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ABSTRACT 
 
We propose a first depth dual approach branch and bound (B&B) routine for solving the general 
form of multi-dimensional multiple-choice knapsack problems (MMKPs).We call this approach a 
discriminatory branch and bound method. This name is chosen due to the selection of a node for 
further branching based on a discriminatory criterion. Three selection mechanisms are developed 
and are incorporated in an algorithmic procedure to develop three algorithms. An extensive 
computational experiment is performed, to compare the number of nodes enumerated by the 
proposed algorithms against the traditional B&B. The results revealed that all the proposed 
algorithms lead to a considerable node enumeration reduction. 
 

 
Keywords: Multiple-dimensional multiple-choice knapsack; Branch and bound; Exact solution 

approach; Selective branching mechanisms. 
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1. INTRODUCTION 
 
The basic 0-1 knapsack problem takes into 
account a number of objects, each with a profit 
value and a resource cost designated by the 
weight. The objective is to place a set of objects 
in a knapsack so that the total value of packed 
items, subject to the resource capacity of the 
knapsack is maximized. The multiple-choice 
knapsack problem (MCKP) is a generalization of 
the ordinary knapsack problem in which, the set 
of items is partitioned into classes. The binary 
choice of taking an item is replaced by the 
selection of exactly one item out of each class of 
items. Ultimately, another variant of the problem 
is defined as the multidimensional multiple-
choice knapsack problem (MMKP) where a multi-
dimensional resource cost is considered. This is 
a well-known NP-hard combinatorial optimization 
problem with a vast number of applications [1,2]. 
Many practical and real-life problems are 
modeled as the MMKP. The most typical 
application of MMKP is on portfolio optimization, 
where two or more resource constraints such as; 
total budget, cumulative risk or other restraints 
need to be satisfied [3]. Other applications of 
MMKP have been reported in solving the 
problems such as Stigler diet [4], the cargo 
loading [5] the capital budgeting [6] the bin 
packing [7] the bidding in ad auctions [8] and 
many other problems.  
 
Solving the large-size MMKPs optimality, by B&B 
algorithms, is a CPU time intensive. Although 
B&B allows considerable reduction in solution 
space, the exploration time using a bounding 
mechanism remains significant. Therefore, the 
use of solution space reduction to speed up the 
execution time has become a significant 
resolution. B&B algorithms are characterized by 
four basic operations known as, branching, 
bounding, selection and elimination. In order to 
reach higher computational performance, we 
have focused on some characteristics of MMKP 
for the reduction of the solution spaces.  
 
In this paper, we have proposed three branching 
mechanisms to enhance the computational 
efficiency of the B&B algorithm for solving 
MMKPs. These mechanisms can be applied to 
the general form of MMKPs. An algorithmic 
procedure, based on the B&B with three different 
selective branching mechanisms is proposed for 
the reduction of the solution space of MMKPs. 
The proposed algorithm is called “discriminatory 
Branch and bound” (DBB)) due to the fact that a 
selection mechanism is employed for the 

branching procedure of the traditional B&B. 
Through this mechanism, a vast number of the 
solution space is enumerated implicitly, which 
extensively reduces the explicit enumeration of 
nodes, compared to the traditional B&B.  
 
After the introduction (Section 1) we present the 
state of art of the problem by reviewing the 
existing literatures (Section 2).  In Section 3 the 
scope of the problem including the mathematical 
model of the MMKP is presented. Section 4 is 
devoted to the illustration of three different 
variants of the proposed B&B algorithm. The 
computational experiments, through which the 
solution space reduction of the proposed 
algorithms is evaluated, will be presented in 
Section 5. Finally, the paper is concluded in 
Section 6.  
 

2. LITERATURE REVIEW 
 
Exact solution approaches for the MMKP evolved 
during many decades and encompassed the 
Lagrangian and surrogate relaxation technique. 
Special enumeration techniques and reduction 
schemes such as dynamic programming, and 
B&B methods are studied. Many early research 
attempts in the general field of zero-one 
mathematical programs and specifically the 
knapsack problems have provided some 
framework for the computational burden of the 
MMKPs. Among these early attempts is work of 
Balas [9] who proposed a B&B algorithm for 
solving a mathematical program with zero-one 
variables. Two classes of the exact solution 
approaches are mostly devoted to the reduction 
of the solution spaces through the subrogate 
constraint and Lagrangian relaxation 
mechanisms. Both surrogate constraint and 
Lagrangian relaxation mechanism are engaged 
for converting the multidimensional knapsack to 
a one-dimensional knapsack problem. The 
surrogate approach is first presented by Glover 
[10] by substituting the original constraints by 
one surrogate constraint. Greenberg and 
Pierskalla [11] speculated the first principal 
handling of surrogate constraints in the setting of 
general mathematical programs. This study is 
then thrived by the works conducted in [12-16].  
 
Freville [17] argued that although further effort is 
needed to compute the bounds, the methods of 
surrogate relaxation are more beneficial in 
resolving the MMKP than the methods which use 
the Lagrangian relaxation. Shih [18] presented a 
B&B algorithm by use of the particular MMKP 
structure and found a top bound through 
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resolving m- single-constrained knapsack 
problems instead of an m-constrained problem. 
Gavish and Pirkul [19] reached to the conclusion 
that the major deficiencies of Shih’s method 
included its extreme space requirements as well 
as its inability to resolve problems of tight 
resource restraints.  
 
Another powerful approach for solving MMKP is 
dynamic programming (DP) techniques. A hybrid 
algorithm by integration of the DP procedure, 
surrogate constraints routine, and several other 
bounding schemes for reducing the state space 
solution has been presented in [20-21].  Dyer et 
al. [22] proposed a hybrid dynamic algorithm for 
the MMKP. Bao and Yang [23] presented a 
solution algorithm based on DP for the solution of 
the MMKP. Also, various other DP approach for 
solving the MMKP are given in [24-29].  
 
Lagrangian duality is incorporated in a 
computationally efficient manner to compute tight 
bounds on every active node of the search tree. 
Vercellis [30] presented a Lagrangian 
decomposition technique for solving multi-project 
planning problems. Later Pisinger [31] proposed 
a simple partitioning algorithm for developing the 
optimal linear solution. In contrast to the most of 
the methods of reducing the solution space, the 
proposed approach can solve the linear MMKP 
without sorting of the solution space in 
enumeration processes. Later, Pisinger [32] 
presented an algorithm for the budgeting 
problem. The proposed problem is transformed 
to an equivalent MMKP. The results of the 
computational experiments revealed that the 
developed algorithm was order of magnitude 
faster than a general LP/MIP algorithm. 
 
Almost all successful exact methods proposed 
for MMKP are based on the B&B approaches. 
Cherfi & Hifi [33,34] used a search tree to 
represent the solution space and proposed a 
linear programming to find tighter bounds. In this 
work, the use of a column generation and a local 
search meta-heuristic for solving the MMKP are 
also introduced.  Lin and Bricker [35] reviewed 
the theoretical background of two partitioning 
strategies, the “weighted-mean method” and the 
“reformulation & transformation technique”, 
incorporated in the B&B procedure. Sung and 
Cho [36] developed a B&B method for reliability 
optimization of a series systems with multiple-
choice and budget constraints. Kozanidis and 
Melachrinoudis [37] proposed a B&B algorithm 
for the 0-1 mixed integer knapsack problem with 
linear multiple choice constraints. Ohtagaki et al. 

[38] introduced a surrogate multiplier for 
transforming the multidimensional nonlinear 
knapsack problem into a one-dimensional 
problem. Hifi et al. [39] also presented an optimal 
algorithm for the MMKP. The main principle of 
the approach is twofold: (i) to generate an initial 
solution, and (ii) at different levels of the tree 
search to determine a new upper bound used 
with a best-first search strategy. A more efficient 
B&B algorithm for solving the MMKP was 
proposed by Sbihi [40]. In this research some 
selected items were kept fixed while by the use 
of linear programming the bounds were 
computed during the searching procedure. 
 
Razzazi and Ghasemi [41] presented a B&B 
algorithm to solve the MMKP. The B&B tree is 
arranged based on the orderings in the core and 
navigated in a depth-first manner, in which 
consuming low memory effectively causes the 
core to be expanded by need. Obtaining a tight 
upper bound for the 0-1 quadratic knapsack 
problem has been considered in [42].  In this 
article the problem of a wind farm layout 
optimization is modeled by a 0-1 knapsack model 
and an upper bound proposed for the model. 
Nirmala and Parvathi [43] proposed a 
mechanism for radio access network selection 
based on MMKP. They devised a DP and a 
heuristic to solve the above network selection 
problem. Cokce and Wilhelm [44] combined DP 
and B&B to produce a hybrid algorithm for the 
MMKP.  
 
To find an exact solution of the MMKP, Goyal 
and Parashar [45] modeled the solution space as 
a tree and then navigated the tree exploring          
the most promising sub-trees first. They 
contemplated a DP and a B&B to solve the 
proposed problem. Bettinelli et al. [46] studied 
the MMKP with conflict graph to select the 
maximum profit set of compatible items while 
satisfying the knapsack capacity constraint. They 
presented a new B&B to derive optimal solutions 
to the problem in short computing times. Wang 
[47] considered concave knapsack problems with 
integer variables and presented an exact and 
efficient algorithm. The proposed algorithm 
combines the contour cut with a special cut to 
improve the lower bound and reduce the               
duality gap gradually in the iterative process. The 
lower bound of the problem is obtained by 
solving a linear relaxation version of the               
problem. A special cut is performed by exploiting 
the structures of the objective function and the 
feasible region of the primal problem. The 
computational results showed that the              
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algorithm is efficient. In spite of these efforts, the 
need for solution space reduction of the MMKP is 
still a challenging issue. 
 
The presented literatures provided a basic 
understanding of methods for improving the 
computational efficiency of the MMKP and 
motivated further investigation of introducing a 
more efficient solution approach. In this paper we 
proposed three branching mechanisms in a core 
algorithmic framework to enhance the 
computational efficiency of the B&B algorithm              
for solving the MMKP. Based on these 
mechanisms three B&B algorithms are           
proposed. Before presenting these algorithms, 
the scope of the problem is introduced in the 
following section.   
 

3. THE SCOPE OF THE PROBLEM 
 
The scope of the multiple-choice knapsack 
problems is as follows: 
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In the above model, there are jK  mutually 

exclusive alternatives for each jkx . There are two 

sets of constraints in this model; the first set of m 
constraints is called the resource constraints, 
and the second set of n constraints is called the 
multiple-choice constraints. For the purpose of 
describing algorithms we need to add a slack 
variable to the left side of each resource 
constraint. Therefore, we reformulate the 
problem as follows: 
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A basic application of the multiple-choice 
knapsack models is the project selection problem 

in which jkx  represents the decision variable 

taking the value of one if the 
thk  alternative of 

project j  is selected, and is zero otherwise. In 

this mathematical model jkc  is the return of 

selecting the 
thk  alternative of project ,j ijka  is 

the consumption of the
thk  alternative of project

j of resource i, and iB  is the maximum 

availability of resource i.   The first alternative of 
each project is do-nothing alternative, and 

therefore  01 jc and it’s associated ,01 ija for 

all values of i’s and j’s. 
 
For the purpose of describing the developed 

algorithm, we consider variable jX  to represent 

a vector with the elements jkx ’s, that is 

),,,,( 21 jjKjjj xxxX   and from now on we 

call it “major variable”,  for all the values of j‘s, 
and we call its associated multiple-choice 

alternatives, i.e. sx jk '  the “alternative” of the 

variable jX , for all the values of k. Let us define 

the vector ),,,( 21 jKjjj j
cccC  which is 

denoted as returns and the vector 

),,,( 21 jijkijijij aaaA  which is denoted as the 

consumption of the resources. Using these 
notations, the mathematical model can be 
converted to the following form: 
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By this conversion all the multiple-choice 
conditions are incorporated inherently in 
definition of the major variable Xj and therefore 
all the multiple-choice constraints are discarded. 
This is the main benefit of the converted 
mathematical model.  
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4. DEVELOPMENT OF THE DBB 
ALGORITHMS 

 
In this research, a depth-first B&B algorithm is 
proposed. Three different branching mechanisms 
for selecting the node with the most appropriate 
decision variable are designed and incorporated 
in the proposed algorithm for developing three 
different B&B algorithms. The proposed 
algorithms are named discriminatory B&B of 
DBB1, DBB2, and DBB3. The core structure of 
three algorithms is identical differing by the type 
of the branching mechanism. All three algorithms 
are based on the dual approach, starting with a 
dual feasible solution but supper optimal with 
respect to the main problem. The branching is 
incorporated in each algorithm for intending 
faster fathoming of the branches, and providing a 
remarkable reduction in explicit enumeration of 
the number of branches. Through the proposed 
discriminatory branching, the majority of the 
solution space is enumerated implicitly. Hence, in 
the final analysis only a small portion of the 
solution space needs to be enumerated explicitly 
in order to obtain the optimal solution.  

 
First, we present the core structure of DBBs 
algorithms which is identical in all three variants 
of the algorithm. For simplifying the further 
discussion, we consider a slight modification of 

the above mathematical model in which sc jk
'

are 

lexicographically ordered. In terms of the 
modified multiple-choice knapsack problem, the 
core structure is implemented as follows. 

 
Initially, assume that among all the alternatives of 
each major variable, one with the largest value of

jkc is selected (i.e. nj
jjKx ,,2,11  ). By 

implementing this assumption for all the major 
variables, the algorithms start with a solution 
having the maximum possible objective function 
value. If the initial solution is a feasible solution 

(i.e., all slack variables is  are non-negative), it is 

the optimal solution and no further investigation 
is needed. However, this is a trivial case that 
unlikely happens. Therefore, it will be necessary 
to select one of the other alternatives of each 
major variable to force the solution towards 

feasibility, that is having 0is  for all i. The 

procedures call for the selection of one other 
alternative of a major variable at a time, provided 
there is evidence that this step will be moving the 
solution towards feasibility.  The DBBs 

algorithms can be represented for data 
manipulation in a very simple manner. To 
accomplish this, the following definitions are 
needed: 
 
Definition 4.1. Free variables: At any node of the 
branching tree, a major variable is called free if it 
is not fixed by any branch leading to this node. 
An alternative of a free variable with the largest 

value of jkc is automatically considered to be 

selected and its associated variable is assigned 
the value of one. Therefore, at the final solution 
the best alternative of each major variable which 
does not appear in the partial solution is 
automatically selected. The set of the free 

variables at node t is designated by .
t
F  

 

Definition 4.2. Partial solution: A partial solution 
provides a specific binary assignment for one of 
the alternatives of each major variable in the 
sense that it fixes the value of an alternative of 
each major variable at zero or one. A convenient 
way to summarize the information for the 
purpose of the algorithm is to express the partial 

solution as an ordered set. Let
t

PS  represents 
the partial solution at the tth node and let the 

notation )( kjX  represent ,1jkx and notation

)( kjX  represent .0jkx The set 
t

PS   must be 

ordered in the sense that each new element is 
always assigned on the right most of the 
elements, ie. it appears as the last element in the 
partial solution set. 
 

The partial solution is used to define the nodes in 
the B&B tree.  The use of partial solutions 
eliminates the need for recording generated 
nodes of the B&B trees. This means that a partial 
solution (nodes) can be generated successively 
from a previous partial solution. As an example, 
let us consider a partial solution at the k

th 
iteration, 

determined as )}.(),({ mlXjiX
k

PS  If any of 

the algorithm selects alternative n from the major 
variable Xs, then the next partial solution at k+1 
iteration would be determined as 

)}.(),(),({{
1

nsXmlXjiX
k

PS 


The detailed 

procedures for generating successive partial 
solutions are the key element of the DBB 
algorithms which differentiate the three 
algorithms. We first describe the main procedure, 
core DBB algorithm, and later we will describe 
discriminatory mechanism of each algorithms, 
DBB1, DBB2, and DBB3.  
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4.1 The Core DBB Algorithm 
 
To describe the general procedure for generating 
the partial solution, the algorithm starts with an 

empty partial solution ,
0

PS which means all 

the major variables are free (with their associated 

variables with the largest value of jkc that are 

considered to be one), and therefore the value of 
the objective function is calculated as 

.
10 



n

j jjKcz If this solution is a feasible 

solution the procedure is stopped, otherwise the 
next partial solution is generated. The next partial 
solution is generated by assigning the decision 
variable corresponding to one of the other 
alternatives of a major variable to the right of the 
last element of the partial solution, with the value 
of one. It is an essential matter to note that at 
any node; the best alternative of all major 
variables is presumably selected unless an 
alternative of a major variable is appeared in the 
partial solution with a positive sign, and hence 
there would be no need for further branching of 
the best alternatives for any major variables. The 
procedure for generating the partial solutions will 
continue until a branch is fathomed. The partial 
solution is said to be fathomed if either it cannot 
be lead to a better objective function value, or a 
feasible solution is reached. A fathomed partial 
solution means that it is not promising to further 
branch its associated node, since all the 
solutions that could be generated from the node 
are either inferior or infeasible. After a branch is 
fathomed the backtracking starts. We 
incorporated a mechanism to ensure that all the 
possible solutions are enumerated either 
implicitly or explicitly. The general rule for 
generating the next partial solution after a node 
is fathomed is as follows. If all the elements of 
the fathomed partial solution are negative, i.e. all 
elements of the partial solution represent

)( kjX  for all values },,2,1{ jKk   and all 

t
PSjX   or if the set of the free variables are 

empty, the enumeration is completed and the 
optimal solution is obtained. Otherwise, the 
algorithm selects the right most positive element, 
complemented with the selection of another 
alternative and then it deletes all the negative 
elements to its right. This elimination is a key 
point for granting the optimality since by which 
we ensure that all solution points have been 
enumerated. After all the negative elements 
adjacent to the right most positive element is 

deleted or if all the corresponding alternatives of 
the right most major variable have already been 
in the partial solution we delete this major 
variable, otherwise this major variable is kept in 
the partial solution until all its alternatives are 
fathomed. We can see the significance of the 
negative element here. Since, the algorithm 
always adds variables at level one, a negative 
element means that a preceding partial solution 
has been fathomed. Thus when all the elements 
of a partial solution are negative, the associated 
variables have been considered and as a result, 
there are no more branches to consider and the 
enumeration is completed. In order to increase 
the efficiency of the proposed algorithm we 
incorporate some tests for reducing the state 
space solution, using the following propositions. 
 

Proposition 4.1.1. Let ,1,1,2,  Kkforjkx  be 

the all other alternatives of the major variable jX  

(except jKx which is selected by defaults). The 

current solution dominates all the alternatives 
having less profit and consuming more resources.  
 
Proof:  Let the current objective function value be

lkc
t
z

t
z 




1
 selecting any decision variable 

,,&1,2,1 ljKforjjkx    we have

.1
jklk

tt cczz   since .
1 t

z
t
zjkclkc 


  

and since ,&,2,1 ljKklkajka    the 

solution won’t lead toward feasibility and 
therefore the current solution dominates these 
alternatives. 
 
Based on the above discussion, we can 
summarize the steps of the DBB algorithms, 
which are identically employed in DBB1, DBB2 
and DBB3 algorithms. For the simplicity of 
describing the algorithms, assume that for each 
major variable, the alternatives are sorted 
according to the non-decreasing order of their 
objective function coefficients. The steps of the 
DBB algorithms are as follows: 
 
4.1.1 Core DBB algorithm 
 

Step 1. Let ,0t

)}1,2,1(,

),12,2,1(2),11,2,1(1{
0





nKnX

KXKXF





, (the best alternative (Kj ) of all major 
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variables are implicitly selected and are 
not considering for further selection at 

any iteration), 
0

PS , ,
1

0




n

j jjKcz  

let the initial lower bound denoted by z

be zero, ,0z and determine all si values.   

Step 2. If this solution is a feasible solution, stop. 

Step 3. Let ,1 tt  if 
t

F  is empty stop; 

otherwise select another alternative of a 
free major variable by discriminatory 

procedure and remove it from 
t

F and 
assigned on the right of the last element 

of 
t

PS . Then determine the value of z
t
. If 

,z
t
z   go to Step 5, otherwise go to 

Step 4. 
Step 4. Calculate the values of si’s,. If all si’s are 

nonnegative, let ,
t
zz  and go to Step 5, 

otherwise go to Step 3. 
Step 5. Change the sign of the last element of 

the partial solution to a negative sign, 
and go to Step 5.1.  

 
Step 5.1. If its all associated alternatives 

have the negative sign, delete this 
major variable, and go to Step 3, 
otherwise go to Step 5.2.  

Step 5.2. Select another alternative of the 
right most major variable by the 
discriminatory procedure, and 
perform the dominancy test. If it is 
not dominated by the existing 
partial solution alternative, remove 

it from 
t

F  and assigned on the 

right of the last element of ,
t

PS  

otherwise select the other 
alternative of this major variable by 
discriminatory procedure which is 
not dominated by the existing 
alternative. Then let t = t +1 and 
determine the values of z

t
. If

,z
t
z   go to Step 5, otherwise go 

Step 4. 
 
In the following sections, we describe the 
discriminatory procedures of DBB1, DBB2 and 
DBB3. 
 

4.2 DBB1 Algorithm 
 
In this algorithm, the selection of the next partial 
solution is performed based on a concept similar 

to the steepest accent gradient. The basic idea is 
to select a decision variable which consumes 
less of the average resources and provide a 
better objective function value. Due to the 
multiple resource constraints, we cannot simply 
take the ratio of the objective function coefficient 
by the constraint coefficient of each variable and 
select the candidate variable with the largest 
ratio. However, using the same concept a matrix 
(G), is defined for selecting the next decision 
variable. The elements of this matrix are 
determined as: 
 

 
Using this matrix, we initially flag the element of 
the best alternative for each major variable. That 
is, these alternatives are selected in the initial 
step of the algorithm. Now if the algorithm calls 
for substituting an alternative of any major 
variable (Step 3), an element of G from the un-
flagged elements which has the maximum value 
is selected. If on the other hand, algorithm calls 
for substituting an alternative for a given major 
variable (Step 5.2), we select an element of G 
from its corresponding column excluding the 
alternatives which are already flagged. Then the 
selected element is flagged. Therefore, the value 
of the available resources is decreased by the 
amount of the consumptions of this variable and 
is increased by the amount of the consumption of 
the substituted alternative. For normalizing the 
consumption of the resources, it is important to 
perform the adjustment of the resources. 
Therefore, after selection of a decision variable 
the algorithm updates all the elements of the 
gradient matrix. We assembled an algorithmic 
procedure called DBB1 algorithm by 
incorporating this discriminatory procedure.  
 

4.3 DBB2 Algorithm 
 
Consider node t with an infeasible solution. That 
is; the left-hand side value of the resource 

constraint i is
t
iA , where iA

t
iA   for at least one 

of the i’s. The selection of the next major variable 
and its associated alternative is the one with the 
steepest decent projected vector for moving the 
solution towards feasibility more rapidly, i.e. 

forcing iA
t
iA 
1

for all the values of i in the 

minimum number of iterations. 

(1)    

1

kjg    ,       








m

i iA

ijka

jkc
where

njK
kjgG
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Definition 4.3.1. The steepest decent projection 

vector: At any iteration if  ,,,2,1 mAAA 

represent the amount of the right hand side of 
the resource constraints 1,2,…,m, denoting by 

the vector V1 and ,,,2,1
t
mA

t
A

t
A   represent the 

amount of the left hand side of the resource 
constraints 1,2,…,m at iteration t, (which is an 

infeasible solution, iA
t
iA  for at least one of the 

i’s) denoting by vector V2. Letting 
 

 ),,,22,11(213
t
mAmA

t
AA

t
AAVVV        (2) 

 
as the amount of the left hand side of the 
resource constraints 1,2,…,m,  at iteration t+1, 

denoting by V4 then, by defining 5V as:  
 

(3) ),
1

,,2
1

2,1
1

1(.245
t
mA

t
mA

t
A

t
A

t
A

t
AVVV 








   

 

then the projection vector of V5 on V3  is 
determined as 




5*3

53*5*56
VV

VV
VCosVV


  















5*3

)
1

)((

)2
1

2)(22()1
1

1)(11(

*5
VV

t
mA

t
mA

t
mAmA

t
A

t
A

t
AA

t
A

t
A

t
AA

V
  

 

 
 
Considering a problem with two resource 
constraints, by letting the vertical and the 
horizontal axes representing the first and second 
resource consumptions, the vectors are 
presented in Fig. (1). 
 
Proposition 4.3.1. For selecting the next 

alternative of the major variable jX (i.e. jkx ), 

the alternative with the largest vector projected 
which is connecting the point in a m Euclidian 
space representing the resources consumption 
of the current solution to the point representing 
the available resources provides a solution with 
lowest infeasibility.   
 

Proof:  Let iV6 and kV6  denote the projected 

vector of the alternative i and k of the major 
variable 

jX
respectively. Let, i

VV
i

d 636  and

k
VV

k
d 636  denote the amount of infeasibility 

of selecting alternative and k an alternative of the 

major variable .jX If
i

V
k

V 66   then ,66
i
d

k
d   if 

one select the alternative k. it provides a solution 
more  forward to the feasibility. 

 
Using this formula (4), depending on what the 
algorithm is called, it either calculates the 
steepest decent projected vector, for all the 
unselected alternatives of all free variables (Step 
3). or all unselected alternatives of a given major 
variable (Step 5.2), and /or chooses the vector 
with the maximum length. This vector 
corresponds to a decision variable which will be 
added to the partial solution. In DBB2 procedure, 
the updating routine for calculating the length of 
the steepest decent projected vector is 
incorporated.  By integrating the DBB2 
discriminatory procedure using the core structure 
of the DBB, the DBB2 algorithm is assembled. 
 
4.4 DBB3 algorithm 
 
The selection mechanism employed for 
developing DBB1is considered as a mechanism 
which is based on the optimality concept. On the 
other hand, DBB2 utilizes the concept of 
feasibility as the selection mechanism. In DBB 
both optimality and feasibility concepts are 
concurrently employed.  Considering that 
alternatives of each major variable are sorted 
according to the non-decreasing order, we have 
n project and K alternatives (or more generally 

jK alternatives for project j), we can construct a 

matrix called D, having n columns and 2
nC rows, 

as follows: 
 























































 1,1,1,11

22121

23231213

11111

14141114

13131113

12121112

KnnKKjjKKK

nnKjjKK

nnjj

nnKjjKK

nnjj

nnjj

nnjj

ij

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

dD





















 

In this matrix columns represent the major 
variables and rows represent the rate of change 
of the objective function values. The following 
proposition reveals the appropriateness of the 
selection mechanism of the DBB3 algorithm. 
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Fig. 1. Graphical illustration of the projected vector 

 
Proposition 4.4.1. For selecting the next 

alternative of the major variable jX (i.e. jkx ), 

with smallest value 6
/


Vjkd constitutes a 

solution with sharpest towards feasibility and with 
less amount of penalizing the objective function.  
 

Proof:  Let 
tz be the value of objective function at 

iteration t. By proposition 4.3.1 we showed the 
selection of a variable with the largest value of 

the projected vector, ,6V moves the current 

solution toward feasibility be the largest amount. 

Now let
1t

z be the value of the objective function 
at iteration t+1, by selecting the alternative of k of 

the major variable ,jX through the above-

mentioned selection mechanism, i.e. 

   cjicjkcjlc  all values of i’s. The 

objective function value becomes 

,
1

jkcjic
t
zjkcjlc

t
z

t
z 


therefore 

selecting the kth alternative have a better 
objective function value. 
 
Proposition 4.4.2. For selecting the best 
alternative a free variable the smallest value

6
/


Vlkd constitutes a solution with sharpest 

towards feasibility and with less amount of 
penalizing the objective function.  
 

Proof:  Let 
tz be the value of objective function at 

iteration t. By proposition 4.3.1 we showed the 
selection of an alternative of a free variable with 

the largest value of the projected vector, ,6V

moves the current solution toward feasibility be 

the largest amount. Now let
1tz be the value of 

the objective function at iteration t+1, by 
selecting the best alternative of the major 

variable ,lX
through the above-mentioned 

selection mechanism, i.e.    lkcljcliclkc

all values of i’s. The objective function value 

becomes ,
1

jkcjic
t
zjkclic

t
z

t
z 


therefore selecting the kth alternative have a 
better objective function value. 
 
Since, in the backtracking procedure of the DBB 
algorithms we have substituted an n alternative 
of a major variable with another alternative of the 
same major variable, for pushing the solution 
towards feasibility, the value of the objective 
function is decreased by the difference of the 
objective function coefficients of these two 
alternatives. It is to be noted that the row’s 
elements of this matrix indicates the rate of 
change of the objective function value when an 
alternative is substituted by another alternative. 

Moreover, the fact that that length of vector 6V  

indicates the rate of change in the right hand 
sides towards feasibility when an alternative is 

substituted by another alternative, the ratio of ijd  

to its corresponding 6V , i.e. 6
/


Vijd

  

measures the amount of penalizing the objective 
function value and rewarding the feasibility of the 
solution. The smaller value of this ratio indicates 
the lower penalty we pay and larger reward we 

V6 

A1
t+1

A1
t 

A2
t+1

A1 

A2
t A2 

Resource 1 

Resource 2 
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acquire. Therefore, depending on what the 
algorithm is called, it may either selects an 
unselected alternative from the set free variables 
(Step 3) or an unselected alternative of a given 
major variable (Step 5.3). In the first case, it 
calculates this ratio for all the free variables, and 
in the second case it only needs to calculate this 
ratio for all the elements of one column of matrix 
D. In either case it selects the variable and its 
alternative corresponding to minimum ratio, for 
the further branching. DBB3 algorithm is 
constructed by integrating the DBB3 
discriminatory procedure with the core structure 
of the DBB algorithm.  
 

5. COMPUTATIONAL EXPERIMENTS 
 
In this section, we report the computational 
experiments of three variants of the DBB 
algorithm. The three variants of the DBB 
algorithm are implemented in C++ on a personal 
computer. Performance measures for three 
algorithms include the average number of nodes, 
which are enumerated, and the average 
computational time in CPU seconds. As a bench 
mark, we also determined the same performance 
measures by a traditional B&B algorithm. We 
refer to a traditional B&B algorithm as an 
algorithm in which the nodes for further 
branching are selected based on best dept 
mechanism. We then compared the DBB’s 
performance measures with the traditional B&B 
to evaluate the computational efficiency of each 
algorithm.  
 
We employed the pseudo random number 
generation for constructing the test problems. For 
each subgroup of test problems with the size of n 
projects, each having Kj alternatives, with m 
resource constraints, we generated 10 test 
problems and calculated the average of the 
performance measures for each subgroup. The 
parameters of the problems were generated 
using the uniform density function. Specifically, 

the values of sasc ijkjk ' and ,'  were generated 

using the following functions: 

 
.20.0*()1.0 and ],19*()[integer1 randarandc ijkjk   

 
The value of the right hand side of each  
resource constraint is calculated by the following 
function: 





n

j
ijk

k
i CTFaA

1

*}){max(

 

Where CTF (Constraints Toughness Factor) is 
defined to implement the scarceness of the 
available resources. We let the value of CTF 
varies from 0.50 to 0.80.  
 
We employed DBB1, DBB2 and DBB3, and the 
traditional B&B algorithms for solving the 
generated test problems in each subgroup with 
different CTF values. Then we calculated the 
average number of the nodes which were 
enumerated by each algorithm.  
 
Table (1) reports the computation results of the 
three algorithms for solving generated problems 
in the subgroup of 5 projects, each with 4 
alternatives and with 3 resource constraints for 
different values of the CTF. Similarly, Tables 2 
through 4 reports the similar results for problems 
in the subgroups of 10, 15, and 20 projects, 
respectively. Table (5) reports the relative 
performance of the three algorithms comparing 
with the traditional B&B. For each subgroup with 
a given value of the CTF, we took the ratio of the 
number of nodes enumerated by each algorithm 
to the number of nodes enumerated by traditional 
B&B.  
 
Figs. 1 through 4 illustrate the effect of different 
CTF values on the number of nodes enumerated 
by each of the DBB algorithm, for problems in the 
subgroups of 10, 15, and 20 projects, 
respectively.  Figure 5 demonstrates the 
performance of the developed algorithms 
comparing with the traditional B&B with respect 
to the variation of the number of decision 
variables. The performance of each of the 
developed algorithm is measured by the 

formulae 
c

D

NON

NON
P 1  in which P is the 

performance of the developed algorithm, NOND 
is the average number of nodes enumerated by 
individual developed algorithm, and NONC is the 
average number of the nodes enumerated by the 
traditional B&B, averaged over the number of 
nodes enumerated using different CTF values.  
Fig. 6 illustrates the computational efficiency of 
the developed algorithm compared to the 
traditional B&B with respect to the variation of the 
number of decision variables. The computational 
efficiency of each of the developed algorithm is 

simply measured by formulae .100
c

D

NON

NON
E  

As it is seen the computational efficiency of DBB 
increases as the number of decision variables 
increases.  
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Table 1. Performance measures for the problem size of n = 5, Kj = 4, m = 3 
 
CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm 

Average 
no. of nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

0.80 10 0.00 11 0.00 16 0.00 12 0.00 
0.75 41 0.00 33 0.00 40 0.00 36 0.00 
0.70 114 0.00 62 0.00 64 0.00 70 0.00 
0.65 139 0.00 65 0.00 72 0.00 68 0.00 
0.60 229 0.00 83 0.00 72 0.00 92 0.00 
0.55 434 0.00 90 0.00 91 0.00 115 0.00 
0.50 586 0.00 111 0.00 110 0.00 116 0.00 
Average 222 0.00 65 0.00 66 0.00 73 0.00 

 
Table 2. Performance measures for the problem size of n = 10, Kj = 4, m = 3. 

 
CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm 

Average 
no. of 
nodes 

Average 
CPU 
sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU 
sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

0.80 1 0.00 1 0.00 1 0.00 1 0.00 
0.75 224 0.00 72 0.00 51 0.00 107 0.00 
0.70 923 0.00 223 0.00 174 0.00 370 0.01 
0.65 4,401 0.01 697 0.01 391 0.01 955 0.03 
0.60 11,986 0.02 1,649 0.02 964 0.02 1,959 0.07 
0.55 36,909 0.08 3,584 0.04 2,583 0.06 3,713 0.14 
0.50 119,989 0.28 8,688 0.10 6,541 0.18 8,413 0.31 
Average 24,919 0.06 2,131 0.02 1,529 0.04 2,217 0.08 

 
Table (3) Performance measures for the problem size of n = 15, Kj = 4, m = 3. 

 
CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm 

Average 
no. of 
nodes 

Average 
CPU 
sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU 
sec. 

0.80 1 0.00 1 0.00 1 0.00 1 0.00 
0.75 220 0.00 209 0.01 185 0.00 115 0.00 
0.70 4,676 0.01 1,868 0.03 1,108 0.03 1,339 0.06 
0.65 61,863 0.21 9,966 0.19 5,016 0.16 7,986 0.39 
0.60 509,680 1.58 65,330 0.97 23,473 0.78 35,814 1.80 
0.55 3,536,919 10.13 297,939 4.61 107,999 3.84 136,237 7.49 
0.50 22,170,047 69.52 910,408 15.61 354,545 13.94 423,850 15.24 
Average 3,754,773 11.64 183,674 3.06 70,332 2.68 86,477 3.57 

 
Table 4. Performance measures for the problem size of n = 20, Kj = 4, m = 3. 

 
CTF Classical B & B DBB1 Algorithm DBB2 Algorithm DBB3 Algorithm 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

Average 
no. of 
nodes 

Average 
CPU sec. 

0.80 1 0.00 1 0.00 1 0.00 1 0.00 
0.75 1 0.00 1 0.00 1 0.00 1 0.00 
0.70 140 0.00 140 0.00 152 0.01 105 0.01 
0.65 11,092 0.05 2,064 0.04 1,627 0.06 4,204 0.12 
0.60 440,698 2.79 33,290 0.63 11,853 0.56 61,148 1.29 
0.55 9,873,763 36.70 504,597 7.59 150,001 2.53 466,697 10.53 
0.50 215,490,347 808.80 5,529,618 89.92 1,353,250 62.15 3,580,100 107.84 
Average 32,259,434 121.05 867,102 14.02 216,698 9.33 587,465 17.11 
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Table 5. Ratio of the nodes enumerated by DBBs with respect to the classical B & B 

 
CTF N =5, Kj = 4, m=3 N =10, Kj = 4, m=3 N =15, Kj = 4, m=3 N =20, Kj = 4, m=3 

DBB1 DBB2 DBB3 DBB1 DBB2 DBB3 DBB1 DBB2 DBB3 DBB1 DBB2 DBB3 
0.80 112.24 159.18 120.41 100.00 100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
0.75 79.51 96.59 87.32 32.29 22.57 47.73 95.10 83.83 52.13 100.00 100.00 100.00 
0.70 54.48 56.06 61.16 24.15 18.88 40.15 39.94 23.69 28.64 100.00 108.56 74.61 
0.65 46.34 51.36 49.07 15.84 8.89 21.71 16.11 8.11 12.91 18.60 14.67 37.90 
0.60 36.16 31.53 40.26 13.76 8.04 16.34 12.82 4.61 7.03 7.55 2.69 13.88 
0.55 20.84 21.07 26.51 9.71 7.00 10.06 8.42 3.05 3.85 5.11 1.52 4.73 
0.50 18.98 18.78 19.87 7.24 5.45 7.01 4.11 1.60 1.91 2.57 0.63 1.66 
Average 29.28 29.90 32.80 8.55 6.14 8.90 4.89 1.87 2.30 2.69 0.67 1.82 

 

 
 

Fig. 1. Effect of CTF on the number of nodes for n=5, K=4, m=3 problems 
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Fig. 2. Effect of CTF on the number of nodes for n=10, K=4, m=3 problems 
 

 
 

Fig. 3. Effect of CTF on the number of nodes for n=15, K=4, m=3 problems 
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Fig. 4. Effect of CTF on the number of nodes for n=20, K=4, m=3 problems 
 

 
 

Fig. 5. Performance of the developed algorithms comparing with the traditional B&B 
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Fig. 6. Percentage of the nodes enumerated by the developed algorithms comparing with the 

traditional B&B 
 

6. CONCLUSIONS AND REMARKS 
 
In this paper, we presented a first depth dual 
approach B&B for solving the general form of 
MMKP. The approach is called the discriminatory 
B&B due to the selection of a node for further 
branching based on a discriminatory criterion. 
Three selecting mechanisms are developed for 
obtaining the optimal solution of MMKPs. To 
enhance the computational efficiency of B&B, the 
discriminatory mechanisms are incorporated in 
the proposed algorithmic procedure to develop 
three exact solution algorithms. An extensive 
computational experiment was performed to 
evaluate the effects of the discriminatory 
selection of the variables for reducing the implicit 
enumerations. The results revealed that all the 
variants of the variable selection lead to a 
considerable reduction of the nodes to be 
enumerated for obtaining the optimal solution of 
MMKPs. Referring to Table 5 it can be seen that 
for the problems with the size of 100 zero-one 
decision variables, the developed algorithms 
enumerated a small portion of the nodes 
comparing to the traditional B&B. More 
specifically, DBB1 enumerated only 2.69 percent, 
DBB2 enumerated only 0.67 percent and DBB3 
enumerated only 1.82 percent of the total nodes 
enumerated by the traditional B&B procedure.  
 

The main contributions of this paper are two folds. 
First, a special algorithmic procedure based on 
dual approach first-depth B&B algorithm is 
proposed. In this algorithm by setting all the 
major variables equal to their highest return 
values the enumeration of this variable is 
conducted explicitly without any further 
computational effort. Then by performing a 
successively systematic procedure, it assigns the 
lower return value to the selected variables in 
such a way that after trying a small part of all the 
possible combinations, one obtains either an 
optimal solution, or evidence of the fact that no 
feasible solution exists. Also, a smart mechanism 
is incorporated for ensuring the total enumeration 
has been performed for all possible combinations, 
before the termination step of the algorithm.  
 
The second contribution is development of three 
selecting mechanisms. The first mechanism is 
based on the steepest accent gradient by which 
the variable consuming less of the average 
resources and provide a better objective function 
value. The second mechanism is based on the 
steepest decent projected vector by which it is 
ensured that the variables are selected based on 
the most promising objective function value with 
lowest infeasibility. Finally, by the third 
mechanism a variable with sharpest vector 
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towards feasibility and with less amount of 
penalizing the objective function is selected.  
 
Reduction of the solution space and 
consequently enumeration of the smaller number 
of nodes in B&B approach has been a 
challenging effort in solving knapsack problems. 
Respectfully, in this paper three mechanisms are 
proposed. Proposing another type of selection 
mechanism or combining the proposed 
mechanisms in a single algorithm can be an 
interesting research to be further explored.  
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APPENDIX A 
 
Example: consider the following multiple-choice knapsack problem: 
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The equivalent mathematical form is as follow: 
 

TTTT XXXXzMax 4321 )25,.14,.0()23,.11,.0()24,.16,.12,.0()21,.13,.0( .   

25)7,4,0()7,6,0()8,5,4,0()8,3,0(

23)7,3,0()7,2,0()9,4,3,0()7,4,0(

4321

4321





TTTT

TTTT

XXXX

XXXX
 

).3,2,1(),3,2,1(),4,3,2,1(),3,2,1( 4321  XXXX  

 
Solution: We first determine the initial G matrix of DBB1 procedure as follows: 
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The steps of the DBB1 algorithm are summarized in the following table: 
 
t Set of the partial solution tSP  ),( 21

tt ss  
tz  z  Set of the free variables

tF  Note 

0   (-7,-5) .93 0 )}2,1(),2,1(),3,2,1(),2,1({ 4321 XXXX   

1 )}2({ 4X  (-1,-1) .82 0 )}1(),2,1(),3,2,1(),2,1({ 4321 XXXX   

2 )}2(),2({ 14 XX  (0,3) .74 .74 )}1(),2,1(),3,2,1(),1({ 4321 XXXX  Fathomed by feasibility 

3 )}2(),2({ 14 XX  (-1,-1) .82 .74 )}1(),2,1(),3,2,1(),1({ 4321 XXXX   

4 )}1,2(),2({ 14 XX  (4,6) .61 .74  Fathomed by lower bound 

5  (-1,-1) .82 .74   

6  (2,1) .74 .74  Fathomed by feasibility 

7  (-1,-1) .82 .74   

8  (2,-1) .70 .74  Fathomed by lower bound 

9  (-1,-1) .82 .74   

  (2,3) .58 .74   

10 )}2(),1,2,3(),1,2(),2({ 3214 XXXX   (2,-1) .70 .74 )}1(),1({ 43 XX  Fathomed by lower bound 

11 )}2(),2,3(),1,2(),2({ 3214  XXXX  (-1,-1) .82 .74 )}1(),1({ 43 XX   

12 )}1,2(),2,3(),1,2(),2({ 3214  XXXX  (4,5) .59 .74 )}1({ 4X  Fathomed by upper bound 

13 )}1,2(),2,3(),1,2(),2({ 3214  XXXX  (-1,-1) .82 .74 )}1({ 4X   

14 )}2({ 4 X      Since all the elements in the set of partial solution are 
negative the algorithm is terminated 

 
Since all the elements in the set of partial solution are negative the algorithm is terminated. The optimal solution is obtained from the partial solution which 
has the updated lower bound. The updated upper bound is achieved in step t = 6 with the following optimal solution: 
 

)}1(),2,1(),3,2,1({ 432 XXX

)}1,2(),2({ 14 XX )}1(),2,1(),3,2,1({ 432 XXX

)}3(),1,2(),2({ 214 XXX  )}1(),2,1(),2,1({ 432 XXX
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The optimal partial solution: )},3(),1,2(),2({ 214 XXX   z*=0.74. 

The optimal values of the original variables are: ,0 and ,1,1 ,1,1 and ,74.0 **
33

*
13

*
23

*
42

*  ijxxxxxz  for all the otheri’s and j’s. 

 
It is to be noted that in this example an alternative optimal solution can also recognized in Step2 as follow: 
 
The optimal partial solution: )}2(),2({ 14 XX  z*=0.74. 

The optimal values of the original variables are: ,0 and ,1,1 and ,74.0 **
12

*
42

*  ijxxxz  for all the other i’s and j’s. 
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