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ABSTRACT 
 

In this study, computation and analysis of internal member forces acting on a bridge truss were 
carried out. First, the forces were resolved at each joint and a system of equations was built to 
describe the truss as a Linear System of Algebraic Equations (LSAEs). The LSAEs developed here 
is of the order 8 x 8 and sparse. Aside from the truss system being a sparse matrix, it is neither 
positive definite nor a tridiagonal matrix. Hence, a weakly diagonally dominant matrix characterised 
by ρ (A) > 1. Secondly, 3 iterative numerical methods were applied to obtain a solution to the 
LSAEs. Third, with Maple®, Jacobi and Gauss-Seidel methods were used with relative ease to the 
LSAEs, and its solution converged after 30 and 18 iterations respectively. When Successive Over-
relaxation (SOR) method was applied with ω = 1.25, a solution to the LSAEs failed to converge. In a 
novel approach, the error evolution was simulated against iteration number for ω = 0.1 - 0.99 in 
Maple

®
. After analysing such results, ω = 0.93 was selected as the optimal value for the Relaxation 

Technique and solution to the LSAEs converged after ten iterations. MATLAB
®
 codes were then 

written for the three iterative numerical methods to validate the results obtained in Maple®. The 
method proposed here proved to be very effective. 
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1. INTRODUCTION 
 
Computing internal member forces in trusses 
require good background knowledge of applied 
mechanics though; this pre-requisite is 
fundamental but is not enough. This means even 
if one is well grounded in such subject and 
cannot use STEM- based software like Maple

®
 

MATLAB
®
, Mathematica

®
, Mathcad

®
 etc., to aid 

such computations, it will be impossible to carry 
out.  
 
As such, the ability to be acquainted with STEM-
based software for STEM computations and 
analysis cannot be overemphasise. STEM- 
based problems that are in the form of LSAEs 
could be easily solved with pen and paper 
(manual) if it is of a small order. But when the 
order increases, it can become a very irritating or 
an impossible task to be manually solved [1].  
 
The need to be acquainted with computer- based 
numerical techniques is inevitable especially 
when it comes to real- life application problems. 
Errors in such computations could lead to 
enormous revenue losses, injuries and even loss 
in human lives, to mention a few.  
 
It is customary to explore solutions to STEM 
problems using more than one STEM- based 
software at the same time [2,3,4]. It is necessary 
to increase interest in STEM- based courses, 
thus, making teaching such subjects more 
intuitive. Also, solutions obtained from two or 
more different STEM- based software for the 
same problem serves as a means of validating 
simulation results.  
 
In this study, Maple® was used as the main 
STEM software for all the computation. Although 
Maple® is viewed as an analytical STEM- based 
software; it is also capable of numerical 
computations [5]. The study intends to show by 
example the ease and intuitive manner with 
which Maple

®
 handles classical iterative 

numerical computation and analysis.  
 
This paper is divided into four sections. Section 2 
highlights the need of determining the internal 
member forces on a bridge truss and 
development of the mathematical equations that 
describe the entire bridge truss. In section 3, 
iterative numerical algorithms of Jacobi’s 
method, Gauss-Seidel (GS) method and 
Successive Over-relaxation (SOR) methods were 

described and applied to the solution of the 
bridge truss. Results were discussed, and 
section 4 concludes the study. 
 
2. BRIDGE TRUSS AND INTERNAL 

MEMBER FORCES 
 
Trusses are lightweight structures capable of 
carrying heavy loads. A truss is an advantageous 
structural configuration in which bars are 
connected at joints, and the overall configuration 
carries load through axial force in the bars.  
 
Generally, trusses are three-dimensional (3-D) 
although, they can be reduced to two-
dimensional (2-D) form as depicted in Fig. 1. 
Uses of trusses include bridges, buildings, 
cranes, roofs etc. In bridge design, the individual 
members of the truss are connected with 
rotatable pin joints that permit forces to be 
transferred from one member of the truss to 
another [6,7]. Wherever trusses are present, the 
main objectives for an engineer are: 
 

 To determine the stability and determinacy of 
plane trusses; 

 To analyse and calculate the internal forces 
in truss members; 

 To calculate the deformation at any joints. 
 

The present study is limited to the first two 
objectives outlined above.  
 

2.1 Static Determinacy and Stability 
 
A structure that can be analysed using the 
equations of equilibrium is called statically 
determinate. Otherwise, such structures are 
termed statically indeterminate. Only statically 
determinate trusses can be analysed with the 
method of joints. A statically determinate truss 
with two reactions must satisfy [8], 
 
 2 3,j m                                         (1) 

 
Where, j is the number of joints and m is the 
number of members. Considering the bridge 
truss shown in Fig.1, the number of joints is four, 
and it has five members. To answer the question 
of whether the truss in Fig. 1 is statically 
determinate, the values of j = 4 and m = 5 in (1) 
were substituted. What we get after substituting 
the values of j and m is that both sides of (1) give 
us the number 8. Hence, the truss in Fig. 1 is 
statically determinate. This needs to be 
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established before one delves into writing 
equations of equilibrium for each joint to 
determine internal forces. 
 

2.2 Calculate the Internal Forces in Truss 
Members 

 
Computing internal forces in trusses are 
essential for engineers to determine the factor of 
safety (FOS) during their design. Generally, 
when FOS is used in the analysis of an existing 
structure, the factor of safety is defined as, 
 

 
   =  

  

Failure Level
Factor of Safety

Actual Level
          (2) 

 
In a truss, the actual force in a member is called 
the internal member force, and the force at which 
failure occurs is called the strength. Thus, 
equation (2) can be rewritten as,  
 

   =  
  

Strength
Factor of Safety

Internal Member Force
  (3) 

 
From (3), the engineer has to determine the 
internal member forces of any structure he/she is 
designing. For bridges, this is most important to 
ensure that the load exerted on the truss 
members at any time does not exceed the 
strength of the materials and joints. This type of 
analysis results in setting a limit to the load 
carrying capability of a bridge and also could be 
used as bases for computing lifespan (fatigue 
analysis) for the bridge.  
 
If the factor of safety is less than 1, then the 
member or structure is unsafe and will probably 
fail. If the factor of safety is 1 or slightly greater 
than 1, then the member or structure is nominally 
safe but has minimal margin for error—for 
variability in loads, unanticipated low member 
strengths, or inaccurate analysis results. Most 
structural design codes specify a factor of safety 
of 1.6 or larger (sometimes considerably larger) 
for structural members and connections [9,10]. 
 
To begin the computation of such forces, first, 
these forces must be resolved appropriately. 
Resolving forces in a member involves summing 
forces together. As vectors, direction and 
magnitude were taken into consideration. Hence, 
for this study, the vertical (y) upwards direction 
was taken as the positive vertical force direction. 
The horizontal (x) right-hand direction was taken 
as the positive horizontal force direction. In Fig. 
1, the bridge truss was held stationary at the 

lower left endpoint (joint 1) but was permitted to 
move horizontally at the lower right endpoint 
(joint 4), and had pin joints at 1, 2, 3 and 4. A 
load of 10KN was placed at joint 3, and the 
resulting internal member forces on the joints are 
shown in the Figure [11]. This section 
mathematically describes all the forces acting in 
the truss, and the study will begin by isolating 
each joint and the forces acting on them (free-
body-diagram). 
 
2.2.1 Joint 1 
 
Re-producing the part of Fig.1 that deals with the 
forces in joint 1 gives us the image in Fig. 2. 
Resolving forces in the x-direction and 
considering Δ abc.  The second term in (4), f1 is 
being resolved along the Δ side ac. Resolving 
forces in the y-direction and considering Δ abc

’ 
in 

Fig 2 gives (5). Note, the second term in (5), f1 is 
being resolved along the ac

’
 of Δ abc

’
. 

 

 1 1 20  ;  cos 45 0xF F f f


             (4) 

 2 10 ;  sin 45 0.yF F f


                 (5) 

 
2.2.2 Joint 2 
 
To compute the forces in this joint all other forces 
in other nodes were ignored and re produced 
Fig. 1 with only the forces at joint 2. This is 
depicted in Fig. 3. 
 
Considering Fig. 3, Resolving forces in the x-
direction. YThe study, considered Δ abc

’
, and 

resolved f1 along the side bc’. Secondly, 
considering Δ bc’’d and resolving f4 along the side 
bc’’. These resolved forces are, 
 

   1 40 ; cos 45 cos 30 0xF f f


            (6) 

 
Resolving forces in the y-direction in Fig. 3. The 
study considered Δ abc, and resolved f1 along 
the side bc. Secondly, considering Δ bcd and 
resolving

 
f4 along the side bc. These gave the 

second and third terms in (7). 
 

   3 1 40 ; cos 45 cos 60 0yF f f f


      (7) 

 
2.2.3 Joint 3 
 
Isolating the forces in joint 3 from Fig. 1 gives 
Fig. 4. Forces in x-direction give (8) and 
resolving forces in y-direction gives (9). 
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2 50  ;  0xF f f
 

                                 (8)  

 

30 ;  10000 0yF f


                             (9) 

 

2.2.4 Joint 4 
 
To resolve the forces in joint 4, this joint from Fig. 
1 and Fig. 5 was isolated. 
 

2

1 3 4
F1

f1

f2

F2

f2

f1

f3

f4

f3

f5 f5

F3

f4

10,000

l1
30°45°

 
 

Fig. 1. Forces acting on a bridge truss 
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Fig. 2. Free-body diagram for joint 1 
 
 

 
Fig. 3. Free-body diagram for joint 2 
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Fig. 4. Free-body diagram for joint 3 
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Fig. 5. Free-body diagram for joint 4 

Resolving forces in the x-direction, first, Δ bcd 
was considered, and resolving f4 along the side 
cd gave the second term in (10) as; 
 

 5 40  ;  cos 30 0xF f f


                  (10) 

 
Resolving forces in the y-direction. First, 
considering Δ bc

’’
d, and resolving f4 along the 

side c’d’ gave the second term in (11) as; 
 

 3 40 ;  cos 60 0yF F f


             (11) 

 

2.3 Defining the system Equation 
 

The proposed system variables were x = [F1 F2 
F3 f1 f2 f3 f4 f5]

T, we can rewrite (4) to (11) as a 
Linear System of Algebraic Equations (LSAEs) 
as, 
 

 

 

   

   

 

 

1 1 2

2 1

1 4

3 1 4

2 5

3

5 4

3 4

cos 45 0

sin 45 0

cos 45 cos 30 0

cos 45 cos 60 0

0

10, 000 0

cos 30 0

cos 60 0

F f f

F f

f f

f f f

f f

f

f f

F f

   

  

  

   

  

 

  

  

(12)

 
To complete the missing variables, equation (12) can be re-written as, 

 

 

 

   

   

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3

0 0 cos 45 0 0 0 0

0 0 sin 45 0 0 0 0 0

0 0 cos 45 0 0 cos 30 0 0

0 0 0 cos 45 0 cos 60 0 0

0 0 0 0 0

F F F f f f f f

F F F f f f f f

F F F f f f f f

F F F f f f f f

F F F f f f

             

             

            

            

         

 

 

4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

1 2 3 1 2 3 4 5

0 0

0 0 0 0 0 0 0 10,000

0 0 0 0 0 0 cos 30 0

0 0 0 0 0 cos 60 0 0

f f

F F F f f f f f

F F F f f f f f

F F F f f f f f

   

              

             

             

                             (13) 

 
The system of linear algebraic equations in (13) can be written in state-space form as, 
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 
 
   
   

 
 

1

2

3

1

2

3

4

4 5

1 0 0 cos 45 1 0 0 0 0

0 1 0 sin 45 0 0 0 0 0

0 0 1 cos 45 0 0 cos 30 0 0

0 0 0 cos 45 0 1 cos 60 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 10,000

0 0 0 0 0 0 cos 30 1 0

0 0 1 0 0 0 cos 60 0 0

F

F

F

f

f

f

f

f f

    
        
     
    

      
    
    
   
    
   

      










 
 
 
 

                     (14) 

 
Notice that the last diagonal element in (14) is a zero. For some reasons which will be discussed later, 
equation (14) was re-arranged in such a way that (10) and (11) will have their position interchanged in 
(14). The result is (15), where all diagonal elements are non-zero. Hence, in State-Space have [12],  
 

2
1 0 0 1 0 0 0

2

2
0 1 0 0 0 0 0 02

01
0 0 1 0 0 0 0

02

02 1
,     0 0 0 0 1 0

02 2

0 0 0 0 1 0 0 1 10,000

0 0 0 0 0 1 0 0 0

02 3
0 0 0 0 0 0

2 2

3
0 0 0 0 0 0 1

2

A b

 
 
 
 

   
   
      
   
         
   

   
   
   
     
 
 

  
 

                              (15) 

 
Now successfully resolved all internal forces in 
each member of the truss, ended up with a linear 
system of algebraic equations a given in (15). It 
is important to notice that (15) is an 8×8 matrix 
and has 47 zero entries and only 17 nonzero 
entries. In MATLAB, the sparsity of a matrix is 
the fraction of its elements that are zero. The 
MATLAB command nnz counts the number of 
nonzero elements in a matrix and defines the 
degree of sparsity by ascribing a number. A 
sparse matrix is a matrix whose sparsity is nearly 
equal to 1[13]. The following MATLAB code was 
used to determine whether the system as given 
in (15) is sparse: 
 

Density = nnz(A)/prod(size(A)) 
Sparsity = 1 - density 

The above code returned the value 0.7344, 
hence, (15) is a sparse matrix. Sparse matrix 
patterns that frequently occur are [14]; 
 
 Tridiagonal; 
 Band diagonal; 
 Block diagonal matrices; 
 Lower/Upper triangular and block lower/ 

upper triangular matrices 
 

Conceptually, sparsity corresponds to systems 
which are loosely coupled. Large sparse 
matrices often appear in the STEM when solving 
partial differential equations. When storing and 
manipulating sparse matrices on a computer, it is 
beneficial and often necessary to use specialised 
algorithms, and data structures that take 
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advantage of the sparse structure of the matrix 
[15] Because (15) is a sparse matrix, the so- 
called direct strategies cannot be used to solve it.  
 
Most real-life application problems of LSAEs are 
sparse. Some industrial test data that are in this 
form can be downloaded from [16]. Two types of 
strategies which may be used to solve any 
LSAEs are either the direct methods or iteration 
methods. Example of direct strategies for solving 
LSAEs is Gaussian Elimination, LU factorisation, 
Crammer’s rule etc.  In the absence of round-off 
error, such methods would yield the exact 
solution within a finite number of steps. The 
second strategy for solving LSAEs is called the 
numerical iterative methods. These methods are 
useful for problems involving special, huge 
matrices, for example, sparse matrices like (15). 
 
Problems posed in large sparse matrices are 
efficiently solved using the iterative methods 
because of its popularity in many areas of 
scientific computing. At the same time, parallel 
computing has infiltrated the same application 
areas, as inexpensive computer power has 
become much available [17].   
 

Iterative numerical techniques are seldom used 
for solving LSAEs of small dimension since the 
time required for sufficient accuracy exceeds that 
is required for direct techniques such as 
Gaussian elimination. For large systems with a 
high percentage of zero entries, however, these 
techniques are efficient regarding both computer 
storage and computation. 
 

3. ITERATIVE TECHNIQUES IN 
NUMERICAL ANALYSIS 

 

There are two classes of iterative numerical 
methods. The stationary (or classical iterative 
methods) and the non-stationary methods [18]. 
The present study, is restricted ourselves with 
methods in the former class. Classical numerical 
iterative methods can be broadly grouped under 
Jacobi’s method, the Gauss-Seidel method, and 
the Relaxation technique popularly referred to as 
the Successive Over-Relaxation (SOR) method.   
 

3.1 Jacobi’s Method  
 

The Jacobi’s method dates back to the late 
eighteenth century. Two assumptions of the 
Jacobi’s method, are [19,20]; 
 
 the linear system of algebraic equations 

generally described as given in (16) must 

also fit the state-space definition in (18), and 
(18) must have unique solutions. 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

                                      

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   





   



                      (16) 

 

Where b1,…,bn and aij, such that   1 ,j n  are 

given elements of the system. In concise form, 
(16) can be written as, 
 

1

      1, ,
n

ij j i
j

a x b i n


                                   (17) 

 

Where aij, denotes the coefficient of the jth 
unknown xj in the ith equation, and the numbers 
aij, and bi, (hence xj) all are real. In matric form, 
(17) can be represented as 
 

11 12 1 1 1

21 22 2 2 2

1 2

    

n

n

n n nn n n

a a a x b

a a a x b
A x b

a a a x b

     
     
       
     
     
     





     



                                                                 

(18) 
 

Note, A denotes the matrix with coefficients aij,, x 
the unknown column vector (state variables) and 
b the right- hand column vector. The second 
assumption for implementing the Jacobi’s 
method is, 
 

 The coefficient matrix A has no zeros on its 
main diagonal, namely, a11, a22, …, ann   are 
non-zeros. 

 

It is a method of solving a LSAEs in matrix form 
that has no zeros along its main diagonal.  This 
was the reason, the last two rows in (14) were re-
arranged to (15). Each diagonal element was 
solved for, and an approximate value plugged in. 
The process was then iterated until it converges. 
The Jacobi method was easily derived by 
examining each of the n equations in the linear 
system of equations Ax = b in isolation. Each 
equation was solved for one of the unknowns.  
 

To apply the Jacobi’s method of solving any 
system of LSAEs given in the form (18), the first 
equation in (18) was used to obtain the value for 
x1, the second equation was used to solve for x2 
and so on. Mathematically, the process is 
expressed as:  
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 

 

 

1 1 12 2 13 3 1

11

2 2 21 1 23 3 2

22

1 2 1 1

1

1

                        

1

n n

n n

n n n n n n nn n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

 

  

  

  









     (19) 

 

To begin, an initial guess of the solution 
(0) (0) (0) (0) (0)

1 2 3( , , ,... )nx x x x x was made. These 

values into the right-hand side of (19) were 
substituted to obtain the first approximation, 

(1) (1) (1) (1)
1 2 3( , , ,... )nx x x x . This accomplished one 

iteration.  In the same way, the second 

approximation 
(2) (2) (2) (2)
1 2 3( , , ,... )nx x x x  was 

computed by substituting the first 
approximation’s x-values into the right-hand side 
of (19).  By repeated iterations, a form of 
sequence of the approximations

( ) ( ) ( ) ( ) ( )
1 2 3( , , ,... )k k k k k t

nx x x x x , k = 1,2,3,…, was 

undertaken and was written in a concise form as, 
 

  1( )

1

1
,    for 1, 2,3,...,

n
kk

i ij j i
jii
i j

x a x b i n
a






 
    
  
 


    (20) 

 

In Matrix form, Jacobi’s method considers to 
solving an n x n size system of LASEs given as 
 

,A x b                                                         (21) 

 
With 
 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 





   



  and 

1

1

n

b

b
b

b

 
 
 
 
 
 


  for 

1

2

n

x

x
x

x

 
 
 
 
 
 


                                                                 (22) 

 

Matrix A can be Split into, 
 

11 12 1

2122

1,

1 , 1

0 0 00 0 0

0 00 0 0 0

00 0 0 0 0

n

n n

n n nnn

a a a

aa
A D L U

a

a aa




     
             
    
    
      

 

  

         

 

   (23) 

 

Ax b  is transformed into 
 

  D L U x b                                                                                                                                       (24) 

 Dx L U x b                                                                                                                                   (25) 

 

Assume 1D   exist and,  
 

11

1
22

,

1
0 0

1
0 0

1
0 0

n n

a

aD

a



 
 
 
 
 

  
 
 
 
  





 



                                                                                                          (26) 
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then, 
 

 1 1x D L U x D b                                     (27) 

 

The matrix form of Jacobi iterative method is 
 

 ( ) 1 ( 1) 1k kx D L U x D b       k = 1,2,3,…  

     (28) 
 

The generalised matrix form of (27) can be 
expressed in a compact form using the following 
definitions: 
 

1 ( ) ,T D L U                                             (29) 

 
1 ,C D b                                                      (30) 

 

Hence, the Jacobi iteration method can also be 
written as 
 

( ) ( -1)k kx Tx c      k = 1,2,3,…                       (31) 
 

In general, the iteration in (31) converges if the 
spectral radius (maximum eigenvalues of T), ρ 
(T) < 1 [21,22]. Also, if (15) is strictly diagonally 
dominant (SDD), then Jacobi’s method will 
converge to a solution from any initial guess. An 
n x n matrix A is SDD if the absolute value of 
each entry on the main diagonal is greater than 
the sum of the absolute values of the other 
entries in the same row. That is, 
 

11 12 13 1

21 21 23 2

1 2 , 1

       

n

n

nn n n n n

a a a a

a a a a

a a a a 

   

   

   









                     (32) 

 
In concise form, (32) is written as  
 

1

i n

ii ij
j
j i

a a





                                                  (33) 

 
Aside (33), a matrix could be weakly diagonally 
dominant (WDD), meaning, 
 

1

i n

ii ij
j
j i

a a





                                                  (34) 

 

Often the term SDD is used instead of WDD [17]. 
Hence, this study investigated with (15), with the 
following: 

Row 1:      
2

1 1
2

    

Row 2:      
2

1
2

   

Row 3:      
1

1
2

   

Row 4:      
2 1

1
2 2

      

Row 5:      1 1   

Row 6:      1 0  

Row 7:      
3 2

2 2
   

Row 8:      
3

1
2

    

 

With the result of Row 5, it can be inferred that 
(15) is a WDD.  Much theory surrounds the 
convergence properties of strictly SDD matrices 
with iterative numerical methods [23,24,25,26], 
typical of which is, an n x n matrix is called 
convergent if  
 

 lim 0,k

ijx
A


   for each i = 1, 2, …., n and j = 1, 

2,…,n                                                              (35) 
 

If (35) holds then, 
 

  1,A                                                        (36) 

 

Where, ρ is the spectral radius of the matrix A. 
 

Surprisingly little or no work was available 
relating WDD and its convergence properties as 
it was applied to classical iterative numerical 
methods. With such type of matrices, the spectral 
radius test as given in (36) failed.  The modulus 
of the maximum eigenvalues of a matrix is called 
spectral radius and is denoted by 
 

    max :  A A     :                   (37) 

 

To compute (36) in Maple
®
, the following code 

was invoked: 
 

 SpectralRadius(A): 
 Evalf(%) 
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The result was, 
 

 1.065 
 

With Maple®, one can quickly ascertain this fact 
with the following command; 
 

MatrixConvergence(A) 
 

It returned 
 false 
 

The results above for (36), buttress that of (34). 
From the spectral radius for LSAEs as given in 
(15), it is known to be a WDD. The question now 
is, how can one determine whether (15) will 
converge to a solution?  
 

 
2

,A A A


                                      (38) 

 

Where, 
 

 max x ,A A
 
   the l∞ norm, 

and 

 
2 2x

max x ,A A   the l2 norm 

In Maple, to evaluate the norms outlined above 
the following was done; 
 
 Norm (A, Euclidean); 
 evalf(%); 
 
After it execution it returned, 
 
    1.96  
 
With the commands (Norm, 2) and (Norm, 
infinity) in Maple

®
, returned 2.71 in both cases. 

Hence, (38) is true for this system of equation 
(1.065 < 1.96 < 2.71). On this, the study argues 
for a WDD, where (36) those not hold, then the 
WDD will converge if and only if (38) holds. Thus, 
it can safely be concluded that this system matrix 
as described by (15), designated as a WDD 
matrix will converge to a solution.  
 
Using Maple

®
 2015 version running on a Laptop 

with RAM 6.00GB, Intel(R) Core(TM) i5-2430M 
CPU @ 2.40GHz, with windows 7, the following 
commands were issued to initiate the solution 
process [27,28,29]; 
 

 

   :with Student NumericalAnalysis
 

 

   

2 2 1 2 1
: 8,8 1, 0, 0, ,1, 0, 0, 0 , 0, 1, 0, , 0, 0, 0, 0 , 0, 0, 1, 0, 0, 0, , 0 , 0, 0, 0, , 0, 1, , 0

2 2 2 2 2

2 3 3
        0, 0, 0, 0, 0, 1, 0, 0,1 , 0, 0, 0, 0, 0,1, 0, 0 , 0, 0, 0, , 0, 0, , 0 , 0, 0, 0, 0, 0, 0, , 1

2 2 2

A
        
                    

  
     

 
;

     

 

  : 0, 0, 0, 0, 0,10000, 0, 0 ;b Vector
 

 

  
  

3, , 1.,1.,1.,1.,1.,1.,1.,1. , 10 ,

max 35, ,

IterativeApproximate A b initialapprox Vector tolerance

iteration stoppingcriterion relative method jacobi

 

   
 

 
The above Maple® code computed the internal member forces of the bridge truss as, 
 

3.345909000

-6341.419791

-3658.580792

-8968.121051

6336.846807

10000.00000

-7322.440845

6336.847816

MapleJax

 
 
 
 
 
 
 
 
 
 
 
  

                                                                                                  (39) 
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To view the approximate solution with the error at each iteration as a column graph, we used the 
following Maple

®
 Code; 

 

  
  

3, , 1.,1.,1.,1.,1.,1.,1.,1. , 10 ,

max 35, , , tan ;

IterativeApproximate A b initialapprox Vector tolerance

iteration stoppingcriterion relative method jacobi output plotdis ce

 

    
 

 
Observe that Jacobi’s method converged after 30 iterations as shown in Fig.6. From the fifth iteration, 
the trend in Fig. 6 is that of a decaying function. This is expected for errors to approach set tolerance 
value (usually less than zero).  
 

  
 

Fig. 6. Evolution of the error with the number of iterations for Jacobi’s method 
 
In most situations where researchers work in independently, it is highly recommended to verify results 
using another STEM software. The study chose to implement the Jacobi’s method for solving (15) in 
MATLAB®. On the same Laptop that gave the above Maple® results running R2018a version of 
MATLAB

®
, the following code gave the result in (40): 

 

format long 

A(1,1)=-1; 

A(1,4)=(sqrt(2))/2; 

A(1,5)=1; 

A(2,2)=-1; 

A(2,4)=(sqrt(2))/2; 

A(3,3)=-1; 
A(3,7)=1/2; 

A(4,4)=-(sqrt(2))/2; 

A(4,6)=-1; 

A(4,7)=-1/2; 

A(5,5)=-1; 

A(5,8)=1; 

A(6,6)=1; 

A(7,4)=-(sqrt(2))/2; 

A(7,7)=(sqrt(3))/2; 

A(8,7)=-(sqrt(3))/2; 

A(8,8)=-1; 

b=[0 0 0 0 0 10000 0 0]'; 

n=length(b); 
x=zeros(n,1); 

x_0=[1 1 1 1 1 1 1 1]'; 

x=x_0; 

nmaxit=31; % max iteration 

tol=10^-2; % error tolerance 

 for t=1:nmaxit 
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     for j=1:n 

         x(j)=(b(j)-A(j,[1:j-1, j+1:n])*x_0([1:j-1,j+1:n]))/A(j,j); 

     end 

     error=abs(x-x_0) 

     x_0=x; 

     if error<=tol 

         break 

     end 

 end 

display(x) 
 

3.34590843676

-6341.41979036144

-3658.58079229686

-8968.12104822703

6336.84680665998

10000.00000000000

-7322.44084601919

 6336.84781585376

MATLABJax

 
 
 
 
 
 
 
 
 
 
 
  

                                                                                      (40) 

 
Note, the difference between the Maple® and MATLAB® computed results using Jacobi’s method are 
very insignificant. 
 

0.000000563240000

0.000000638559868

0.007130968599995

0.000002772969310
x x

0.000000340020051

0

0.000001019189767

 0.000000146240382

Maple MATLABJa Ja

 
 
 
 
 
  
 
 
 
 
 
  

                                                                     (41) 

 
To arrive at a result after 30 iterations seem 
sluggish. To compute the same result at faster 
pace literature proposes that the Gauss-Seidel 
algorithm will do a better job compared to 
Jacobi’s method and with a fewer number of 
iterations. 
 
3.2 Gauss- Seidel (GS) 
 
The Gauss– Seidel algorithm is a variation of 
Jacobi’s algorithm that uses the updated value of 
each unknown variable as soon as that value is 
computed.  Therefore, Gauss-Seidel algorithm 

presents a feasible approach to solve many 
problems in engineering and science. 
 

With the GS method, the new values ( 1)k
ix



 
were used as soon as they are known. For 
example, once ( 1 )

1
kx   was computed from the 

first equation, its value was then used in the 

second equation to obtain the new 
( 1)
2
kx 

 and so 

on. This could be depicted mathematically as, 
 

first iteration: 
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 

 

 

( ,1) (0) (0) (0)
1 1 12 2 13 3 1

11

( ,1) ( ,1) (0 ) (0)
2 2 21 1 23 3 2

22

( ,1) ( ,1) ( ,1) (0)
3 3 31 1 32 2 3

33

( ,1) ( ,1)
1

1

1

1

                          

1

new
n n

new new
n n

new new new
n n

new new
n n n n n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

x b a x a
a

  

  

  

  









 ( ,1) ( ,1) (0)
2 3 1 1

new new
n n n nn nx a x a x  

                                                (42) 

 

In a concise form, the GS method is presented as, 
 

       
1

1

1 1

1
,   1,2,... .

i n
k k k

i ij j ij j i
j j iii

x a x a x b i n
a




  

 
     

 
                                                            (43) 

 

In matrix notation, the solution sorted can be 
casted as, 
 

x d Cx                                                        (44) 
 

Where, 
 

1 11

2 22

n nn

b a

b a
d

b a

 
 
 
 
 
 


                                                (45) 

and 
 

12 11 13 11 1 11

21 22 23 22 2 22

31 33 32 33 3 33

1 2 3

0

0

0

0

n

n

n

n nn n nn n nn

a a a a a a

a a a a a a

C a a a a a a

a a a a a a

 
 
 
 
 
 
  







    



  (46) 

 

With the definitions of D, L and U given with the 
Jacobi method, the GS method is represented by  
 

     1
x x b,

k k
D L U


                                 (47) 

 

And 
 

       
1 11

x x b
k k

D L U D L
 

      for each k = 

1,2, …                                                             (48) 
 

Letting  
 

 
1

,gT D L U


                                            (49) 

 

And  

 
1
b,gc D L


                                            (50) 

 

Hence,  
 

   1x x .
k k

g gT c


                                          (51) 

 

Just like the Jacobi’s method, the GS method 
wasexpected to converge to a solution based on 
the condition put forward in (38). In Maple

®
, 

using the built-in GS algorithm, the Maple® code 
needed to execute this solution was the same as 
the one used for the Jacobi’s method. The only 
difference was the replacement of the word 
jacobi in the syntax with gaussseidel.  
 

2 .6 3 9 2 9 4 0 0 0

-6 3 3 8 .7 7 9 9 1 4

-3 6 5 9 .6 9 6 2 8 9

-8 9 6 6 .5 4 3 5 0 0

6 3 3 8 .7 7 9 9 1 4

1 0 0 0 0 .0 0 0 0 0

-7 3 2 1 .1 5 2 1 0 7

6 3 4 0 .3 0 3 7 1 1

MapleG Sx

 
 
 
 
 
 
 
 
 
 
 
  

                       (52) 

 

The number of iteration versus error plot of the 
system approximate solution depicts the number 
of iterations (18) for the solution to converge. 
Using the GS method, this plot is depicted in Fig. 
7.  This is similar in trend with Fig. 6. From the 
fourth iteration, Fig.7 has a decaying function. 
This is expected and appreciated. 
 

The Gauss-Seidel method was able to compute 
the results in 18 iterations. (12) iterations was 
less compared to the Jacobi’s method. Also, a 
difference of about 0.71N in the value of the 



 
 
 
 

Kisabo et al.; AIR, 16(4): 1-21, 2018; Article no.AIR.43876 
 
 

 
14 

 

force F1 from both methods was noticed. This 
might look quite large because it can be 
approximated to 1N. On the other hand, the force 
F1 with magnitude 0.71N was just 0.0071% of the 
induced force f3 (10KN). 
 
In MATLAB

®
, all the input parameters remained 

the same as that of the Jacobi’s method (A 
matrix, b vector, and initial guess). For solving 
(15) with GS in MATLAB®, the number of 
maximum iterations (nmaxit) was only changed.  
 

nmaxit=18; % SOR use 10 
w=1; % SOR use 0.93; 
 for t=1:nmaxit 
     error=0; 
     for i=1:n; 
         s=0; 
         xb=x(i); 
         for j=1:n; 
             if i~=j, 
                 s=s+A(i,j)*x(j); 
             end 
         end 
         x(i)=w*(b(i)-s)/A(i,i)+(1-w)*x(i); 
         error=error+abs(x(i)-xb); 
     end 
     if error/n<10^-2, break; 
     end 
 end 
 

The above MATLAB® code gave the result in 
(53). Just like in the case with the Jacobi’s 
method, the difference between the Maple® and 
MATLAB

®
 computed results are all less than 1, 

this is given in (54). 
 

2.63929431481

-6338.77991338833

-3659.69628932854

-8966.54349719603
.

 6338.77991338833

10000.00000000000

-7321.15210820030

6340.30371067146

MATLABGSx

 
 
 
 
 
 
 
 
 
 
 
  

                          (53) 

 

5

0.031480999984623

0.061166974774096

0.032853995435289

0.280397034657653
x x 10 .

0.061166974774096

0

0.120030017569661

 0.032853949960554

Maple MATLABSG SG


 
 
 
 
 
   
 
 
 
 
 
  

 (54) 

In literature, the Relaxation method suggests 
converging solution to a system like (15) faster 
than the GS method. The study intended to 
explore this fact here. This method is the third in 
the class of classical iterative method. 
 
3.2 Successive Over-relaxation (SOR) 

Method 
 
Relaxation method represents a slight 
modification of the Gauss-Seidel method that 
was designed to enhance convergence. After 
each new value is computed using (42), that 
value was modified by a weighted average of the 
results of the previous and the present iterations. 
Mathematically, it expressed as, 
 

  01 ,new ld new
i i ix x x                              (55) 

 
Where, ω is a weighting factor. If A is symmetric 
then, 
 

   2
,A A                                            (56) 

 
With positive diagonal elements and for 

0 2  , the SOR converges for any initial 
guess. Hence, elaborately the relaxation 
algorithm could be written as 
 

 
 

Fig. 7. Number of iteration verse error in 
Gauss-Siedel Method  

 

           
1

1 1

1 1

1 .
i n

k k k k

i i ij j ij j i
j j iii

x x a x a x b
a





 

  
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      

 
                                             

(57) 
 
If ω = 1, (57) reduces to (43). Hence, the Gauss-
Seidel method is a special case of the relaxation 
method. For 0 < ω < 1, the procedures are called 
successive under-relaxation (SUR) methods, 
while choices of 1 < ω < 2 are called successive 
over-relaxation (SOR) methods. For the 
Relaxation method, no general answer could be 
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given to the question of how the appropriate 
value of ω is chosen. Literature informs of the 
choice of ω via the spectral radius of the system 
matrix as described by (58). If the system matrix 
is positive definite and tridiagonal, then  
 

   
2

1g jT T                                             (58) 

 
Then, the optimal choice of ω for the SOR 
method is defined as 
 

 
2

2

1 1 jT






    

                                 (59) 

 
To use (59) for the determination of the optimal 
choice of relaxation coefficient ω, the system 
matrix must be a tridiagonal matrix and positive 
definite (PD). And by definition, an n x n matrix is 
Positive Definite if it has the following properties: 
 

 A has an inverse; 
 aii > 0 for each i = 1, 2, … n; 
 max1 ≤ k,j ≤ n ≤ max1 ≤ i ≤ n |aii|; 
 (aij)

2  
< aiiaij for each i ≠ j 

 

The above definition of PD requires the matrix to 
be symmetric (as given in (56), which does not 
hold for (15)), but not all authors make this 
requirement. For example, [30] requires only that 
xt Ax > 0 for each nonzero vector x. For the 
present system as given in (15), by mere 
inspection, the second property of PD does not 
hold.  In Maple

®
, the following command was 

used to determine whether (15) is a PD matrix, 
 
 IsMatrixShape(A, ‘positivedefinite’); 
 

It returns false as an indication. Consistent with 
the definition, symmetry is required for a true 
result to be produced. The study now proceeds 
to determine whether this system as given in (15) 
is a tridiagonal matrix.  
 

In linear algebra, a tridiagonal matrix is a band 
matrix that has nonzero elements only on the 
main diagonal (α), the first diagonal below (β) 
this, and the first diagonal above (γ) the main 
diagonal [31]. Generally, such matrix is square (n 
x n) and depicted as, 
 

1 1

2 2 2

3 3

1

0 0

0 0

0 0
n

n n

A

 

  

 



 


 
 
 
 
 
 
  



 



   



                           (60) 

To determine whether the system as given in 
(15) is tridiagonal, the following command in 
Maple® was used, 
 

 IsMatrixShape(A, 
‘strictlydiagonallydominant’); 
 

The above code returns false. Hence, the system 
given by (15), is neither positive definite nor 
tridiagonal. This means (59) cannot be used to 
determine an optimal value for ω in this study. 
Thus, no choice but to go directly to Maple® and 
try to solve (15) using the SOR method and see 
the result.  
 

To provoke a solution with the SOR method in 
Maple®, ω =1.25 was applied as popularly 
suggested as the optimal value in literature. 
Maple® did not give any result but rather a 
warning was prompted, that the iteration number 
has been exceeded and the solution did not 
converge after 18 iterations. The trend of such 
error verse iteration number was visualised, and 
depicted in Fig.8. From this figure, it is obvious 
that no solution could be reached even if the 
iteration number was increased. This is due to 
the single fact that error is growing as iteration 
number increases.  
 

 
 

Fig. 8. SOR (1.25), iteration versus error 
 
As such, in a novel approach, simulation of 
iteration number against error for values 0 > ω > 
1 was opted. The idea behind this approach was 
to get values of relaxation coefficients that will 
cause errors of numerical approximation to 
decrease as iteration number increases. Also, 
the iteration number must be less than 18 for it to 
be accepted. The following results were gotten 
from such simulations: 
 

It can be seen from Table 1 that the value of F1 
for SOR (0.85) was the major indicator for the 
simulation. As shown in Fig. 9, the error at each 
successive iteration was decreasing as iteration 
number increases, and iteration stopped at the 
ninth iteration. This phenomenon looks 
convincing for a typical desired solution, but SOR 
(0.85) gave F1 = -2.26N and the algebraic 
difference between this force with that computed 
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by the GS method is 4.8985 N. This value of 
force also began to decrease from SOR (0.85). 
Notice that the result in (39) and (52) have four 
forces in tension (F1, f2, f3 and f5) and four in 

compression (F2, F3, f1 and f4). This should be 
the same in the result sought with the SOR 
method. For SOR (0.84) to SOR(0.91), five 
forces are in compression and F1 is the culprit.  

  
Table 1. Simulation results for SOR with ω = 0.84-0.99 in Maple

® 

 

Method No. of 
iter. 

 S O Rx     GS SOR
x x

 
SOR 
(ω = 0.84) 

10 [-0.7568799675 -6339.745410 -3660.248047  
-8965.7548047 6339.697981 9999.999890      
-7320.508078 6339.744305 ]T 

[3.3962  0.9655  0.55176  
0.7887   0.91807  0.00011 
0.64403  0.55941]T 

SOR 
(ω = 0.85) 

9 [-2.259211359 -6339.739104 -3660.232491  
-8965.756926 6339.595385 9999.999616,     
-7320.508414 6339.740615 ]T 

[4.8985  0.95919  0.5362  
0.78657   0.81547  
0.000384 0.64369  0.5631]T 

SOR 
(ω = 0.86) 

9 [-1.448685846 -6339.746631 -3660.242842     
-8965.754113  6339.658256 9999.999793        
-7320.507753 6339.743008]T 

[4.088  0.96672  0.54655 
0.78939 0.87834 0.000207 
0.64435  0.5607]T 

SOR 
(ω = 0.87) 

9 [-0.8911709843-6339.746178                                
-3660.248206 -8965.753790 6339.697170 
9999.999894 -7320.507443 6339.744174]T 

[3.5305  0.96626  0.55192 
0.78971  0.91726 0.000106  
0.64466   0.55954]T 

SOR 
(ω = 0.88) 

9 [-0.5191194875  -6339.743031                             
-3660.249985 -8965.755568 6339.718916 
9999.999848 -7320.508275 6339.745273]T 

[3.1584  0.96312  0.5537 
0.78793  0.939 0.000152 
0.64383   0.55844]T 

SOR 
(ω = 0.89) 

9 [-0.3326921696 -6339.765987                                   
-3660.258559 -8965.745868 6339.738200 
9999.999876 -7320.504182  6339.743824]T 

[2.972  0.98607  0.56227 
0.79763 0.95829  0.000124  
0.64793  0.55989]T 

SOR 
(ω = 0.90) 

9 [-0.4464763385 -6339.88603 -3660.303514     
-8965.683594 6339.793636 9999.999990         
-7320.471979  6339.726399]T 

[3.0858  1.1061  0.60723 
0.85991 1.0137 0.00001   
0.68013 0.57731]T 

SOR 
(ω = 0.91) 

9 [-1.158045335 -6340.242016 -3660.448787       
-8965.478803 6339.973317 9999.999996            
-7320.354613  6339.655381]T 

[3.7973  1.4621  0.7525 
1.0647  1.1934  0.000004   
0.79749  0.64833]T 

SOR 
(ω = 0.92) 

10 [0.9227326513 -6339.336863 -3660.081545      
-8965.998649 6339.527694 10000.00                    
-7320.653514  6339.837940]T 

[1.7166 0.55695 0.38526 
0.54485 0.74778  0.0   
0.49859  0.46577]T 

SOR 
(ω = 0.93) 

10 [2.440958649 -6338.701888 -3659.787956         
-8966.413858 6339.121757 10000.00                     
-7320.924190 6340.024594]T 

[0.19834  0.078026  
0.091667 0.12964 0.34184  
0.0 0.22792   0.27912]T 

SOR 
(ω = 0.94) 

11 [-2.153216175 -6340.640715 -3660.673515         
-8965.161494 6340.335939 10000.00                     
-7320.114756 6339.469370]T 

[4.7925  1.8608  0.091667 
0.12964 1.556  0.0 1.0374   
0. 83434]T 

SOR 
(ω = 0.95) 

12 [2.053732809 -6338.913998 -3659.846782         
-8966.330671 6339.147896 10000.00                     
-7320.906786 6340.038723]T 

[0.58556  0.13408  0.15049 
0.21283  0.36798 0.0 
0.24532 0.26499] T 

SOR 
(ω = 0.96) 

13 [-2.110024567 -6340.581081 -3660.679006         
-8965.153728 6340.394730 10000.00                     
-7320.075563 6339.415822]T 

[4.7493 1.8012 0.98272 
1.3898 1.6148 0.0  1.0765  
0.88789] T 

SOR 
(ω = 0.97) 

14 [2.325399179 -6338.845177 -3659.779166         
-8966.426294 6338.994943 10000.00                     
-7321.008754  6340.141881]T 

[0.31389 0.065263 
0.082877  0.11721 0.21503 
0.0  0.14335  0.16183] T 

SOR 
(ω = 0.98) 

15 [-2.738476941 -6340.785705 -3660.820281         
-8964.953934 6340.671094 10000.00                     
-7319.891320  6339.242136]T 

[5.3778 2.0058  1.124 
1.5896 1.8912 0.0 1.2608 
1.0616] T 

SOR 
(ω = 0.99) 

16 [3.434110452 -6338.466427 -3659.535846         
-8966.770401 6338.536621 10000.00                     
-7321.314302  6340.424754]T 

[0.79482  0.31349  0.16044 
0.2269  0.24329  0.0 
0.16219 0.12104] T 
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Fig. 9. SOR (0.85), iteration versus error 
 
Rejecting these results, the study went further to 
simulate for values of ω, beyond SOR (0.91). 
Questing for the value(s) of ω that will give F1 as 
a tension force, keeping other values of force as 
close as possible to those that the GS method 
gave in (52). SOR (0.92), gave four forces in 
compression and the remaining 4 were in 
tension. This result was similar to the GS 
method, and the trend of iteration number 
against error was similar to that depicted in Fig. 

9. The only anomaly with SOR (0.92) is that the 
difference between its computed value of F1 with 
that of the GS method gives a force of 1.72N. 
Isolating some of the results that look very 
promising from Table 1 presented in Table 2 for 
closer examination. 
 

From Fig. 10, it can be seen that SOR (0.93) is 
the global minimum of the fitted curve. Before ω 
= 0.85, the difference in F1 is high and beyond ω 
= 0.85, the difference in F1 is increasing. This 
trend depicted is actually what this study got 
when simulated for all values of ω. Though, 
those less than 0.84 were not documented in 
Table 1. In Fig. 11, outside the range ω = 0.85-
0.93, iteration number increases even though 
result were converging to a solution. Note                
here that the solution sort for must converges            
at iteration much less than that of the GS 
method. 

 

Table 2. Simulation range of interest 
 

S/N SOR Method    G S S O R

1 1F F
 

No. of Iter. 

1 SOR(0.84) 3.3962   10 
2 SOR(0.85) 4.8985 9 
3 SOR(0.86) 4.088 9 
4 SOR(0.87) 3.5305 9 
5 SOR(0.88) 3.1584 9 
6 SOR(0.89) 2.972 9 
7 SOR(0.90) 3.0858 9 
8 SOR(0.91) 3.7973 9 
9 SOR(0.92) 1.7166 10 
10 SOR(0.93) 0.19834 10 

 

 
 

Fig. 10. Relaxation coefficient (0.85-0.93) against difference in F1 
 

 
 

Fig. 11. Relaxation coefficient (0.85-0.93) against F1 
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Combining the results depicted in Fig. 10 and 
Fig. 11, one can see that SOR(0.93) gave the 
best result. In 10 iterations, SOR (0.93) from Fig. 
11 coincides with the global minimum of the 
function in Fig. 10. Also, the difference between 
all computed forces with that of the GS method is 
less than 1N. Hence, error evolution for this 
optimal value of relaxation coefficient is depicted 
in Fig. 12. 
 

 
                     

Fig. 12. SOR (0.93), iteration versus error 
 
To validate this result in MATLAB with the                
other two methods, the same MATLAB

®
 code 

used for the Gauss-Seidel method, which                   
was also used for the SOR(0.93) method. 
Keeping in mind that the Gauss-Seidel algorithm 
is a special case of the SOR with ω =1. Solving 
the same problem in MATLAB

®
, ω = 0.93 was 

changed and also changed the number of 
iterations 10. This gave the following result                
in (61), 
 

( 0.93)

2.44095600540

-6338.70188779890

-3659.78795770474

-8966.41385318836

 6339.12175651705

9999.99999997175

-7320.92419028220

6340.02459314403

MATLABSORx

 
 
 
 
 
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 
 
 
 
 
  

              (61) 

 
Also, investigating the difference between                 
the Maple

®
, and MATLAB

®
 computed results, 

gave, 

(0.93) ( 0.93)

0.026436000002406

0.002010992830037

0.210473999686656

0.048116398829734
x x 10

 0.004829498720937

0.000282507244265

0.002821998350555

 0.008559700290789

Maple MTLABSOR SOR


 
 
 
 
 
   
 
 
 
 
 
  

4

                                               

(62) 
 

Notice that (62), just like (41) and (54) is 
insignificant. This means both software can be 
used to obtain the same result. 
 

For all three iterative numerical methods applied 
to the LSAEs, of the 8 forces computed, 4 were  
in tension (F1, f2, f3 and f8) and the remaining 4 
(F2, F3, f1 and f7) were in compression. The least 
force action on the bridge truss was in tension 
and is F1 while the highest is force in tension is 
aside the load of 10KN applied directly on joint 3 
is the compressive force f4 acting at joint 4. 
 

Observe that 3 forces (F2,  f2 , f5) had a magnitude 
of about 6.3KN, one of which was a compressive 
force (F2) while the others were tensile (f2 and  f5). 
The least force action on the bridge truss was in 
tension and was F1 while the highest iforce in 
tension aside the load of 10KN applied directly 
on joint 3 was the compressive force f4 acting at 
joint 4. 
 

Assume the exact solution to (15) is [2, -6338, -
3659, -8966, 6339, 10000, -7320, 6340]T.  Using 
the results from Maple

®
, this can compute the 

norm as given in Table 3.  
 

In Table 1, SOR (0.99) gave us an interesting 
result. This solution looks very much like the one 
computed by the Jacobi’s method. With this 
stunning realisation to the study investigated 
further by assuming that the exact solution to 
(15) is [3, -6341, -3658, -8968, 6336, 10000, -
7322, 6336]T.  Using the results from Maple®, 
one can compute the norm as given in Table 4. 

 
Table 3. Summary of internal forces computed with Maple® 

 
Method No. of 

iterations 

 x k   x x k


  

Jacobi’s 
Method  

30 [3.345908, -6341.419790,-3658.580792,-8968.121048, 
6336.846807, 10000.00, -7322.440846, 6336.847816 ]

T
 

3.42 

Gauss-
Seidel 

18 [2.639294, -6338.779914,-3659.696289, -8966.5435, 
6338.779914,10000.00,-7321.152107,6340.303711]

T
 

1.15 

SOR 
(ω = 0.93) 

10 [2.440959,-6338.701888,-3659.787956,-8966.413858, 
6339.121757,10000.00,-7320.924190,6340.024594]T 

0.92 
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Table 4. Please insert a table caption 
 
Method No. of 

iterations 

 x k   x x k


  

Gauss-
Seidel 

18 [2.639294, -6338.779914,-3659.696289, -8966.5435, 
6338.779914,10000.00,-7321.152107,6340.303711]

T
 

4.3037 

SOR 
(ω = 0.99) 

16 [3.434110452 -6338.466427 -3659.535846  -8966.770401 
6338.536621  10000.00 -7321.314302  6340.424754]

T
 

4.0246 

Jacobi’s 
Method  

30 [3.345908, -6341.419790,-3658.580792,-8968.121048, 
6336.846807, 10000.00, -7322.440846, 6336.847816 ]

T
 

0.84782 

 
SOR (0.99) is closer to the result obtained by 
Jacobi’s method as given in (41). This could be 
seen by the difference between the two as given 
in (63). Notice that (63) is similar to the result of 
SOR (0.96) in Table 1. Both evaluated 
differences have 5 forces greater than 1N.  
 

(Ja) ( 0.99 )

0.088201

2.9534

 0.95505

1.3507
x x

 1.6898

0

1.1265

 3.5769

Maple MapleSOR SOR

 
 
 
 
 
  
 
 
 
 
 
  

      (63) 

 

Looking for other forms of similarity with (63), it 
was observed from Table 1 also, that SOR (0.98) 
has seven forces greater than 1N. And SOR 
(0.91) has 4 of it forces greater than 1N. As such, 
SOR (0.99) could be considered as a viable 
result and some special form of the Jacobi’s 
method. This assertion agrees with the literature 
[32,33]. There exists a special form of expressing 
the Jacobi’s method with a relaxation coefficient 
as given in (64). This is called Jacobi based 
Successive Relaxation method 
 

      1 1

1

.
n

k k k

i i i ij j
j iii

x x b a x
a

 

 

 
   

 
           (64) 

 

With the realisation of (63), (64) and the 
computed forces with SOR (0.99), one can argue 
from a mathematical standpoint as to which 
result should be accepted, between Table 3 and 
Table 4. Such an argument is valid from a 
mathematical standpoint. But from an 
engineering perspective, it makes little or no 
difference.   This is because, in both Tables, the 
largest induced force in the system is f1 with an 
absolute magnitude of 8.97KN. The design 
engineer will use this force to evaluates his FOS 
as given in (1). Hence, commence the design of 

the truss members for the bridge, and its joints. 
To save computational cost, a scientist will 
always prefer to use the SOR method for such 
computation because of the obvious fact that it 
will require the least iteration number for the 
solution to converge.  
 
Hence, the result in Table 3 are our preferred 
solution to the bridge truss, because it closely 
conforms with theory in literature which states 
that the number of iterations needed for the GS 
method to converge to a solution is about half 
that of Jacobi’s method and for the Relaxation 
method is about half that of the GS method [34]. 
 

4. CONCLUSION  
 
Forces in a bridge truss member were resolved 
and built into a LSAEs. Classical iterative 
numerical methods namely; Jacobi’s method, 
Gauss-Seidel method and the Relaxation 
Technique, popularly called the SOR method 
were employed to obtain the solution to the 
LSAEs, using Maple® and MATLAB®. Due to the 
fact, the realised system of equations describing 
the bridge truss is sparse and weakly diagonally 
dominant, the study developed a simulation 
approach in Maple

®
 that could lead to 

determining an optimal Relaxation coefficient. 
Here, LSAEs needed an under-relaxation 
coefficient to converge the solution faster than 
the Gauss-Seidel method. Also, the study was 
able to demonstrate the intuitive ability and 
capacity of Maple® to carry out classical iterative 
numerical computation with relative ease. 
 

5. FUTURE WORK 
 
Non-classical iterative numerical methods need 
to be applied to the developed LSAEs describing 
the bridge truss in this study. These should at 
least include Conjugate Gradient method and 
Pre-Conditioned method. Results obtained 
should be compared with that of SOR (0.93) in 
this study. Also, an analytic formulation is 
needed for computing the optimal value of 
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relaxation coefficient for the SOR method for the 
weakly diagonally dominant matrix with ρ (A) ≥ 1. 
All MATLAB codes used for the three iterative 
numerical methods could be improved in such a 
way that the number of iterations is not fixed as 
presented in this study. 
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