275 6339.745273]T

[3.1584 0.96312 0.5537
0.78793 0.939 0.000152
0.64383 0.55844]T

SOR
(ω = 0.89)

9 [-0.3326921696 -6339.765987
-3660.258559 -8965.745868 6339.738200
9999.999876 -7320.504182 6339.743824]T

[2.972 0.98607 0.56227
0.79763 0.95829 0.000124
0.64793 0.55989]T

SOR
(ω = 0.90)

9 [-0.4464763385 -6339.88603 -3660.303514
-8965.683594 6339.793636 9999.999990
-7320.471979 6339.726399]T

[3.0858 1.1061 0.60723
0.85991 1.0137 0.00001
0.68013 0.57731]T

SOR
(ω = 0.91)

9 [-1.158045335 -6340.242016 -3660.448787
-8965.478803 6339.973317 9999.999996
-7320.354613 6339.655381]T

[3.7973 1.4621 0.7525
1.0647 1.1934 0.000004
0.79749 0.64833]T

SOR
(ω = 0.92)

10 [0.9227326513 -6339.336863 -3660.081545
-8965.998649 6339.527694 10000.00
-7320.653514 6339.837940]T

[1.7166 0.55695 0.38526
0.54485 0.74778 0.0
0.49859 0.46577]T

SOR
(ω = 0.93)

10 [2.440958649 -6338.701888 -3659.787956
-8966.413858 6339.121757 10000.00
-7320.924190 6340.024594]T

[0.19834 0.078026
0.091667 0.12964 0.34184
0.0 0.22792 0.27912]T

SOR
(ω = 0.94)

11 [-2.153216175 -6340.640715 -3660.673515
-8965.161494 6340.335939 10000.00
-7320.114756 6339.469370]T

[4.7925 1.8608 0.091667
0.12964 1.556 0.0 1.0374
0. 83434]T

SOR
(ω = 0.95)

12 [2.053732809 -6338.913998 -3659.846782
-8966.330671 6339.147896 10000.00
-7320.906786 6340.038723]T

[0.58556 0.13408 0.15049
0.21283 0.36798 0.0
0.24532 0.26499] T

SOR
(ω = 0.96)

13 [-2.110024567 -6340.581081 -3660.679006
-8965.153728 6340.394730 10000.00
-7320.075563 6339.415822]T

[4.7493 1.8012 0.98272
1.3898 1.6148 0.0 1.0765
0.88789] T

SOR
(ω = 0.97)

14 [2.325399179 -6338.845177 -3659.779166
-8966.426294 6338.994943 10000.00
-7321.008754 6340.141881]T

[0.31389 0.065263
0.082877 0.11721 0.21503
0.0 0.14335 0.16183] T

SOR
(ω = 0.98)

15 [-2.738476941 -6340.785705 -3660.820281
-8964.953934 6340.671094 10000.00
-7319.891320 6339.242136]T

[5.3778 2.0058 1.124
1.5896 1.8912 0.0 1.2608
1.0616] T

SOR
(ω = 0.99)

16 [3.434110452 -6338.466427 -3659.535846
-8966.770401 6338.536621 10000.00
-7321.314302 6340.424754]T

[0.79482 0.31349 0.16044
0.2269 0.24329 0.0
0.16219 0.12104] T

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

17

Fig. 9. SOR (0.85), iteration versus error

Rejecting these results, the study went further to
simulate for values of ω, beyond SOR (0.91).
Questing for the value(s) of ω that will give F1 as
a tension force, keeping other values of force as
close as possible to those that the GS method
gave in (52). SOR (0.92), gave four forces in
compression and the remaining 4 were in
tension. This result was similar to the GS
method, and the trend of iteration number
against error was similar to that depicted in Fig.

9. The only anomaly with SOR (0.92) is that the
difference between its computed value of F1 with
that of the GS method gives a force of 1.72N.
Isolating some of the results that look very
promising from Table 1 presented in Table 2 for
closer examination.

From Fig. 10, it can be seen that SOR (0.93) is
the global minimum of the fitted curve. Before ω
= 0.85, the difference in F1 is high and beyond ω
= 0.85, the difference in F1 is increasing. This
trend depicted is actually what this study got
when simulated for all values of ω. Though,
those less than 0.84 were not documented in
Table 1. In Fig. 11, outside the range ω = 0.85-
0.93, iteration number increases even though
result were converging to a solution. Note
here that the solution sort for must converges
at iteration much less than that of the GS
method.

Table 2. Simulation range of interest

S/N SOR Method    G S S O R

1 1F F

No. of Iter.

1 SOR(0.84) 3.3962 10
2 SOR(0.85) 4.8985 9
3 SOR(0.86) 4.088 9
4 SOR(0.87) 3.5305 9
5 SOR(0.88) 3.1584 9
6 SOR(0.89) 2.972 9
7 SOR(0.90) 3.0858 9
8 SOR(0.91) 3.7973 9
9 SOR(0.92) 1.7166 10
10 SOR(0.93) 0.19834 10

Fig. 10. Relaxation coefficient (0.85-0.93) against difference in F1

Fig. 11. Relaxation coefficient (0.85-0.93) against F1

|F
1

(G
S

)-F
1

(S
O

R
)|

It
e
ra

ti
o
n
 N

u
m

b
e
r

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

18

Combining the results depicted in Fig. 10 and
Fig. 11, one can see that SOR(0.93) gave the
best result. In 10 iterations, SOR (0.93) from Fig.
11 coincides with the global minimum of the
function in Fig. 10. Also, the difference between
all computed forces with that of the GS method is
less than 1N. Hence, error evolution for this
optimal value of relaxation coefficient is depicted
in Fig. 12.

Fig. 12. SOR (0.93), iteration versus error

To validate this result in MATLAB with the
other two methods, the same MATLAB

®
 code

used for the Gauss-Seidel method, which
was also used for the SOR(0.93) method.
Keeping in mind that the Gauss-Seidel algorithm
is a special case of the SOR with ω =1. Solving
the same problem in MATLAB

®
, ω = 0.93 was

changed and also changed the number of
iterations 10. This gave the following result
in (61),

(0.93)

2.44095600540

-6338.70188779890

-3659.78795770474

-8966.41385318836

 6339.12175651705

9999.99999997175

-7320.92419028220

6340.02459314403

MATLABSORx

 
 
 
 
 
 
 
 
 
 
 
  

 (61)

Also, investigating the difference between
the Maple

®
, and MATLAB

®
 computed results,

gave,

(0.93) (0.93)

0.026436000002406

0.002010992830037

0.210473999686656

0.048116398829734
x x 10

 0.004829498720937

0.000282507244265

0.002821998350555

 0.008559700290789

Maple MTLABSOR SOR


 
 
 
 
 
   
 
 
 
 
 
  

4

(62)

Notice that (62), just like (41) and (54) is
insignificant. This means both software can be
used to obtain the same result.

For all three iterative numerical methods applied
to the LSAEs, of the 8 forces computed, 4 were
in tension (F1, f2, f3 and f8) and the remaining 4
(F2, F3, f1 and f7) were in compression. The least
force action on the bridge truss was in tension
and is F1 while the highest is force in tension is
aside the load of 10KN applied directly on joint 3
is the compressive force f4 acting at joint 4.

Observe that 3 forces (F2, f2 , f5) had a magnitude
of about 6.3KN, one of which was a compressive
force (F2) while the others were tensile (f2 and f5).
The least force action on the bridge truss was in
tension and was F1 while the highest iforce in
tension aside the load of 10KN applied directly
on joint 3 was the compressive force f4 acting at
joint 4.

Assume the exact solution to (15) is [2, -6338, -
3659, -8966, 6339, 10000, -7320, 6340]T. Using
the results from Maple

®
, this can compute the

norm as given in Table 3.

In Table 1, SOR (0.99) gave us an interesting
result. This solution looks very much like the one
computed by the Jacobi’s method. With this
stunning realisation to the study investigated
further by assuming that the exact solution to
(15) is [3, -6341, -3658, -8968, 6336, 10000, -
7322, 6336]T. Using the results from Maple®,
one can compute the norm as given in Table 4.

Table 3. Summary of internal forces computed with Maple®

Method No. of

iterations

 x k  x x k




Jacobi’s
Method

30 [3.345908, -6341.419790,-3658.580792,-8968.121048,
6336.846807, 10000.00, -7322.440846, 6336.847816]

T

3.42

Gauss-
Seidel

18 [2.639294, -6338.779914,-3659.696289, -8966.5435,
6338.779914,10000.00,-7321.152107,6340.303711]

T

1.15

SOR
(ω = 0.93)

10 [2.440959,-6338.701888,-3659.787956,-8966.413858,
6339.121757,10000.00,-7320.924190,6340.024594]T

0.92

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

19

Table 4. Please insert a table caption

Method No. of

iterations

 x k  x x k




Gauss-
Seidel

18 [2.639294, -6338.779914,-3659.696289, -8966.5435,
6338.779914,10000.00,-7321.152107,6340.303711]

T

4.3037

SOR
(ω = 0.99)

16 [3.434110452 -6338.466427 -3659.535846 -8966.770401
6338.536621 10000.00 -7321.314302 6340.424754]

T

4.0246

Jacobi’s
Method

30 [3.345908, -6341.419790,-3658.580792,-8968.121048,
6336.846807, 10000.00, -7322.440846, 6336.847816]

T

0.84782

SOR (0.99) is closer to the result obtained by
Jacobi’s method as given in (41). This could be
seen by the difference between the two as given
in (63). Notice that (63) is similar to the result of
SOR (0.96) in Table 1. Both evaluated
differences have 5 forces greater than 1N.

(Ja) (0.99)

0.088201

2.9534

 0.95505

1.3507
x x

 1.6898

0

1.1265

 3.5769

Maple MapleSOR SOR

 
 
 
 
 
  
 
 
 
 
 
  

 (63)

Looking for other forms of similarity with (63), it
was observed from Table 1 also, that SOR (0.98)
has seven forces greater than 1N. And SOR
(0.91) has 4 of it forces greater than 1N. As such,
SOR (0.99) could be considered as a viable
result and some special form of the Jacobi’s
method. This assertion agrees with the literature
[32,33]. There exists a special form of expressing
the Jacobi’s method with a relaxation coefficient
as given in (64). This is called Jacobi based
Successive Relaxation method

      1 1

1

.
n

k k k

i i i ij j
j iii

x x b a x
a

 

 

 
   

 
 (64)

With the realisation of (63), (64) and the
computed forces with SOR (0.99), one can argue
from a mathematical standpoint as to which
result should be accepted, between Table 3 and
Table 4. Such an argument is valid from a
mathematical standpoint. But from an
engineering perspective, it makes little or no
difference. This is because, in both Tables, the
largest induced force in the system is f1 with an
absolute magnitude of 8.97KN. The design
engineer will use this force to evaluates his FOS
as given in (1). Hence, commence the design of

the truss members for the bridge, and its joints.
To save computational cost, a scientist will
always prefer to use the SOR method for such
computation because of the obvious fact that it
will require the least iteration number for the
solution to converge.

Hence, the result in Table 3 are our preferred
solution to the bridge truss, because it closely
conforms with theory in literature which states
that the number of iterations needed for the GS
method to converge to a solution is about half
that of Jacobi’s method and for the Relaxation
method is about half that of the GS method [34].

4. CONCLUSION

Forces in a bridge truss member were resolved
and built into a LSAEs. Classical iterative
numerical methods namely; Jacobi’s method,
Gauss-Seidel method and the Relaxation
Technique, popularly called the SOR method
were employed to obtain the solution to the
LSAEs, using Maple® and MATLAB®. Due to the
fact, the realised system of equations describing
the bridge truss is sparse and weakly diagonally
dominant, the study developed a simulation
approach in Maple

®
 that could lead to

determining an optimal Relaxation coefficient.
Here, LSAEs needed an under-relaxation
coefficient to converge the solution faster than
the Gauss-Seidel method. Also, the study was
able to demonstrate the intuitive ability and
capacity of Maple® to carry out classical iterative
numerical computation with relative ease.

5. FUTURE WORK

Non-classical iterative numerical methods need
to be applied to the developed LSAEs describing
the bridge truss in this study. These should at
least include Conjugate Gradient method and
Pre-Conditioned method. Results obtained
should be compared with that of SOR (0.93) in
this study. Also, an analytic formulation is
needed for computing the optimal value of

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

20

relaxation coefficient for the SOR method for the
weakly diagonally dominant matrix with ρ (A) ≥ 1.
All MATLAB codes used for the three iterative
numerical methods could be improved in such a
way that the number of iterations is not fixed as
presented in this study.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Aliyu Bhar Kisabo, et al 2018. Newton’s

method for solving non-linear system of
algebraic equations (NLSAEs) with
MATLAB/Simulink

®
 and MAPLE

®
.

American Journal of Mathematical and
Computer Modelling. 2017;2(4):117-131.
DOI: 10.11648/j.ajmcm.20170204.14

2. Seongjai Kim. Numerical analysis using
Maple

®
 and MATLAB

®
. Department of

Mathematics and Statistics Mississippi
State University Mississippi State, MS
39762 skim@math.msstate.edu (check
online for published version); 2014.

3. Glyn James. Modern Engineering
Mathematics.
ISBN: 978-1-292-08082-6; 2015.

4. Inna Shingareva, Carlos Lizarraga-Celaya.
Maple and Mathematica: A problem
solving approach for mathematics. Second
Edition, Springer New York; 2009.
ISBN: 978-3-211-73264-9

5. Monagan MB, et al. Maple Introductory
Programming Guide; 2009.
ISBN: 978-1-897310-73-1

6. Alessio Pipinato. Innovative Bridge Design
Handbook, Elsevier; 2015.
ISBN: 9780128004876

7. Forces on Bridges with MATLAB.
Available:http://mvhs.shodor.org/mvhsproj/
bridges/bridge3.html

8. Krenk S, Høgsberg J. Statics and
Mechanics of Structures.
DOI: 10.1007/978-94-007-6113-1 2

9. Kulicki JM. Chapter 5: Highway bridge
design specifications. Bridge Engineering
Handbook, 2nd Edition: Fundamentals,
Edited by Chen, W.F. and Duan, L., CRC
Press, Boca Raton, FL.; 2014.
ISBN: 9781439852217

10. The engineering tool box-resources, tools
and basic information for engineering and
design of technical applications.

Available:https://www.engineeringtoolbox.c
om/factors-safety-fos-d_1624.html
(Accessed on 21 May 2018)

11. Richard L, Burden J. Douglas faires.
Numerical Analysis. Ninth Edition Burden
& Faires. Broke /Cole; 2011.
ISBN: 13:978-0-538-73351-9

12. Sachin C. Patwardhan. Numerical analysis
module 4 solving linear algebraic
equations. Dept. of Chemical Engineering,
Indian Institute of Technology, Bombay
Powai, Mumbai, 400 076, Inda; 2014.

13. Jaan Kiusalaas. Numerical methods in
engineering with MATLAB. Cambridge
University press, New York; 2005.
ISBN:13 978-0-511-12811-0

14. Sparse Matrix.
Available:https://en.wikipedia.org/wiki/Spar
se_matrix. Wikipedia
(Accessed, March 11, 2018)

15. Michal Novak. Numerical Methods:
Exercise Book. Department of
Mathematics FEEC BUT; 2014.
Available:http://www.umat.feec.vutbr.cz,
novakm@feec.vutbr.cz

16. Matrix Market.
Available:http://math.nist.gov/MatrixMarket
/data
(Accessed on May, 28 2018)

17. Shawn Sickel. A comparison of some
iterative methods in scientific computing.
Department of Mathematics University of
Wyoming; 2005.

18. Yousef Saad. Iterative methods for sparse
linear systems. Society for Industrial and
Applied Mathematics; 2003.
ISBN: 13: 9780898715347

19. Kelley CT. Iterative Methods for Linear and
Nonlinear Equations. North Carolina State
University, Raleigh, North Carolina; 1995.
eISBN: 978-1-61197-094-4

20. Steven C. Chapara. Applied numerical
methods with MATLAB for engineers and
scientist. Third Edition, Mc Graw Hill; 2012.
ISBN: 978-0-07-340110-2

21. Nicholas Loehr. Advanced linear algebra.
CRC Taylor & Francis Group; 2014.
ISBN: 13:978-1-4665-5902-8

22. Zhi Ming Yangy. A simple method for
estimating the bounds of spectral radius of
nonnegative irreducible matrices. Applied
Mathematics E-Notes. 2011;11:67-72.
ISSN: 1607-2510
Available:http://www.math.nthu.edu.tw/_a
men/

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876

21

23. Thai Nhan. A brief introduction to iterative
methods for solving linear systems with
MATLAB. Ohlone College; 2016.

24. Zhanshan Yang, Bing Zheng, Xilan Liu. A
new upper bound for ‖�−1‖ of a strictly
�-diagonally dominant �-matrix. Hindawi
Publishing Corporation. Advances in
Numerical Analysis. Article ID 980615.
2013;6.
Available:http://dx.doi.org/10.1155/2013/98
0615

25. Geir Dahl. A note on diagonally dominant
matrices. Elsevier. Linear Algebra and its
Applications. 2000;317:217–224.
Available:www.elsevier.com/locate/laa

26. Farid O. Farid. On classes of matrices with
variants of the diagonal dominance
property. Advances in Linear Algebra &
Matrix Theory; 2017.
ISSN Online: 2165-3348
Available:http://www.scirp.org/journal/alamt

27. Cheng-yi Zhang, Zichen Xue, Shuanghua
Luo. A convergence analysis of SOR
iterative methods for linear systems with
weak H-matrices. Open Math. 2016;
14:747–760.
DOI: 10.1515/math-2016-0065

28. Monagan MB, et al. Maple 9 advanced
programming guide. Maplesoft, a division
of Waterloo Maple Inc., Canada; 2003.
ISBN: 1-894511-44-1

29. Correa Silva EV. Numerical calculations
using Maple: Why & how? Maple Tech
Birkhauser Boston; 2008.

ISSN: 1061-5733

30. Mirko Navara, Ales Nemecek. Numerical
analysis with Maple. Czech Technical
University, Faculty of Electrical
Engineering, Department of Cybernetics,
Center for Machine Perception, Technicka
2, 166 27 Prague 6, Czech Republic;
2010.

31. Tridiagonal matrix.

Available:https://en.wikipedia.org/w/index.p
hp?title=Tridiagonal_matrix&oldid=822910
512

(Accessed, March 20 2018)

32. Gilbert Strang. Introduction to Linear
Algebra. Fourth Edition; 2009.

ISBN: 978-0-9802327-1-4

33. Maxim A. Olshanskii, Eugene E.
Tyrtyshnikov. Iterative methods for linear
systems: Theory and Applications; 2014.

ISBN: 9781611973457

34. Essays UK. Comparison of rate of
convergence of iterative methods
philosophy essay; 2013.

Available:https://www.ukessays.com/essay
s/philosophy/comparison-of-rate-of-
convergence-of-iterative-methods-
philosophy-essay.php?vref=1

© 2018 Kisabo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history/26522

