
*Corresponding author: E-mail: ghasemi@sharif.edu;

Current Journal of Applied Science and Technology

26(5): 1-21, 2018; Article no.CJAST.40420
ISSN: 2457-1024
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,
NLM ID: 101664541)

Exact Solution Algorithms for Multi-dimensional
Multiple-choice Knapsack Problems

Farhad Ghassemi-Tari1*, Hamed Hendizadeh2 and Gary L. Hogg3

1Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran.
2
Department of Mechanical and Manufacturing Engineering, Faculty of Engineering,

University of Manitoba, Winnipeg, Manitoba, Canada.
3Department of Industrial Engineering, Arizona State University, USA.

Authors’ contributions

This work was carried out in collaboration between all authors. Author FGT designed the study,

proposed the algorithms, wrote the protocol and wrote the first draft of the manuscript. Author HH
performed the computational analysis and Author GLH managed the literature searches. All authors

read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2018/40420
Editor(s):

(1) Wei Wu, Professor, Department of Applied Mathematics, Dalian University of Technology, China.
Reviewers:

(1) Sridevi, Karnatak University, India.
(2) Pasupuleti Venkata Siva Kumar, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/24014

Received 19
th

 January 2018
 Accepted 29th March 2018

Published 6th April 2018

ABSTRACT

We propose a first depth dual approach branch and bound (B&B) routine for solving the general
form of multi-dimensional multiple-choice knapsack problems (MMKPs).We call this approach a
discriminatory branch and bound method. This name is chosen due to the selection of a node for
further branching based on a discriminatory criterion. Three selection mechanisms are developed
and are incorporated in an algorithmic procedure to develop three algorithms. An extensive
computational experiment is performed, to compare the number of nodes enumerated by the
proposed algorithms against the traditional B&B. The results revealed that all the proposed
algorithms lead to a considerable node enumeration reduction.

Keywords: Multiple-dimensional multiple-choice knapsack; Branch and bound; Exact solution

approach; Selective branching mechanisms.

Original Research Article

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

2

1. INTRODUCTION

The basic 0-1 knapsack problem takes into
account a number of objects, each with a profit
value and a resource cost designated by the
weight. The objective is to place a set of objects
in a knapsack so that the total value of packed
items, subject to the resource capacity of the
knapsack is maximized. The multiple-choice
knapsack problem (MCKP) is a generalization of
the ordinary knapsack problem in which, the set
of items is partitioned into classes. The binary
choice of taking an item is replaced by the
selection of exactly one item out of each class of
items. Ultimately, another variant of the problem
is defined as the multidimensional multiple-
choice knapsack problem (MMKP) where a multi-
dimensional resource cost is considered. This is
a well-known NP-hard combinatorial optimization
problem with a vast number of applications [1,2].
Many practical and real-life problems are
modeled as the MMKP. The most typical
application of MMKP is on portfolio optimization,
where two or more resource constraints such as;
total budget, cumulative risk or other restraints
need to be satisfied [3]. Other applications of
MMKP have been reported in solving the
problems such as Stigler diet [4], the cargo
loading [5] the capital budgeting [6] the bin
packing [7] the bidding in ad auctions [8] and
many other problems.

Solving the large-size MMKPs optimality, by B&B
algorithms, is a CPU time intensive. Although
B&B allows considerable reduction in solution
space, the exploration time using a bounding
mechanism remains significant. Therefore, the
use of solution space reduction to speed up the
execution time has become a significant
resolution. B&B algorithms are characterized by
four basic operations known as, branching,
bounding, selection and elimination. In order to
reach higher computational performance, we
have focused on some characteristics of MMKP
for the reduction of the solution spaces.

In this paper, we have proposed three branching
mechanisms to enhance the computational
efficiency of the B&B algorithm for solving
MMKPs. These mechanisms can be applied to
the general form of MMKPs. An algorithmic
procedure, based on the B&B with three different
selective branching mechanisms is proposed for
the reduction of the solution space of MMKPs.
The proposed algorithm is called “discriminatory
Branch and bound” (DBB)) due to the fact that a
selection mechanism is employed for the

branching procedure of the traditional B&B.
Through this mechanism, a vast number of the
solution space is enumerated implicitly, which
extensively reduces the explicit enumeration of
nodes, compared to the traditional B&B.

After the introduction (Section 1) we present the
state of art of the problem by reviewing the
existing literatures (Section 2). In Section 3 the
scope of the problem including the mathematical
model of the MMKP is presented. Section 4 is
devoted to the illustration of three different
variants of the proposed B&B algorithm. The
computational experiments, through which the
solution space reduction of the proposed
algorithms is evaluated, will be presented in
Section 5. Finally, the paper is concluded in
Section 6.

2. LITERATURE REVIEW

Exact solution approaches for the MMKP evolved
during many decades and encompassed the
Lagrangian and surrogate relaxation technique.
Special enumeration techniques and reduction
schemes such as dynamic programming, and
B&B methods are studied. Many early research
attempts in the general field of zero-one
mathematical programs and specifically the
knapsack problems have provided some
framework for the computational burden of the
MMKPs. Among these early attempts is work of
Balas [9] who proposed a B&B algorithm for
solving a mathematical program with zero-one
variables. Two classes of the exact solution
approaches are mostly devoted to the reduction
of the solution spaces through the subrogate
constraint and Lagrangian relaxation
mechanisms. Both surrogate constraint and
Lagrangian relaxation mechanism are engaged
for converting the multidimensional knapsack to
a one-dimensional knapsack problem. The
surrogate approach is first presented by Glover
[10] by substituting the original constraints by
one surrogate constraint. Greenberg and
Pierskalla [11] speculated the first principal
handling of surrogate constraints in the setting of
general mathematical programs. This study is
then thrived by the works conducted in [12-16].

Freville [17] argued that although further effort is
needed to compute the bounds, the methods of
surrogate relaxation are more beneficial in
resolving the MMKP than the methods which use
the Lagrangian relaxation. Shih [18] presented a
B&B algorithm by use of the particular MMKP
structure and found a top bound through

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

3

resolving m- single-constrained knapsack
problems instead of an m-constrained problem.
Gavish and Pirkul [19] reached to the conclusion
that the major deficiencies of Shih’s method
included its extreme space requirements as well
as its inability to resolve problems of tight
resource restraints.

Another powerful approach for solving MMKP is
dynamic programming (DP) techniques. A hybrid
algorithm by integration of the DP procedure,
surrogate constraints routine, and several other
bounding schemes for reducing the state space
solution has been presented in [20-21]. Dyer et
al. [22] proposed a hybrid dynamic algorithm for
the MMKP. Bao and Yang [23] presented a
solution algorithm based on DP for the solution of
the MMKP. Also, various other DP approach for
solving the MMKP are given in [24-29].

Lagrangian duality is incorporated in a
computationally efficient manner to compute tight
bounds on every active node of the search tree.
Vercellis [30] presented a Lagrangian
decomposition technique for solving multi-project
planning problems. Later Pisinger [31] proposed
a simple partitioning algorithm for developing the
optimal linear solution. In contrast to the most of
the methods of reducing the solution space, the
proposed approach can solve the linear MMKP
without sorting of the solution space in
enumeration processes. Later, Pisinger [32]
presented an algorithm for the budgeting
problem. The proposed problem is transformed
to an equivalent MMKP. The results of the
computational experiments revealed that the
developed algorithm was order of magnitude
faster than a general LP/MIP algorithm.

Almost all successful exact methods proposed
for MMKP are based on the B&B approaches.
Cherfi & Hifi [33,34] used a search tree to
represent the solution space and proposed a
linear programming to find tighter bounds. In this
work, the use of a column generation and a local
search meta-heuristic for solving the MMKP are
also introduced. Lin and Bricker [35] reviewed
the theoretical background of two partitioning
strategies, the “weighted-mean method” and the
“reformulation & transformation technique”,
incorporated in the B&B procedure. Sung and
Cho [36] developed a B&B method for reliability
optimization of a series systems with multiple-
choice and budget constraints. Kozanidis and
Melachrinoudis [37] proposed a B&B algorithm
for the 0-1 mixed integer knapsack problem with
linear multiple choice constraints. Ohtagaki et al.

[38] introduced a surrogate multiplier for
transforming the multidimensional nonlinear
knapsack problem into a one-dimensional
problem. Hifi et al. [39] also presented an optimal
algorithm for the MMKP. The main principle of
the approach is twofold: (i) to generate an initial
solution, and (ii) at different levels of the tree
search to determine a new upper bound used
with a best-first search strategy. A more efficient
B&B algorithm for solving the MMKP was
proposed by Sbihi [40]. In this research some
selected items were kept fixed while by the use
of linear programming the bounds were
computed during the searching procedure.

Razzazi and Ghasemi [41] presented a B&B
algorithm to solve the MMKP. The B&B tree is
arranged based on the orderings in the core and
navigated in a depth-first manner, in which
consuming low memory effectively causes the
core to be expanded by need. Obtaining a tight
upper bound for the 0-1 quadratic knapsack
problem has been considered in [42]. In this
article the problem of a wind farm layout
optimization is modeled by a 0-1 knapsack model
and an upper bound proposed for the model.
Nirmala and Parvathi [43] proposed a
mechanism for radio access network selection
based on MMKP. They devised a DP and a
heuristic to solve the above network selection
problem. Cokce and Wilhelm [44] combined DP
and B&B to produce a hybrid algorithm for the
MMKP.

To find an exact solution of the MMKP, Goyal
and Parashar [45] modeled the solution space as
a tree and then navigated the tree exploring
the most promising sub-trees first. They
contemplated a DP and a B&B to solve the
proposed problem. Bettinelli et al. [46] studied
the MMKP with conflict graph to select the
maximum profit set of compatible items while
satisfying the knapsack capacity constraint. They
presented a new B&B to derive optimal solutions
to the problem in short computing times. Wang
[47] considered concave knapsack problems with
integer variables and presented an exact and
efficient algorithm. The proposed algorithm
combines the contour cut with a special cut to
improve the lower bound and reduce the
duality gap gradually in the iterative process. The
lower bound of the problem is obtained by
solving a linear relaxation version of the
problem. A special cut is performed by exploiting
the structures of the objective function and the
feasible region of the primal problem. The
computational results showed that the

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

4

algorithm is efficient. In spite of these efforts, the
need for solution space reduction of the MMKP is
still a challenging issue.

The presented literatures provided a basic
understanding of methods for improving the
computational efficiency of the MMKP and
motivated further investigation of introducing a
more efficient solution approach. In this paper we
proposed three branching mechanisms in a core
algorithmic framework to enhance the
computational efficiency of the B&B algorithm
for solving the MMKP. Based on these
mechanisms three B&B algorithms are
proposed. Before presenting these algorithms,
the scope of the problem is introduced in the
following section.

3. THE SCOPE OF THE PROBLEM

The scope of the multiple-choice knapsack
problems is as follows:

 . and , of values theallfor 0 and ,0 where,

,,2,1 and ,,,2,1 ,1 0

,,2,1 ,1

,,2,1 ,

:

,

1

1 1

1 1

kjiac

Kknjorx

njx

miBxa

tosubject

xczMaximize

ijkjk

jjk

K

k
jk

n

j

K

k
ijkijk

n

j

K

k
jkjk

j

j

j



















 

 







In the above model, there are jK mutually

exclusive alternatives for each jkx . There are two

sets of constraints in this model; the first set of m
constraints is called the resource constraints,
and the second set of n constraints is called the
multiple-choice constraints. For the purpose of
describing algorithms we need to add a slack
variable to the left side of each resource
constraint. Therefore, we reformulate the
problem as follows:

jijk

K

k
jk

n

j

K

k
iijkijk

n

j

K

k
jkjk

Kksnjorx

njx

miBsxa

tosubject

xcMaximize

j

j

j

,,2,1 and 0, ,,,2,1 ,1 0

,,2,1 ,1

,,2,1 ,

:

,z

1

1 1

1 1























 

 

A basic application of the multiple-choice
knapsack models is the project selection problem

in which jkx represents the decision variable

taking the value of one if the
thk alternative of

project j is selected, and is zero otherwise. In

this mathematical model jkc is the return of

selecting the
thk alternative of project ,j ijka is

the consumption of the
thk alternative of project

j of resource i, and iB is the maximum

availability of resource i. The first alternative of
each project is do-nothing alternative, and

therefore 01 jc and it’s associated ,01 ija for

all values of i’s and j’s.

For the purpose of describing the developed

algorithm, we consider variable jX to represent

a vector with the elements jkx ’s, that is

),,,,(21 jjKjjj xxxX  and from now on we

call it “major variable”, for all the values of j‘s,
and we call its associated multiple-choice

alternatives, i.e. sx jk ' the “alternative” of the

variable jX , for all the values of k. Let us define

the vector),,,(21 jKjjj j
cccC  which is

denoted as returns and the vector

),,,(21 jijkijijij aaaA  which is denoted as the

consumption of the resources. Using these
notations, the mathematical model can be
converted to the following form:





n

j

T
jXCjzMax

1

 

Subject To:

),,2,1),2,1(

,,2,1
1

njKX

miXA

jj

n

j

T
jij










By this conversion all the multiple-choice
conditions are incorporated inherently in
definition of the major variable Xj and therefore
all the multiple-choice constraints are discarded.
This is the main benefit of the converted
mathematical model.

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

5

4. DEVELOPMENT OF THE DBB
ALGORITHMS

In this research, a depth-first B&B algorithm is
proposed. Three different branching mechanisms
for selecting the node with the most appropriate
decision variable are designed and incorporated
in the proposed algorithm for developing three
different B&B algorithms. The proposed
algorithms are named discriminatory B&B of
DBB1, DBB2, and DBB3. The core structure of
three algorithms is identical differing by the type
of the branching mechanism. All three algorithms
are based on the dual approach, starting with a
dual feasible solution but supper optimal with
respect to the main problem. The branching is
incorporated in each algorithm for intending
faster fathoming of the branches, and providing a
remarkable reduction in explicit enumeration of
the number of branches. Through the proposed
discriminatory branching, the majority of the
solution space is enumerated implicitly. Hence, in
the final analysis only a small portion of the
solution space needs to be enumerated explicitly
in order to obtain the optimal solution.

First, we present the core structure of DBBs
algorithms which is identical in all three variants
of the algorithm. For simplifying the further
discussion, we consider a slight modification of

the above mathematical model in which sc jk
'

are

lexicographically ordered. In terms of the
modified multiple-choice knapsack problem, the
core structure is implemented as follows.

Initially, assume that among all the alternatives of
each major variable, one with the largest value of

jkc is selected (i.e. nj
jjKx ,,2,11 ). By

implementing this assumption for all the major
variables, the algorithms start with a solution
having the maximum possible objective function
value. If the initial solution is a feasible solution

(i.e., all slack variables is are non-negative), it is

the optimal solution and no further investigation
is needed. However, this is a trivial case that
unlikely happens. Therefore, it will be necessary
to select one of the other alternatives of each
major variable to force the solution towards

feasibility, that is having 0is for all i. The

procedures call for the selection of one other
alternative of a major variable at a time, provided
there is evidence that this step will be moving the
solution towards feasibility. The DBBs

algorithms can be represented for data
manipulation in a very simple manner. To
accomplish this, the following definitions are
needed:

Definition 4.1. Free variables: At any node of the
branching tree, a major variable is called free if it
is not fixed by any branch leading to this node.
An alternative of a free variable with the largest

value of jkc is automatically considered to be

selected and its associated variable is assigned
the value of one. Therefore, at the final solution
the best alternative of each major variable which
does not appear in the partial solution is
automatically selected. The set of the free

variables at node t is designated by .
t
F

Definition 4.2. Partial solution: A partial solution
provides a specific binary assignment for one of
the alternatives of each major variable in the
sense that it fixes the value of an alternative of
each major variable at zero or one. A convenient
way to summarize the information for the
purpose of the algorithm is to express the partial

solution as an ordered set. Let
t

PS represents
the partial solution at the tth node and let the

notation)(kjX  represent ,1jkx and notation

)(kjX  represent .0jkx The set
t

PS must be

ordered in the sense that each new element is
always assigned on the right most of the
elements, ie. it appears as the last element in the
partial solution set.

The partial solution is used to define the nodes in
the B&B tree. The use of partial solutions
eliminates the need for recording generated
nodes of the B&B trees. This means that a partial
solution (nodes) can be generated successively
from a previous partial solution. As an example,
let us consider a partial solution at the k

th
iteration,

determined as)}.(),({ mlXjiX
k

PS  If any of

the algorithm selects alternative n from the major
variable Xs, then the next partial solution at k+1
iteration would be determined as

)}.(),(),({{
1

nsXmlXjiX
k

PS 


The detailed

procedures for generating successive partial
solutions are the key element of the DBB
algorithms which differentiate the three
algorithms. We first describe the main procedure,
core DBB algorithm, and later we will describe
discriminatory mechanism of each algorithms,
DBB1, DBB2, and DBB3.

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

6

4.1 The Core DBB Algorithm

To describe the general procedure for generating
the partial solution, the algorithm starts with an

empty partial solution ,
0

PS which means all

the major variables are free (with their associated

variables with the largest value of jkc that are

considered to be one), and therefore the value of
the objective function is calculated as

.
10 



n

j jjKcz If this solution is a feasible

solution the procedure is stopped, otherwise the
next partial solution is generated. The next partial
solution is generated by assigning the decision
variable corresponding to one of the other
alternatives of a major variable to the right of the
last element of the partial solution, with the value
of one. It is an essential matter to note that at
any node; the best alternative of all major
variables is presumably selected unless an
alternative of a major variable is appeared in the
partial solution with a positive sign, and hence
there would be no need for further branching of
the best alternatives for any major variables. The
procedure for generating the partial solutions will
continue until a branch is fathomed. The partial
solution is said to be fathomed if either it cannot
be lead to a better objective function value, or a
feasible solution is reached. A fathomed partial
solution means that it is not promising to further
branch its associated node, since all the
solutions that could be generated from the node
are either inferior or infeasible. After a branch is
fathomed the backtracking starts. We
incorporated a mechanism to ensure that all the
possible solutions are enumerated either
implicitly or explicitly. The general rule for
generating the next partial solution after a node
is fathomed is as follows. If all the elements of
the fathomed partial solution are negative, i.e. all
elements of the partial solution represent

)(kjX  for all values },,2,1{ jKk  and all

t
PSjX  or if the set of the free variables are

empty, the enumeration is completed and the
optimal solution is obtained. Otherwise, the
algorithm selects the right most positive element,
complemented with the selection of another
alternative and then it deletes all the negative
elements to its right. This elimination is a key
point for granting the optimality since by which
we ensure that all solution points have been
enumerated. After all the negative elements
adjacent to the right most positive element is

deleted or if all the corresponding alternatives of
the right most major variable have already been
in the partial solution we delete this major
variable, otherwise this major variable is kept in
the partial solution until all its alternatives are
fathomed. We can see the significance of the
negative element here. Since, the algorithm
always adds variables at level one, a negative
element means that a preceding partial solution
has been fathomed. Thus when all the elements
of a partial solution are negative, the associated
variables have been considered and as a result,
there are no more branches to consider and the
enumeration is completed. In order to increase
the efficiency of the proposed algorithm we
incorporate some tests for reducing the state
space solution, using the following propositions.

Proposition 4.1.1. Let ,1,1,2,  Kkforjkx  be

the all other alternatives of the major variable jX

(except jKx which is selected by defaults). The

current solution dominates all the alternatives
having less profit and consuming more resources.

Proof: Let the current objective function value be

lkc
t
z

t
z 




1
 selecting any decision variable

,,&1,2,1 ljKforjjkx   we have

.1
jklk

tt cczz  since .
1 t

z
t
zjkclkc 




and since ,&,2,1 ljKklkajka   the

solution won’t lead toward feasibility and
therefore the current solution dominates these
alternatives.

Based on the above discussion, we can
summarize the steps of the DBB algorithms,
which are identically employed in DBB1, DBB2
and DBB3 algorithms. For the simplicity of
describing the algorithms, assume that for each
major variable, the alternatives are sorted
according to the non-decreasing order of their
objective function coefficients. The steps of the
DBB algorithms are as follows:

4.1.1 Core DBB algorithm

Step 1. Let ,0t

)}1,2,1(,

),12,2,1(2),11,2,1(1{
0





nKnX

KXKXF





, (the best alternative (Kj) of all major

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

7

variables are implicitly selected and are
not considering for further selection at

any iteration), 
0

PS , ,
1

0




n

j jjKcz

let the initial lower bound denoted by z

be zero, ,0z and determine all si values.

Step 2. If this solution is a feasible solution, stop.

Step 3. Let ,1 tt if
t

F is empty stop;

otherwise select another alternative of a
free major variable by discriminatory

procedure and remove it from
t

F and
assigned on the right of the last element

of
t

PS . Then determine the value of z
t
. If

,z
t
z  go to Step 5, otherwise go to

Step 4.
Step 4. Calculate the values of si’s,. If all si’s are

nonnegative, let ,
t
zz  and go to Step 5,

otherwise go to Step 3.
Step 5. Change the sign of the last element of

the partial solution to a negative sign,
and go to Step 5.1.

Step 5.1. If its all associated alternatives

have the negative sign, delete this
major variable, and go to Step 3,
otherwise go to Step 5.2.

Step 5.2. Select another alternative of the
right most major variable by the
discriminatory procedure, and
perform the dominancy test. If it is
not dominated by the existing
partial solution alternative, remove

it from
t

F and assigned on the

right of the last element of ,
t

PS

otherwise select the other
alternative of this major variable by
discriminatory procedure which is
not dominated by the existing
alternative. Then let t = t +1 and
determine the values of z

t
. If

,z
t
z  go to Step 5, otherwise go

Step 4.

In the following sections, we describe the
discriminatory procedures of DBB1, DBB2 and
DBB3.

4.2 DBB1 Algorithm

In this algorithm, the selection of the next partial
solution is performed based on a concept similar

to the steepest accent gradient. The basic idea is
to select a decision variable which consumes
less of the average resources and provide a
better objective function value. Due to the
multiple resource constraints, we cannot simply
take the ratio of the objective function coefficient
by the constraint coefficient of each variable and
select the candidate variable with the largest
ratio. However, using the same concept a matrix
(G), is defined for selecting the next decision
variable. The elements of this matrix are
determined as:

Using this matrix, we initially flag the element of
the best alternative for each major variable. That
is, these alternatives are selected in the initial
step of the algorithm. Now if the algorithm calls
for substituting an alternative of any major
variable (Step 3), an element of G from the un-
flagged elements which has the maximum value
is selected. If on the other hand, algorithm calls
for substituting an alternative for a given major
variable (Step 5.2), we select an element of G
from its corresponding column excluding the
alternatives which are already flagged. Then the
selected element is flagged. Therefore, the value
of the available resources is decreased by the
amount of the consumptions of this variable and
is increased by the amount of the consumption of
the substituted alternative. For normalizing the
consumption of the resources, it is important to
perform the adjustment of the resources.
Therefore, after selection of a decision variable
the algorithm updates all the elements of the
gradient matrix. We assembled an algorithmic
procedure called DBB1 algorithm by
incorporating this discriminatory procedure.

4.3 DBB2 Algorithm

Consider node t with an infeasible solution. That
is; the left-hand side value of the resource

constraint i is
t
iA , where iA

t
iA  for at least one

of the i’s. The selection of the next major variable
and its associated alternative is the one with the
steepest decent projected vector for moving the
solution towards feasibility more rapidly, i.e.

forcing iA
t
iA 
1

for all the values of i in the

minimum number of iterations.

(1)

1

kjg ,








m

i iA

ijka

jkc
where

njK
kjgG

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

8

Definition 4.3.1. The steepest decent projection

vector: At any iteration if ,,,2,1 mAAA 

represent the amount of the right hand side of
the resource constraints 1,2,…,m, denoting by

the vector V1 and ,,,2,1
t
mA

t
A

t
A  represent the

amount of the left hand side of the resource
constraints 1,2,…,m at iteration t, (which is an

infeasible solution, iA
t
iA  for at least one of the

i’s) denoting by vector V2. Letting

),,,22,11(213
t
mAmA

t
AA

t
AAVVV   (2)

as the amount of the left hand side of the
resource constraints 1,2,…,m, at iteration t+1,

denoting by V4 then, by defining 5V as:

(3)),
1

,,2
1

2,1
1

1(.245
t
mA

t
mA

t
A

t
A

t
A

t
AVVV 








 

then the projection vector of V5 on V3 is
determined as




5*3

53*5*56
VV

VV
VCosVV


















5*3

)
1

)((

)2
1

2)(22()1
1

1)(11(

*5
VV

t
mA

t
mA

t
mAmA

t
A

t
A

t
AA

t
A

t
A

t
AA

V


Considering a problem with two resource
constraints, by letting the vertical and the
horizontal axes representing the first and second
resource consumptions, the vectors are
presented in Fig. (1).

Proposition 4.3.1. For selecting the next

alternative of the major variable jX (i.e. jkx),

the alternative with the largest vector projected
which is connecting the point in a m Euclidian
space representing the resources consumption
of the current solution to the point representing
the available resources provides a solution with
lowest infeasibility.

Proof: Let iV6 and kV6 denote the projected

vector of the alternative i and k of the major
variable

jX
respectively. Let, i

VV
i

d 636  and

k
VV

k
d 636  denote the amount of infeasibility

of selecting alternative and k an alternative of the

major variable .jX If
i

V
k

V 66  then ,66
i
d

k
d  if

one select the alternative k. it provides a solution
more forward to the feasibility.

Using this formula (4), depending on what the
algorithm is called, it either calculates the
steepest decent projected vector, for all the
unselected alternatives of all free variables (Step
3). or all unselected alternatives of a given major
variable (Step 5.2), and /or chooses the vector
with the maximum length. This vector
corresponds to a decision variable which will be
added to the partial solution. In DBB2 procedure,
the updating routine for calculating the length of
the steepest decent projected vector is
incorporated. By integrating the DBB2
discriminatory procedure using the core structure
of the DBB, the DBB2 algorithm is assembled.

4.4 DBB3 algorithm

The selection mechanism employed for
developing DBB1is considered as a mechanism
which is based on the optimality concept. On the
other hand, DBB2 utilizes the concept of
feasibility as the selection mechanism. In DBB
both optimality and feasibility concepts are
concurrently employed. Considering that
alternatives of each major variable are sorted
according to the non-decreasing order, we have
n project and K alternatives (or more generally

jK alternatives for project j), we can construct a

matrix called D, having n columns and 2
nC rows,

as follows:























































 1,1,1,11

22121

23231213

11111

14141114

13131113

12121112

KnnKKjjKKK

nnKjjKK

nnjj

nnKjjKK

nnjj

nnjj

nnjj

ij

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

dD





















In this matrix columns represent the major
variables and rows represent the rate of change
of the objective function values. The following
proposition reveals the appropriateness of the
selection mechanism of the DBB3 algorithm.

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

9

Fig. 1. Graphical illustration of the projected vector

Proposition 4.4.1. For selecting the next

alternative of the major variable jX (i.e. jkx),

with smallest value 6
/


Vjkd constitutes a

solution with sharpest towards feasibility and with
less amount of penalizing the objective function.

Proof: Let
tz be the value of objective function at

iteration t. By proposition 4.3.1 we showed the
selection of a variable with the largest value of

the projected vector, ,6V moves the current

solution toward feasibility be the largest amount.

Now let
1t

z be the value of the objective function
at iteration t+1, by selecting the alternative of k of

the major variable ,jX through the above-

mentioned selection mechanism, i.e.

 cjicjkcjlc all values of i’s. The

objective function value becomes

,
1

jkcjic
t
zjkcjlc

t
z

t
z 


therefore

selecting the kth alternative have a better
objective function value.

Proposition 4.4.2. For selecting the best
alternative a free variable the smallest value

6
/


Vlkd constitutes a solution with sharpest

towards feasibility and with less amount of
penalizing the objective function.

Proof: Let
tz be the value of objective function at

iteration t. By proposition 4.3.1 we showed the
selection of an alternative of a free variable with

the largest value of the projected vector, ,6V

moves the current solution toward feasibility be

the largest amount. Now let
1tz be the value of

the objective function at iteration t+1, by
selecting the best alternative of the major

variable ,lX
through the above-mentioned

selection mechanism, i.e.  lkcljcliclkc

all values of i’s. The objective function value

becomes ,
1

jkcjic
t
zjkclic

t
z

t
z 


therefore selecting the kth alternative have a
better objective function value.

Since, in the backtracking procedure of the DBB
algorithms we have substituted an n alternative
of a major variable with another alternative of the
same major variable, for pushing the solution
towards feasibility, the value of the objective
function is decreased by the difference of the
objective function coefficients of these two
alternatives. It is to be noted that the row’s
elements of this matrix indicates the rate of
change of the objective function value when an
alternative is substituted by another alternative.

Moreover, the fact that that length of vector 6V

indicates the rate of change in the right hand
sides towards feasibility when an alternative is

substituted by another alternative, the ratio of ijd

to its corresponding 6V , i.e. 6
/


Vijd

measures the amount of penalizing the objective
function value and rewarding the feasibility of the
solution. The smaller value of this ratio indicates
the lower penalty we pay and larger reward we

V6

A1
t+1

A1
t

A2
t+1

A1

A2
t A2

Resource 1

Resource 2

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

10

acquire. Therefore, depending on what the
algorithm is called, it may either selects an
unselected alternative from the set free variables
(Step 3) or an unselected alternative of a given
major variable (Step 5.3). In the first case, it
calculates this ratio for all the free variables, and
in the second case it only needs to calculate this
ratio for all the elements of one column of matrix
D. In either case it selects the variable and its
alternative corresponding to minimum ratio, for
the further branching. DBB3 algorithm is
constructed by integrating the DBB3
discriminatory procedure with the core structure
of the DBB algorithm.

5. COMPUTATIONAL EXPERIMENTS

In this section, we report the computational
experiments of three variants of the DBB
algorithm. The three variants of the DBB
algorithm are implemented in C++ on a personal
computer. Performance measures for three
algorithms include the average number of nodes,
which are enumerated, and the average
computational time in CPU seconds. As a bench
mark, we also determined the same performance
measures by a traditional B&B algorithm. We
refer to a traditional B&B algorithm as an
algorithm in which the nodes for further
branching are selected based on best dept
mechanism. We then compared the DBB’s
performance measures with the traditional B&B
to evaluate the computational efficiency of each
algorithm.

We employed the pseudo random number
generation for constructing the test problems. For
each subgroup of test problems with the size of n
projects, each having Kj alternatives, with m
resource constraints, we generated 10 test
problems and calculated the average of the
performance measures for each subgroup. The
parameters of the problems were generated
using the uniform density function. Specifically,

the values of sasc ijkjk ' and ,' were generated

using the following functions:

.20.0*()1.0 and],19*()[integer1 randarandc ijkjk 

The value of the right hand side of each
resource constraint is calculated by the following
function:





n

j
ijk

k
i CTFaA

1

*}){max(

Where CTF (Constraints Toughness Factor) is
defined to implement the scarceness of the
available resources. We let the value of CTF
varies from 0.50 to 0.80.

We employed DBB1, DBB2 and DBB3, and the
traditional B&B algorithms for solving the
generated test problems in each subgroup with
different CTF values. Then we calculated the
average number of the nodes which were
enumerated by each algorithm.

Table (1) reports the computation results of the
three algorithms for solving generated problems
in the subgroup of 5 projects, each with 4
alternatives and with 3 resource constraints for
different values of the CTF. Similarly, Tables 2
through 4 reports the similar results for problems
in the subgroups of 10, 15, and 20 projects,
respectively. Table (5) reports the relative
performance of the three algorithms comparing
with the traditional B&B. For each subgroup with
a given value of the CTF, we took the ratio of the
number of nodes enumerated by each algorithm
to the number of nodes enumerated by traditional
B&B.

Figs. 1 through 4 illustrate the effect of different
CTF values on the number of nodes enumerated
by each of the DBB algorithm, for problems in the
subgroups of 10, 15, and 20 projects,
respectively. Figure 5 demonstrates the
performance of the developed algorithms
comparing with the traditional B&B with respect
to the variation of the number of decision
variables. The performance of each of the
developed algorithm is measured by the

formulae
c

D

NON

NON
P 1 in which P is the

performance of the developed algorithm, NOND
is the average number of nodes enumerated by
individual developed algorithm, and NONC is the
average number of the nodes enumerated by the
traditional B&B, averaged over the number of
nodes enumerated using different CTF values.
Fig. 6 illustrates the computational efficiency of
the developed algorithm compared to the
traditional B&B with respect to the variation of the
number of decision variables. The computational
efficiency of each of the developed algorithm is

simply measured by formulae .100
c

D

NON

NON
E

As it is seen the computational efficiency of DBB
increases as the number of decision variables
increases.

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

11

Table 1. Performance measures for the problem size of n = 5, Kj = 4, m = 3

CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm

Average
no. of nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU sec.

0.80 10 0.00 11 0.00 16 0.00 12 0.00
0.75 41 0.00 33 0.00 40 0.00 36 0.00
0.70 114 0.00 62 0.00 64 0.00 70 0.00
0.65 139 0.00 65 0.00 72 0.00 68 0.00
0.60 229 0.00 83 0.00 72 0.00 92 0.00
0.55 434 0.00 90 0.00 91 0.00 115 0.00
0.50 586 0.00 111 0.00 110 0.00 116 0.00
Average 222 0.00 65 0.00 66 0.00 73 0.00

Table 2. Performance measures for the problem size of n = 10, Kj = 4, m = 3.

CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm

Average
no. of
nodes

Average
CPU
sec.

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU
sec.

Average
no. of
nodes

Average
CPU sec.

0.80 1 0.00 1 0.00 1 0.00 1 0.00
0.75 224 0.00 72 0.00 51 0.00 107 0.00
0.70 923 0.00 223 0.00 174 0.00 370 0.01
0.65 4,401 0.01 697 0.01 391 0.01 955 0.03
0.60 11,986 0.02 1,649 0.02 964 0.02 1,959 0.07
0.55 36,909 0.08 3,584 0.04 2,583 0.06 3,713 0.14
0.50 119,989 0.28 8,688 0.10 6,541 0.18 8,413 0.31
Average 24,919 0.06 2,131 0.02 1,529 0.04 2,217 0.08

Table (3) Performance measures for the problem size of n = 15, Kj = 4, m = 3.

CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm

Average
no. of
nodes

Average
CPU
sec.

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU
sec.

0.80 1 0.00 1 0.00 1 0.00 1 0.00
0.75 220 0.00 209 0.01 185 0.00 115 0.00
0.70 4,676 0.01 1,868 0.03 1,108 0.03 1,339 0.06
0.65 61,863 0.21 9,966 0.19 5,016 0.16 7,986 0.39
0.60 509,680 1.58 65,330 0.97 23,473 0.78 35,814 1.80
0.55 3,536,919 10.13 297,939 4.61 107,999 3.84 136,237 7.49
0.50 22,170,047 69.52 910,408 15.61 354,545 13.94 423,850 15.24
Average 3,754,773 11.64 183,674 3.06 70,332 2.68 86,477 3.57

Table 4. Performance measures for the problem size of n = 20, Kj = 4, m = 3.

CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU sec.

Average
no. of
nodes

Average
CPU sec.

0.80 1 0.00 1 0.00 1 0.00 1 0.00
0.75 1 0.00 1 0.00 1 0.00 1 0.00
0.70 140 0.00 140 0.00 152 0.01 105 0.01
0.65 11,092 0.05 2,064 0.04 1,627 0.06 4,204 0.12
0.60 440,698 2.79 33,290 0.63 11,853 0.56 61,148 1.29
0.55 9,873,763 36.70 504,597 7.59 150,001 2.53 466,697 10.53
0.50 215,490,347 808.80 5,529,618 89.92 1,353,250 62.15 3,580,100 107.84
Average 32,259,434 121.05 867,102 14.02 216,698 9.33 587,465 17.11

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

12

Table 5. Ratio of the nodes enumerated by DBBs with respect to the classical B & B

CTF N =5, Kj = 4, m=3 N =10, Kj = 4, m=3 N =15, Kj = 4, m=3 N =20, Kj = 4, m=3

DBB1 DBB2 DBB3 DBB1 DBB2 DBB3 DBB1 DBB2 DBB3 DBB1 DBB2 DBB3
0.80 112.24 159.18 120.41 100.00 100 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.75 79.51 96.59 87.32 32.29 22.57 47.73 95.10 83.83 52.13 100.00 100.00 100.00
0.70 54.48 56.06 61.16 24.15 18.88 40.15 39.94 23.69 28.64 100.00 108.56 74.61
0.65 46.34 51.36 49.07 15.84 8.89 21.71 16.11 8.11 12.91 18.60 14.67 37.90
0.60 36.16 31.53 40.26 13.76 8.04 16.34 12.82 4.61 7.03 7.55 2.69 13.88
0.55 20.84 21.07 26.51 9.71 7.00 10.06 8.42 3.05 3.85 5.11 1.52 4.73
0.50 18.98 18.78 19.87 7.24 5.45 7.01 4.11 1.60 1.91 2.57 0.63 1.66
Average 29.28 29.90 32.80 8.55 6.14 8.90 4.89 1.87 2.30 2.69 0.67 1.82

Fig. 1. Effect of CTF on the number of nodes for n=5, K=4, m=3 problems

0

20

40

60

80

100

120

140

0.8 0.75 0.7 0.65 0.6 0.55 0.5

TF Values

N
u

m
b

e
r

o
f

th
e

 e
n

u
m

e
ra

te
d

 n
o

d
s

DBB1 Algorithm

DBB2 Algorithm

DBB3 Algorithm

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

13

Fig. 2. Effect of CTF on the number of nodes for n=10, K=4, m=3 problems

Fig. 3. Effect of CTF on the number of nodes for n=15, K=4, m=3 problems

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0.8 0.75 0.7 0.65 0.6 0.55 0.5

TF Values

N
u

m
b

e
r

o
f

th
e
 e

n
u

m
e
ra

te
d

 n
o

d
s

DBB1 Algorithm

DBB2 Algorithm

DBB3 Algoithem

-

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0.8 0.75 0.7 0.65 0.6 0.55 0.5

TF Values

N
u

m
b

e
r

o
f

th
e

 e
n

u
m

e
ra

te
d

 n
o

d
s

DBB1 Algorithm

DBB2 Algorithm

DBB3 Algorithm

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

14

Fig. 4. Effect of CTF on the number of nodes for n=20, K=4, m=3 problems

Fig. 5. Performance of the developed algorithms comparing with the traditional B&B

-

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

0.8 0.75 0.7 0.65 0.6 0.55 0.5

TF Values

N
u

m
b

e
r

o
f

th
e
 e

n
u

m
e
ra

te
d

 n
o

d
s

DBB1 Algorithm

DBB2 Algorithm

DBB3 Algorithm

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0 10 20 30 40 50 60 70 80 90

Number of 0-1 variables

P
e

rc
e
n

ta
g

e
 o

f
e

n
u

m
e

ra
ti

o
n

 p
e

rf
o

rm
a

n
c

e

DBB1 Algorithm

DBB2 Algorithm

DBB3 Algorithm

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

15

Fig. 6. Percentage of the nodes enumerated by the developed algorithms comparing with the

traditional B&B

6. CONCLUSIONS AND REMARKS

In this paper, we presented a first depth dual
approach B&B for solving the general form of
MMKP. The approach is called the discriminatory
B&B due to the selection of a node for further
branching based on a discriminatory criterion.
Three selecting mechanisms are developed for
obtaining the optimal solution of MMKPs. To
enhance the computational efficiency of B&B, the
discriminatory mechanisms are incorporated in
the proposed algorithmic procedure to develop
three exact solution algorithms. An extensive
computational experiment was performed to
evaluate the effects of the discriminatory
selection of the variables for reducing the implicit
enumerations. The results revealed that all the
variants of the variable selection lead to a
considerable reduction of the nodes to be
enumerated for obtaining the optimal solution of
MMKPs. Referring to Table 5 it can be seen that
for the problems with the size of 100 zero-one
decision variables, the developed algorithms
enumerated a small portion of the nodes
comparing to the traditional B&B. More
specifically, DBB1 enumerated only 2.69 percent,
DBB2 enumerated only 0.67 percent and DBB3
enumerated only 1.82 percent of the total nodes
enumerated by the traditional B&B procedure.

The main contributions of this paper are two folds.
First, a special algorithmic procedure based on
dual approach first-depth B&B algorithm is
proposed. In this algorithm by setting all the
major variables equal to their highest return
values the enumeration of this variable is
conducted explicitly without any further
computational effort. Then by performing a
successively systematic procedure, it assigns the
lower return value to the selected variables in
such a way that after trying a small part of all the
possible combinations, one obtains either an
optimal solution, or evidence of the fact that no
feasible solution exists. Also, a smart mechanism
is incorporated for ensuring the total enumeration
has been performed for all possible combinations,
before the termination step of the algorithm.

The second contribution is development of three
selecting mechanisms. The first mechanism is
based on the steepest accent gradient by which
the variable consuming less of the average
resources and provide a better objective function
value. The second mechanism is based on the
steepest decent projected vector by which it is
ensured that the variables are selected based on
the most promising objective function value with
lowest infeasibility. Finally, by the third
mechanism a variable with sharpest vector

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 10 20 30 40 50 60 70 80 90

Number of the 0-1 variables

P
e

rc
e

n
ta

g
e

 o
f

th
e
 e

n
u

m
e

ra
te

d
 n

o
d

e
s

DBB1 Algorithm

DBB2 Algorithm

DBB3 Algorithm

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

16

towards feasibility and with less amount of
penalizing the objective function is selected.

Reduction of the solution space and
consequently enumeration of the smaller number
of nodes in B&B approach has been a
challenging effort in solving knapsack problems.
Respectfully, in this paper three mechanisms are
proposed. Proposing another type of selection
mechanism or combining the proposed
mechanisms in a single algorithm can be an
interesting research to be further explored.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Kellerer H, Pferschy U, Pisinger D.
Introduction to NP-Completeness of
Knapsack Problems. Springer, Berlin,
Heidelberg; 2004.

2. Chen y, Hao CJ. A “reduce and solve”
approach for the multiple-choice
multidimensional knapsack problem.
European Journal of Operational Research.
2014;239(2):313-322.

3. Lin EYH. A bibliographical survey on some
well-known non-standard knapsack
problems. INFOR, Information Systems
and Operational Research.1998;36(4):274-
317.

4. Lancaster LM. The history of the
application of mathematical programming
to menu planning. European Journal
of Operational Research. 1992;57:339-
347.

5. Petersen CC. Computational experience
with variants of the Balas algorithm applied
to the selection of R & D projects.
Management Science. 1967;13:736-750.

6. Akpan NP, Etuk EH, Essi ID. A
deterministic approach to a capital
budgeting problem. American Journal
Scientific Industrial Research. 2011;2(3):
456-460.

7. Li Y, Tang X, Cai W. Dynamic bin packing
for on-demand cloud resource allocation.
IEEE Transactions on Parallel and
Distributed Systems. 2016;27(1):1-14.

8. Ibrahim M. A novel approach to fully
private and secure auction: a sealed-bid
knapsack auction. International Journal of

Research and Reviews in Applied Science.
2011;9(2):260-269.

9. Balas E. An additive algorithm for solving
linear programs with zero–one variables.
Operations Research. 1965;13:517–546.

10. Glover F. A multiphase-dual algorithm for
the zero-one integer programming problem.
Operation Research. 1965;13:879–919.

11. Greenberg H, Pierskalla W. Surrogate
mathematical programs. Operations
Research. 1970;18:924-939.

12. Golver F. Surrogate constraints duality in
mathematical programming. Operations
Research. 1975;23:434-451.

13. Ghassemi Tari F. A multiple-choice
knapsack for rehabilitation and
maintenance of Texas highway. A
Dissertation in Partial Fulfillment of the
degree of Doctor of Philosophy, Depart-
ment of Industrial Engineering, Texas A &
M University; 1980.

14. Phillips DT, Shanmugham CV, Ghassemi
Tari F, Lytton RL. Rehabilitation and
maintenance system state optimal fund
allocation. Research Report 239-2, Texas
Transportation Institute, Texas A & M
University, USA; 1981.

15. Boyer V, Baz DE, Elkihed M. Solution of
multidimensional knapsack problems via
cooperation of dynamic programming and
branch and bound. European J. of
Industrial Engineering. 2010;4(4):434-449.

16. Ghassemi Tari F. A hybrid dynamic
programming for solving fixed cost
transportation with discounted mechanism.
Journal of Optimization. 2016;9.

17. Freville A. The multidimensional 0–1
knapsack problem: An overview. European
Journal of Operations Research. 2004;
155(1):1-21.

18. Shih W. A branch and bound method for
the multiconstraint zero-one knapsack
problem. Journal of the Operational
Research Society. 1979;30:369–378.

19. Gavish B, Pirkul H. Efficient algorithms for
solving multiconstraint zero-one knapsack
problems to optimality. Mathematical
Programming. 1985;31:78–105.

20. Jahangiri E, Ghassemi Tari F. A dynamic
programming approach for solving
nonlinear knapsack problems. Journal of
Industrial Engineering International. 2006;
2(1):31-37.

21. Ghassemi Tari F, Jahangiri E.
Development of a hybrid dynamic

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

17

programming approach for solving discrete
nonlinear knapsack problems. Applied
Mathematics and Computation. 2007;
188(1):1023-1030.

22. Dyer ME, Riha WO, Walker J. A hybrid
dynamic programming branch-and-bound
algorithm for the multiple-choice knapsack
problem. Journal of Computational and
Applied Mathematics. 1995;58(1):43-54.

23. Bao JH, Yang QG. Fast solution algorithm
of multiple-choice knapsack problem.
Journal of South China University of
Technology. 2009;37(4):42-45.

24. Han B, Leblet J, Simon G. Hard
multidimensional multiple choice knapsack
problems, an empirical study. Computers
& Operations Research. 2010;37(1):172-
181.

25. Fomeni FD, Letchford AN. A dynamic
programming heuristic for the quadratic
knapsack problem. INFORMS Journal on
Computing. 2014;26(1):173-182.

26. Chebil K, Khemakhem M. A dynamic
programming algorithm for the Knapsack
Problem with Setup. Computers and
Operations Research. 2015;64(C):40-50.

27. He YC, Wang XZ, He YL, Zhao SL, Li WB.
Exact and approximate algorithms for
discounted {0-1} knapsack problem.
Information Sciences. 2016;369:634–647.

28. Della Croce F, Pferschy U, Scatamacchia
R. Dynamic programming algorithms,
efficient solution of the LP-relaxation and
approximation schemes for the penalized
knapsack problem, Tech. Report 2017-03-
5880, Optimization Online; 2017.

29. Pferschy U, Scatamacchia R. Improved
dynamic programming and approximation
results for the knapsack problem with
setups. International Transactions in
Operational Research. 2018;25(2):667–
682.

30. Vercellis C. Constrained multi-project
planning’s problems: A Lagrangean
decomposition approach. European
Journal of Operational Research.1994;
78(2):267-275.

31. Pisinger D. Budgeting with bounded
multiple-choice constraints. European
Journal of Operational Research. 1995;
129(3):471-480.

32. Pisinger D. A minimal algorithm for
the multiple-choice knapsack problem.
European Journal of Operational Research.
2002;83(2):394-410.

33. Cherfi N, Hifi M. Hybrid algorithms for the
multiple-choice multi-dimensional
knapsack problem. Int. J. Operational
Research. 2009;5(1):89-109.

34. Cherfi N, Hifi M. A column generation
method for the multiple-choice multi-
dimensional knapsack problem. Comput.
Optim. Appl. 2010;46(1):51–73.

35. Lin EYH, Bricker DL. Computational
comparison on the partitioning strategies in
multiple choice integer programming.
European Journal of Operational Research.
1996;88(1):182-202.

36. Sung CS, Cho YK. Reliability optimization
of a series system with multiple-choice and
budget constraints. European Journal of
Operational Research. 2000;127(1):159-
171.

37. Kozanidis G, Melachrinoudis E. A branch &
bound algorithm for the 0-1 mixed integer
knapsack problem with linear multiple
choice constraints. Computers &
Operations Research. 2004;31(5):695-711.

38. Ohtagaki H, Iwasaki A, Nakagawa Y,
Narihisa H. Smart greedy procedure for
solving a multidimensional nonlinear
knapsack class of reliability optimization
problems. Mathematical and Computer
Modeling. 2000;31:283-288.

39. Hifi M, Sadfi S, Sbihi A. An exact algorithm
for the multiple-choice multidimensional
knapsack problem. Cahiers de la Maison
des Sciences Economiques. b04024,
Université Panthéon-Sorbonne (Paris 1).
2004;1-16.

40. Sbihi A. A best first search exact algorithm
for the multiple-choice multidimensional
knapsack problem. J. Combinatorial
Optimization. 2007;(4):337–351.

41. Razzazi MR, Ghasemi T. An exact
algorithm for the multiple-choice
multidimensional knapsack based on the
core. In: Sarbazi-Azad H, Parhami B,
Miremadi SG, Hessabi S. (eds) Advances
in Computer Science and Engineering.
Communications in Computer and
Information Science, Springer, Berlin,
Heidelberg. 2008;6.

42. Quan N, Kim H. A tight upper bound for
quadratic knapsack problems in grid-based
wind farm layout optimization. 2018;50(3):
376-381.

43. Nirmala MP, Parvathi MS. MMKP B&B
based Heterogeneous handover for the
next generation network’s. International

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

18

Journal of Engineering Research &
Management Technology. 2015;2(3):20-30.

44. Gokce EI, Wilhelm WE. Valid inequalities
for the multi-dimensional multiple-choice 0-
1 knapsack problem. Discrete Optimization.
2015;17(C):25-54.

45. Goyal S, Parashar A. A proposed solution
to knapsack problem using branch &
bound technique. International J. for
Innovation Research Multidisciplinary Field.
2016;2(7):240-246.

46. Bettinelli A, Cacchiani V, Malaguti E. A
branch-and-bound algorithm for the
knapsack problem with conflict graph.
INFORMS Journal on Computing. 2017;
29(3):457-473.

47. Wang F. A new exact algorithm for
concave knapsack problems with integer
variables. International Journal of
Computer Mathematics. 2018:1-19.

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

19

APPENDIX A

Example: consider the following multiple-choice knapsack problem:











































































)43

42

41

33

32

31

24

)23

22

21

13

12

11

)25,.14,.0()23,.11,.0()24,.16,.12,.0()21,.13,.0(.

x

x

x

x

x

x

x

x

x

x

x

x

x

zMax

23)7,3,0()7,2,0()9,4,3,0()7,4,0(

13

12

11

33

32

31

24

23

22

21

13

12

11










































































x

x

x

x

x

x

x

x

x

x

x

x

x

25)7,4,0()7,6,0()8,5,4,0()8,3,0(

13

12

11

33

32

31

24

23

22

21

13

12

11










































































x

x

x

x

x

x

x

x

x

x

x

x

x

The equivalent mathematical form is as follow:

TTTT XXXXzMax 4321)25,.14,.0()23,.11,.0()24,.16,.12,.0()21,.13,.0(. 

25)7,4,0()7,6,0()8,5,4,0()8,3,0(

23)7,3,0()7,2,0()9,4,3,0()7,4,0(

4321

4321





TTTT

TTTT

XXXX

XXXX

).3,2,1(),3,2,1(),4,3,2,1(),3,2,1(4321  XXXX

Solution: We first determine the initial G matrix of DBB1 procedure as follows:

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

20



























34.

43.42.43.34.

48.30.41.44.

0000

G

The steps of the DBB1 algorithm are summarized in the following table:

t Set of the partial solution tSP),(21

tt ss
tz z Set of the free variables

tF Note

0  (-7,-5) .93 0)}2,1(),2,1(),3,2,1(),2,1({ 4321 XXXX

1)}2({ 4X (-1,-1) .82 0)}1(),2,1(),3,2,1(),2,1({ 4321 XXXX

2)}2(),2({ 14 XX (0,3) .74 .74)}1(),2,1(),3,2,1(),1({ 4321 XXXX Fathomed by feasibility

3)}2(),2({ 14 XX (-1,-1) .82 .74)}1(),2,1(),3,2,1(),1({ 4321 XXXX

4)}1,2(),2({ 14 XX (4,6) .61 .74 Fathomed by lower bound

5 (-1,-1) .82 .74

6 (2,1) .74 .74 Fathomed by feasibility

7 (-1,-1) .82 .74

8 (2,-1) .70 .74 Fathomed by lower bound

9 (-1,-1) .82 .74

 (2,3) .58 .74

10)}2(),1,2,3(),1,2(),2({ 3214 XXXX  (2,-1) .70 .74)}1(),1({ 43 XX Fathomed by lower bound

11)}2(),2,3(),1,2(),2({ 3214  XXXX (-1,-1) .82 .74)}1(),1({ 43 XX

12)}1,2(),2,3(),1,2(),2({ 3214  XXXX (4,5) .59 .74)}1({ 4X Fathomed by upper bound

13)}1,2(),2,3(),1,2(),2({ 3214  XXXX (-1,-1) .82 .74)}1({ 4X

14)}2({ 4 X Since all the elements in the set of partial solution are
negative the algorithm is terminated

Since all the elements in the set of partial solution are negative the algorithm is terminated. The optimal solution is obtained from the partial solution which
has the updated lower bound. The updated upper bound is achieved in step t = 6 with the following optimal solution:

)}1(),2,1(),3,2,1({ 432 XXX

)}1,2(),2({ 14 XX)}1(),2,1(),3,2,1({ 432 XXX

)}3(),1,2(),2({ 214 XXX )}1(),2,1(),2,1({ 432 XXX

)}3(),1,2(),2({ 214  XXX)}1(),2,1(),2,1({ 432 XXX

)}2,3(),1,2(),2({ 214  XXX)}1(),2,1(),1({ 432 XXX

)}2,3(),1,2(),2({ 214  XXX)}1(),2,1(),1({ 432 XXX

)}1,2,3(),1,2(),2({ 214  XXX)}1(),2,1({ 43 XX

Ghassemi-Tari et al.; CJAST, 26(5): 1-21, 2018; Article no.CJAST.40420

21

The optimal partial solution:)},3(),1,2(),2({ 214 XXX  z*=0.74.

The optimal values of the original variables are: ,0 and ,1,1 ,1,1 and ,74.0 **
33

*
13

*
23

*
42

*  ijxxxxxz for all the otheri’s and j’s.

It is to be noted that in this example an alternative optimal solution can also recognized in Step2 as follow:

The optimal partial solution:)}2(),2({ 14 XX z*=0.74.

The optimal values of the original variables are: ,0 and ,1,1 and ,74.0 **
12

*
42

*  ijxxxz for all the other i’s and j’s.

© 2018 Ghasemi-Tari et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history/24014

