
Citation: Montaleza, C.; Arévalo, P.;

Gallegos, J.; Jurado, F. Enhancing

Energy Management Strategies for

Extended-Range Electric Vehicles

through Deep Q-Learning and

Continuous State Representation.

Energies 2024, 17, 514. https://

doi.org/10.3390/en17020514

Academic Editors: Irfan Ahmad Khan,

Amin Mahmoudi, Amirmehdi

Yazdani and GM Shafiullah

Received: 1 December 2023

Revised: 8 January 2024

Accepted: 19 January 2024

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Enhancing Energy Management Strategies for Extended-Range
Electric Vehicles through Deep Q-Learning and Continuous
State Representation
Christian Montaleza , Paul Arévalo * , Jimmy Gallegos and Francisco Jurado

Department of Electrical Engineering, Superior Polytechnic School of Linares, University of Jaén,
23700 Linares, Jaén, Spain; cimg0001@red.ujaen.es (C.M.); jwga0001@red.ujaen.es (J.G.); fjurado@ujaen.es (F.J.)
* Correspondence: warevalo@ujaen.es

Abstract: The efficiency and dynamics of hybrid electric vehicles are inherently linked to effective
energy management strategies. However, complexity is heightened due to uncertainty and variations
in real driving conditions. This article introduces an innovative strategy for extended-range electric
vehicles, grounded in the optimization of driving cycles, prediction of driving conditions, and
predictive control through neural networks. First, the challenges of the energy management system
are addressed by merging deep reinforcement learning with strongly convex objective optimization,
giving rise to a pioneering method called DQL-AMSGrad. Subsequently, the DQL algorithm has
been implemented, allowing temporal difference-based updates to adjust Q values to maximize the
expected cumulative reward. The loss function is calculated as the mean squared error between the
current estimate and the calculated target. The AMSGrad optimization method has been applied to
efficiently adjust the weights of the artificial neural network. Hyperparameters such as the learning
rate and discount factor have been tuned using data collected during real-world driving tests. This
strategy tackles the “curse of dimensionality” and demonstrates a 30% improvement in adaptability
to changing environmental conditions. With a 20%-faster convergence speed and a 15%-superior
effectiveness in updating neural network weights compared to conventional approaches, it also
highlights an 18% reduction in fuel consumption in a case study with the Nissan Xtrail e-POWER
system, validating its practical applicability.

Keywords: extended-range electric vehicles; deep reinforcement learning; energy management
system; fuel consumption reduction

1. Introduction

Currently, the automotive sector is undergoing a significant transformation driven by
emerging technologies and the adoption of Industry 4.0. In this context, there is a renewed
focus on the energy domain and the performance of extended-range electric vehicles
(EREV), particularly in the efficient distribution of energy from lithium-ion batteries to
electric motors [1]. Despite the undeniable advantages of non-polluting sources such
as batteries or hydrogen cells, EREVs have not yet surpassed conventional vehicles in
terms of fuel consumption, range, and durability [1,2]. This challenge underscores the
importance of addressing deficiencies in energy management systems (EMS), which have
not fully capitalized on the characteristics of alternative energy sources to enhance the
competitiveness of EREVs in the market. EMS emerges as an effective solution to boost
both fuel efficiency and emission reduction [2].

Efficient operation in hybrid and EREV has been a central focus in both industrial and
academic research. With the continuous advancement in automotive technology, plug-in hy-
brid electric vehicles (PHEVs) have emerged as significant contributors to the electrification
of transportation, delivering exceptional fuel-saving performance [3]. A pivotal element in
the design of these vehicles is the EMS, tasked with regulating the energy flow between
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the fuel tank and electric storage, thereby addressing energy distribution challenges. In
this context, achieving efficient energy management becomes even more challenging and
critical with the ongoing development of connected and intelligent vehicle technology.
The integration of vehicle-to-infrastructure/vehicle-to-vehicle (V2I/V2V) information into
the EMS for EREVs presents a substantial challenge and, simultaneously, is a current and
vital issue. Existing literature provides an in-depth analysis of EMSs, employing diverse
methodologies and approaches. Emphasis is placed on addressing both single-vehicle and
multi-vehicle scenarios, particularly within the context of intelligent transport systems.

In a different domain, the text in [4] explores the impact of EREVs on the power grid
and their significant influence on electricity market prices. Charging strategies for an
office site in Austria are investigated, with a focus on mathematical representation and
optimization of various charging strategies. The study reveals that effective management
of EREV charging processes can lead to a substantial reduction in costs, enhancing the
convenience of the process. Another valuable contribution in the literature focuses on
considering the degradation of energy sources, such as lithium-ion batteries and proton
exchange membrane (PEM) fuel cells, in energy management strategies for hybrid vehicles
with fuel cells (FCHEVs). The study reviews degradation modeling methods and energy
management strategies that integrate degradation considerations. The importance of
developing health-conscious EMSs to enhance system durability is underscored [5]. In
the realm of shared mobility, the text proposes a comprehensive method for transitioning
from car ownership to car-sharing systems in residential buildings. Using a mixed-integer
linear optimization approach, technologies such as battery storage, solar panels, EREV,
and charging stations are modeled. The study demonstrates that integrating car-sharing
systems into residential buildings can result in a significant reduction in costs and a more
efficient use of locally generated solar energy [6]. Then, the text addresses energy efficiency
in hybrid vehicles through reinforcement learning (RL). Current literature examines the
application of RL in the EMS to optimize the utilization of internal and external energy
sources, such as batteries, fuel cells, and ultracapacitors. A detailed parametric study
reveals that careful selection of learning experience and discretization of states and actions
are key factors influencing fuel efficiency in hybrid vehicles [7].

Previous research has identified uncertainty in driving cycles as a critical factor sig-
nificantly impacting fuel consumption [8]. While studies have shown that adjusting EMS
control parameters can improve efficiency in real time [1], the key lies in implementing
advanced control technologies to optimally manage the vehicle’s energy. This research is sit-
uated in the exploration of advanced energy management solutions for EREVs, proposing
a strategy based on deep reinforcement learning (DRL), motivated by the need to overcome
limitations in conventional strategies and leverage the effectiveness of machine learning to
optimize EREV performance. The “curse of dimensionality” associated with discrete state
variables and the need for continuous adaptability to changing environmental conditions
are the specific challenges that our innovative approach aims to address.

Recent research has highlighted the significant impact of uncertainty in EREV driving
cycles on fuel consumption. In a notable study [9], EMS control parameters were adjusted
in real time using six representative standard cycles and 24 characteristic parameters to
identify comprehensive driving cycles. Another significant study [10] selected six typical
urban conditions from China and the United States as offline optimization targets, using
eight characteristic parameters, including maximum vehicle speed, for driving cycle identi-
fication [11]. The efficiency of energy management in EREVs to save fuel crucially depends
on the implementation of advanced control technologies. Numerous control algorithms
have been proposed, ranging from rule-based algorithms [12], analytical algorithms [13],
and optimization methods [14,15] to artificial intelligence methods [16]. These are com-
monly divided into two main categories: rule-based methods and optimization-based
methods [17,18]. Rule-based methods, constructed using heuristic mathematical models
or human experience, apply regulations to determine the energy distribution of multiple
energy sources. Despite their high robustness and reliability, these methods lack flexibility
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and adaptability to changing conditions [19]. Optimization-based strategies, such as dy-
namic programming (DP) [20,21], pontryagin’s minimum principle (PMP) [22], and particle
swarm optimization (PSO) [23], are applied to derive global optimal control. However,
DP and EMS are impractical for solving energy optimization problems under unknown
conditions due to their lack of adaptability.

In other research, RL methods have emerged as efficient approaches to achieving
optimal control in energy management. By incorporating agent states and actions into the
Markov model, RL allows the agent to interact directly with the environment, learning
decision rules based on environmental rewards and maximizing the cumulative reward
over time through the Bellman equation [24,25]. Compared to rule-based control strategies,
RL demonstrates higher accuracy and faster response times due to its model-free properties.
This potential makes RL a promising candidate for achieving more efficient and robust
electrified propulsion systems.

Within specific approaches, Q-learning applied to the EMS of hybrid electric vehicles
(HEVs) has stood out for overcoming the demand for certainty and randomness associated
with knowledge of the driving cycle [26–28]. A key study [29] proposing RL based on Q-
learning not only efficiently reduced calculation time but also achieved a 42% improvement
in fuel economy. Another study [25] highlights the superiority of Q-learning-based EMS
compared to EMS and MPC. Additionally, the EMS algorithm developed in a study [30],
which combines temporal difference (λ), demonstrated better fuel savings and emission
reductions. The use of DRL algorithms has marked an advancement in the energy manage-
ment of HEVs. The first algorithm of this kind, deep q network (DQN), was applied to a
series hybrid powertrain configuration in a study [26], demonstrating great adaptability
to different driving cycles. To address the overestimation of Q values in DQN, the double
DQN was introduced in an EMS design of HEV in another study [27], achieving a 7.1%
improvement in fuel savings compared to DQN. For a more efficient estimation of the
Q value, the dueling DQN was designed for EMS in a study [28], where a considerable
improvement in convergence efficiency during training was observed. However, both
the DQN and DDPG algorithms suffer from defects such as overestimated Q values, low
stability, and difficulty tuning parameters, emphasizing the need to explore more advanced
DRL algorithms for HEV energy management applications.

Despite notable advances in the energy management of EREVs through strategies
based on DRL, especially the deep q-learning (DQL) algorithm, crucial research gaps persist.
In the realm of DRL-based energy management strategies, our acknowledgment of per-
sistent gaps stems from the intricate challenges associated with effective implementation.
Specifically, despite notable advances, there remains a need for further refinement and
innovation in addressing uncertainties linked to diverse driving cycles and dynamic envi-
ronmental conditions. For instance, current strategies, as discussed in previous studies [25],
grapple with the curse of dimensionality. These challenges pose significant hurdles in
achieving optimal energy efficiency and adaptability. To illustrate, recent research [26,27,30]
has underscored the limitations of existing DRL algorithms, such as overestimated Q values,
low stability, and difficulty in parameter tuning. These challenges create a gap in the ability
of current approaches to seamlessly adapt to unforeseen changes in real-world driving
scenarios, hindering their broader effectiveness. By shedding light on these challenges,
our study seeks to bridge these gaps through the integration of the DQL-AMSGrad strat-
egy. This integration aims to address the above. Through this innovative approach, we
strive to contribute significantly to the ongoing discourse on advancing DRL-based energy
management in the context of EREVs.

The focus of this article lies in integrating DQL with the adaptive moment estimation
with a strongly convex objective (AMSGrad) optimization method (DQL-AMSGrad) to re-
fine the energy management of EREVs. First, the efficient management of dimensionality in
discrete state variables poses a persistent challenge, despite the demonstrated effectiveness
of DQL. The “curse of dimensionality” associated with these variables remains a substantial
barrier, especially when dealing with discrete action spaces [1,25]. This study introduces an
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innovative perspective by combining DQL with AMSGrad, providing a promising solution
to address the complexity associated with these discrete variables. Continuous adaptability
to changing environmental conditions constitutes a critical research gap. Control strate-
gies, even those based on DRL as in Ref. [25], face challenges in dynamically adjusting to
unexpected changes in environmental conditions. The article’s proposal, by integrating
DQL-AMSGrad, highlights its ability to adapt continuously, thereby improving efficiency
and sustainability in real time. Another crucial aspect is related to optimizing the conver-
gence speed and effectiveness in updating neural network weights, essential elements for
the practical application of DQL. Performance gaps, such as Q-value overestimation, insta-
bilities, and difficulties in parameter tuning, persist in various DRL algorithms, including
DQL as in Refs. [26,27,30]. This article addresses these deficiencies by incorporating the
AMSGrad optimization method, improving convergence speed and the effectiveness of
neural network weight updates, resulting in a more robust and stable model performance.
The model has been validated with a real-case study.

For the sake of simplicity, this study presents the following scientific contributions:

• Proposes a pioneering strategy by combining the DQL algorithm with the AMSGrad
optimization method (DQL-AMSGrad) to enhance the energy management of EREVs.

• Effectively addresses the “curse of dimensionality” associated with discrete state
variables in EREV environments, presenting an innovative solution to efficiently
manage these variables by combining DQL with AMSGrad.

• Highlights the ability of the DQL-AMSGrad strategy to adapt continuously to chang-
ing environmental conditions, improving real-time energy management efficiency
and sustainability.

• Addresses performance gaps, such as Q-value overestimation, instabilities, and diffi-
culties in parameter tuning, by integrating AMSGrad, improving convergence speed
and the effectiveness of neural network weight updates associated with DQL.

The remaining structure of the article is organized as follows: Section 2 details the
proposed methodology, Section 3 addresses the case study, Section 4 is dedicated to results
and discussion, while Section 5 provides the final conclusions of the paper.

2. Methodology

In formulating the energy management strategy for EREVs, this study consciously
adopts a synthesis of DQL and AMSGrad. The utilization of a feedforward neural network
is strategically chosen to proficiently handle intricate variables encompassing driving
cycles, battery charge, speed, and energy demand. This approach offers a continuous
and adaptable representation, effectively capturing the inherent complexity of the system.
The selection of the DQL algorithm is underpinned by its inherent capability to update
based on temporal differences and maximize expected cumulative rewards. This renders
DQL a superior choice compared to alternative reinforcement learning algorithms or
optimization methods, particularly in navigating the challenges posed by uncertainties
inherent in diverse driving conditions. AMSGrad emerges as the optimization method
of choice, owing to its empirically established effectiveness in accelerating convergence
speed and enhancing the efficacy of neural network weight updates. Its adept handling of
the intricacies associated with training neural networks, especially in real-world scenarios,
positions it as the preferred optimization approach over other methods.

The meticulous determination of assessment parameters, such as the number of
episodes and learning rate for DQL, entails a process of thoughtful consideration and
adjustment through rigorous testing. These parameters are meticulously fine-tuned to strike
an optimal balance between efficiency and adaptability across diverse driving conditions.
The programming has been done in MATLAB 2021a. The application of this methodology
to the Nissan Xtrail e-POWER system lends a real-world context to the evaluation. The
practical implementation serves as a compelling demonstration of the model’s adaptability
to varying conditions, thereby substantiating its efficacy in augmenting driving efficiency
and curbing fuel consumption in EREVs.
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This strategy, integrating a streamlined neural network, the DQL algorithm, and
the AMSGrad optimization method, accentuates the deliberate decisions made to effec-
tively address the multifaceted challenges inherent in EREV energy management. Each
constituent is purposefully chosen to ensure adaptability, proficient management of un-
certainties, and heightened efficiency, thereby bolstering the pragmatic viability of our
proposed approach (Figure 1).
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2.1. Deep Reinforcement Learning-Based Energy Management Strategy
2.1.1. Deep Reinforcement Learning Feature

The proposed energy management strategy is based on DQL and addresses the “curse
of dimensionality” associated with discrete state variables in algorithms like Q-learning
and Dyna. DQL utilizes a neural network to represent the value function, enabling efficient
management of continuous states [22]. In this approach, the AMSGrad optimization
method is employed to update the neural network weights, enhancing convergence speed
and effectiveness compared to conventional methods [31]. The construction of the value
function is directly performed through the neural network, providing a continuous and
flexible representation. This innovative approach facilitates the direct issuance of control
actions based on state variables, improving the efficiency and adaptability of the algorithm
in energy management.

2.1.2. Neural Network Structure and AMSGrad Optimization Method

The feedforward neural network, also known as a direct feed neural network, is a
common type of ANN architecture where information flows in a single direction from the
input layer to the output layer (Figure 2). AMSGrad is a variant of the Adam optimization
method. Both methods are optimization algorithms commonly used to adjust the weights
of a neural network during the training process. The original version of Adam introduced
the concept of adaptive moments to automatically adjust learning rates for each parameter.
AMSGrad emerged as a modification to address certain convergence issues encountered
in specific cases. The main idea behind AMSGrad is to adaptively adjust the learning rate
for each individual parameter, and it was introduced to tackle the problem where, in some
situations, the learning rate could become very small, hindering convergence. AMSGrad
avoids this issue by maintaining an adaptive estimate of exponential moments [32].



Energies 2024, 17, 514 6 of 21

Energies 2024, 17, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 2. Structure of the feedforward neural network. 

2.1.3. Structure of the DQL Algorithm 
The structure of the DQL algorithm is based on the optimization of an action value 

function using ANN, and the equation for the temporal state is represented by the follow-
ing Equation (10) [41]: 

Q(s,a) ← Q(s,a)+α · (r + γ · maxaᇲQ(sᇱ,aᇱ) - Q(s,a)), (10)

where Q(s,a) represents the action value function, estimating the expected utility of tak-
ing action a in state s; r is the reward obtained after taking action a in state s; γ is the 
discount factor, weighing the importance of future rewards; and maxaᇲQ(sᇱ,aᇱ)  repre-
sents the maximum value of the action value function Q for the next state sᇱ and all pos-
sible actions aᇱ. This update is reflected in calculating the target yj in the reward function 
rj, and the action estimate is as follows in Equation (11) [42]. 

maxaᇲQ ൫sj+1,aᇱ,ωᇱ൯ (11)

The loss function (Lω) is calculated with Equation (12), and it is the mean squared 
error (MSE) between the current estimate Q൫sj, aj, ω൯ made for each time step [43]. Lω = E ቀyj - Q൫sj, aj, ω൯ቁ2൨, (12)

where E represents the expectation or expected value, which is calculated over the train-
ing sample set; and ω represents the weights of the ANN that are updated during train-
ing. To smooth the updates of the target network weights, the parameter τ is used. The 
target network (Qtarget) is slowly updated towards the weights of the main network (Q) 
to make the training process more stable and avoid abrupt oscillations. The update of the 
target network weights is conducted through Equation (13) [42–44]. 

ωtarget ← (1 - τ) ·ωtarget + τ ·ω, (13)

where ω୲ୟ୰ୣ୲ are the weights of the target network; 𝜔 are the weights of the main net-
work; and 𝜏 is the temporal discount parameter. 

2.2. Proposed Method (DQL-AMSGrad) 
The proposed method has implemented a methodology that combines a feedforward 

ANN with the DQL algorithm, and the AMSGrad optimization method is shown in Figure 
3. This approach aims to primarily reduce the fuel consumption EREV through optimal 
decision-making based on reinforcement learning. The ANN architecture has been 

Figure 2. Structure of the feedforward neural network.

Let us consider a neural network with an input layer (x), a hidden layer (h), and an
output layer (y). During forward propagation, where (x) represents the input variables,
which, in this context, are the speed, distance, and altitude of the EREV driving cycles.
The input to the hidden layer is given by Equation (1), the output of the hidden layer
after applying the activation function f is calculated with Equation (2), then the input to
the output layer is represented in Equation (3), and the output of the output layer after
applying the activation function is calculated with Equation (4) [33–36].

a(1) = W(1)·x + b(1) (1)

h = f(a(1)
)

(2)

a(2) = W(2)·h + b(2) (3)

y = g(a(2)
)

(4)

Training with AMSGrad involves initializing parameters, including initial weights(
W(1), W(2)

)
, biases

(
b(1), b(2)

)
, and adaptive moments

(
m̂(1), v̂(1), m̂(2), v̂(2)

)
. The pro-

cess then proceeds with backward propagation and gradient calculation of the loss function
L with respect to the network parameters

(
W(1), W(2), W(3), W(4)

)
. The update of adaptive

moments for each parameter is crucial to solving the AMSGrad moment equations shown
in Equations (5) and (6). The bias correction process in the moments is then performed to
avoid biases in the early iterations, as shown in Equations (7) and (8). Finally, Equation (9)
represents the process of updating weights and biases using the AMSGrad update formula.
This process is repeated over multiple iterations (epochs) until the ANNconverges to an
optimal solution [37–40].

m̂(l)
ij = β1·m̂

(l)
ij + (1 −β1)·

∂L

∂W(l)
ij

(5)

v̂(l)
ij = β2·v̂

(l)
ij + (1 − β2)·

 ∂L

∂W(l)
ij

2

(6)

m̂(l)
ij =

m̂(l)
ij

1− β1
t (7)
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v̂(l)
ij =

v̂(l)
ij

1− β2
t (8)

W(l)
ij = W(l)

ij −
α·m̂(l)

ij√
v̂(l)

ij + ε
, (9)

where β1 and β2 are the decay factors for the first moment m̂ and v̂ in AMSGrad, re-
spectively; t is the number of iterations or epochs; α is the learning rate that controls the
magnitude of weight updates; and ε is a small constant to avoid division by zero in the
weight update.

2.1.3. Structure of the DQL Algorithm

The structure of the DQL algorithm is based on the optimization of an action value
function using ANN, and the equation for the temporal state is represented by the following
Equation (10) [41]:

Q(s, a)← Q(s, a) + α·
(
r + γ·maxa′Q

(
s′, a′

)
− Q(s, a)

)
, (10)

where Q(s, a) represents the action value function, estimating the expected utility of taking
action a in state s; r is the reward obtained after taking action a in state s; γ is the discount
factor, weighing the importance of future rewards; and maxa′Q(s′, a′) represents the maxi-
mum value of the action value function Q for the next state s′ and all possible actions a′.
This update is reflected in calculating the target yj in the reward function rj, and the action
estimate is as follows in Equation (11) [42].

maxa′Q̂
(
sj+1, a′,ω′

)
(11)

The loss function (Lω) is calculated with Equation (12), and it is the mean squared
error (MSE) between the current estimate Q

(
sj, aj, ω

)
made for each time step [43].

Lω= E
[(

yj − Q
(
sj, aj, ω

))2
]

, (12)

where E represents the expectation or expected value, which is calculated over the training
sample set; and ω represents the weights of the ANN that are updated during training.
To smooth the updates of the target network weights, the parameter τ is used. The target
network

(
Qtarget) is slowly updated towards the weights of the main network (Q) to make

the training process more stable and avoid abrupt oscillations. The update of the target
network weights is conducted through Equation (13) [42–44].

ωtarget ← (1 − τ)·ωtarget + τ·ω, (13)

where ωtarget are the weights of the target network; ω are the weights of the main network;
and τ is the temporal discount parameter.

2.2. Proposed Method (DQL-AMSGrad)

The proposed method has implemented a methodology that combines a feedforward
ANN with the DQL algorithm, and the AMSGrad optimization method is shown in Figure 3.
This approach aims to primarily reduce the fuel consumption EREV through optimal
decision-making based on reinforcement learning. The ANN architecture has been carefully
designed, considering the specific characteristics of the problem. The feedforward ANN
includes hidden layers and appropriate activations to capture the complexity of the system.
The network input represents the state of the EREV, with variables such as battery charge,
speed, and power demand. The network output provides an estimate of the Q function for
each possible action the EREV can take.
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The DQL algorithm has been implemented following a clear and detailed structure.
The epsilon-greedy exploration has been incorporated to balance the exploration of new
actions and the exploitation of known actions. Temporal difference-based temporal updates
allow for the adjustment of Q values to maximize the expected cumulative reward. The
loss function is calculated as the MSE between the current estimate and the calculated
target. The AMSGrad optimization method has been applied to efficiently adjust the
weights of the ANN. Hyperparameters such as learning rate and discount factor have been
tuned using data collected during real-world driving tests. The training and validation
process have been conducted with specific datasets, ensuring that the model can generalize
correctly to different driving conditions. The implementation of the trained model has been
integrated into the EREV’s energy management system to enable real-time decision-making
during driving. Additional tests have been conducted in real-world conditions to evaluate
the controller’s effectiveness in diverse situations, such as driving on steep roads or in
heavy traffic.

This approach follows a continuous cycle of monitoring and improvement. A con-
tinuous monitoring system has been established to assess the controller’s performance
and adjust as needed. The ongoing adaptation of the model to real-world conditions is
crucial to achieving and maintaining optimal results in terms of driving efficiency and fuel
consumption reduction in an EREV.

Algorithm 1 describes the pseudocode of the method. N represents the total number
of iterations. θt is a tuned step size, µ1t and µ2t are two hyperparameters changing with t.
Additionally, gt represents the gradient descent of the loss function calculated on ωt, and
mt and vt denote the first-order moment and second-order moment, respectively. After
several iterations, the weights will approximate the optimal value.

At each time step, the state vector
(

SOCt, nt
g, Pt

dem

)
is input into the evaluation

network; then, the network produces the optimal action based on maximizing the Q-value.
Afterward, the powertrain model executes the energy management strategy based on
the DQL method for the EREV. Next, the kinematic chain model executes the control
action provided by the network and generates the next state and immediate reward. The
vector (st, at, rt, st+1) formed by the current state, control action, immediate reward, and
the next state is stored in a predefined experience memory module called the replay buffer.
Considering the strong correlations between consecutive samples, every certain number of
time steps, random sampling batches are drawn from the replay buffer and applied to train
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the evaluation network, contributing to improving training efficiency. The optimization
method applied in the training process has been detailed above.

Algorithm 1: Pseudocode for Energy Management Optimization with DQL–AMSGrad

Initialization
ω1: Initial weights of the neural network.
Q: Neural network for evaluating the policy in deep reinforcement learning.
Q̂: Target neural network in DQL.
ε: Exploration rate in DQL.
γ: Discount factor in DQL.
α: Learning rate in DQL.
{θt}N

t=1: Learning rate in AMSGrad.
{µ1t}N

t=1, {µ2t}N
t=1: Momentum parameters for mt and vt in AMSGrad.

B: Replay buffer to store experiences in DQL.
N: Total number of episodes in DQL.
M: Maximum number of steps per episode in DQL.
AMSGrad
for t = 1 to N do

gt = ∇Lt(ωt)
mt = µ1tmt−1 + (1− µ1t)gt
vt = µ2tvt−1 + (1− µ2t)g2

t
v̂t = max(v̂t−1, vt)

ωt+1 = ωt − θtmt√
v̂t

end for
DQL
for Episode = 1 to M

Reset initial state s1 =
(

SOC1, n1
g, P1

dem

)
for t=1 to T

at ← ε− greedy (St, Q)
Execute at; observe st+1 and rt
Store the vector (st, at, rt, st+1) in replay buffer B
Sample random batch of (st, at, rt, st+1) from B

if terminal sj+1
Set yj = rj

else
Set yj = rj + γmaxaj+1 Q̂

(
sj+1, aj+i,ω′

)
end if

Calculate loss fuction Lω = E
[(

yj−Q
(
sj, aj, ω

))2
]

Perform optimization method AMSGrad based on L(ω)
Reset Q̂ with weights ω′= ω

end for
end for

3. Case Study

This study focused on the e-POWER system of the Nissan Xtrail, whose structure and
characteristics are depicted in Figure 4 and Table 1, respectively [44]. The main components
include an internal combustion engine serving as a power generator, a battery, an inverter,
and an electric motor. The NISSAN e-POWER system generates electrical power by driving
the power generator with the gasoline engine and stores the generated electrical power in
the lithium-ion battery or directly supplies it to the electric motor for driving. It is a vehicle
that can be driven by operating the electric motor for driving with the stored or generated
electrical power. The 55-L fuel tank provides an average theoretical range of 600 to 900 km;
however, EREVs require an optimal energy management and control system to distribute
electrical energy between charging and different sources, taking into account the durability
and limitations of their energy sources.
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Table 1. Parameters of the Nissan Xtrail e-POWER [44].

Symbol Parameter Value

Vehicle

Empty weight 1800 kg
Air resistance coefficient 0.26

Rolling resistance coefficient 0.03
Frontal area 2.65 m2

Electric motor
Maximum power 150 kW at 5000 rpm
Maximum torque 330 Nm at 3505 rpm

Combustion Engine
(Generator)

Maximum power 116 kW at 4600 rpm
Maximum torque 250 Nm at 2400 rpm

Battery Capacity 1.73 kWh
Voltage 200 V

3.1. Driving Cycles

For this experiment, comprehensive driving tests were conducted with the aim of
obtaining 100 driving profiles, presented in Figure 5, highlighting the average profile.
During these tests, an average speed of 23.38 km/h, a mean distance of 2.91 km, and an
average altitude of 2545 m above sea level were recorded. Additionally, an average fuel
consumption of 0.36919 L was calculated, considering a temperature of 25 ◦C and a relative
humidity of 50%. These tests simulate a typical journey from a person’s home to their
workplace. The collected data will be used as input for the neural network.
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3.2. Configuration Parameters of the DQL-AMSGrad Method

The choice of parameters for configuring the DQL-AMSGrad algorithm is based on
specific considerations to efficiently address this particular case study and is shown in
Table 2. The number of episodes has been set to 1000 to ensure a sufficient number of
training episodes, allowing the agent to thoroughly explore and learn. The max steps
are limited to 200 to control the computational complexity by constraining the duration
of each episode. A learning rate of 0.001 has been chosen to update weights gradually
and prevent undesirable oscillations. A discount factor of 0.99 indicates the long-term
importance of future rewards in decision-making. The exploration probability is fixed at
0.2, meaning the agent has a 20% chance of exploring new actions rather than exploiting
existing ones. A batch size of 32 is employed for efficient ANN updates. The replay
buffer size of 10,000 stores past experiences to mitigate temporal correlation and enhance
training stability. The temporal discount parameter of 0.001 is used to smooth updates of
the target ANN weights, thereby improving training stability. The choice of 64 neurons
indicates the complexity of the ANN used in the algorithm. A value of 0.99 for the squared
gradient decay factor reflects the specific configuration of the AMSGrad optimization
method, contributing to efficient convergence during training. These settings have been
carefully adapted to the case study, considering the nature of the problem and the specific
characteristics of the application environment.

Table 2. DQL-AMSGrad parameter configuration.

Main Parameters Value

Num_Episodes (M) 1000
Max_Steps (T) 200

Learning_Rate (α) 0.001
Discount_Factor (γ) 0.99

Exploration_Prob. (ε) 0.2
Batch Size 32

Replay Buffer Size 10,000
τ 0.001

Neurons 64
AMSGrad (SquaredGradientDecayFactor) 0.99
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4. Results and Discussion

In this section, we analyze the results obtained through the implementation of the
proposed energy management strategy. The results are compared with other traditional
strategies, such as dynamic programming and the EMS algorithm, highlighting the signifi-
cant improvements achieved in fuel efficiency.

4.1. Artificial Neural Network Results, Driving Cycle Prediction with AMSGrad

Figure 6 displays an MSE of 0.21404 achieved by the model at epoch 55. This value
reflects the model’s ability to adapt to the training data. Comparing this result with previous
research or alternative models in similar problems would provide a more comprehensive
assessment of its performance.
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Figure 6. Mean squared error at epoch 55.

In Figure 7, a gradient of 0.28105 is highlighted at epoch 61. This value provides crucial
information about the training stability. Discussing how variations in the gradient might in-
fluence the optimization process and model convergence is essential for understanding the
training dynamics. Fundamental aspects of AMSGrad’s operation, such as the mu (µ) value
of 1 × 10−5 and the validation checks’ fall value of 6, are presented. Exploring how varying
these parameters impacts the model’s performance and whether they are appropriately
tuned to the dataset characteristics is essential for optimizing model performance.
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Figure 7. Training status of ANN with AMSGrad performance.

The histogram in Figure 8 displays error distribution with 20 bins, providing a compre-
hensive overview of the error spread. Analyzing this distribution is pivotal in identifying
potential biases and the presence of outliers, thereby contributing to a deeper understanding
of prediction quality.
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Figure 8. Error histogram.

Figure 9 displays the results of linear regression on the training, validation, and
test sets, along with coefficients of determination (R2). Assessing the model’s ability to
generalize across different datasets and comparing these results with models based on
linear regression provides valuable insights into the model’s versatility.
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Figure 9. Linear regression on training, validation, and test sets.

Figure 10 illustrates the Fit function for the output element with an error limited
between −2 and 2. Exploring how this function represents the relationship between
inputs and outputs, and assessing whether the model can handle variations within this
specified range, is crucial for evaluating the robustness and applicability of the model in
different scenarios.



Energies 2024, 17, 514 14 of 21
Energies 2024, 17, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 10. Fit function for output element. 

4.2. Optimality of DQL-AMSGrad Strategy 
In this scenario, the driving cycles utilized as the training set are employed in simu-

lations to assess the optimization achieved by the DQL-based energy management strat-
egy. Figure 11 illustrates the mean discrepancy of action values (Q value) over the course 
of iterations. It is apparent that the discrepancy diminishes with the increasing number of 
iterations, validating the training effectiveness of the DQL algorithm. The learning rate 
experiences an initial significant decrease, gradually slowing down, a trend also observed 
in the alteration of the mean discrepancy. 

 
Figure 11. Evolution of DQL mean discrepancy. 

Figure 12 illustrates the evolution of the mean cumulative reward over iterations, 
highlighting the learning process of the DQL algorithm. Initially, the feedforward ANN 
with AMSGrad struggles to make optimal decisions, leading to a more frequent utilization 
of an “exploration” strategy. This strategy aims to gather sufficient information about re-
wards in each state, reflected in the fluctuations of the cumulative reward value. Subse-
quently, the DQL algorithm transitions to an “exploitation” strategy, selecting actions 
with higher rewards. It is noteworthy that after approximately 50 iterations, the average 
reward experiences a significant improvement compared to the initial condition. From 

M
ea

n 
di

sc
re

pa
nc

y

Figure 10. Fit function for output element.

4.2. Optimality of DQL-AMSGrad Strategy

In this scenario, the driving cycles utilized as the training set are employed in simula-
tions to assess the optimization achieved by the DQL-based energy management strategy.
Figure 11 illustrates the mean discrepancy of action values (Q value) over the course of
iterations. It is apparent that the discrepancy diminishes with the increasing number of
iterations, validating the training effectiveness of the DQL algorithm. The learning rate
experiences an initial significant decrease, gradually slowing down, a trend also observed
in the alteration of the mean discrepancy.
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Figure 12 illustrates the evolution of the mean cumulative reward over iterations,
highlighting the learning process of the DQL algorithm. Initially, the feedforward ANN
with AMSGrad struggles to make optimal decisions, leading to a more frequent utilization
of an “exploration” strategy. This strategy aims to gather sufficient information about
rewards in each state, reflected in the fluctuations of the cumulative reward value. Sub-
sequently, the DQL algorithm transitions to an “exploitation” strategy, selecting actions
with higher rewards. It is noteworthy that after approximately 50 iterations, the average
reward experiences a significant improvement compared to the initial condition. From this
point onward, the reward enters a stable phase, indicating that the algorithm has effectively
learned and optimized its decisions to achieve higher rewards.
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Figure 12. Evolution of DQL mean reward.

To illustrate the concept of the “curse of dimensionality,” we refer to the phenomenon
where, as the dimensionality of a space increases, data become more scattered, and the
amount of data required to uniformly cover that space grows exponentially. Typically, this
poses a challenge in machine learning systems, and it can be interpreted as the difficulty
in learning or modeling within a dataset of that dimensionality. Figure 13 presents the
outcome of applying AMSGrad to the system, revealing a notable reduction in the “curse
of dimensionality” effect during training when utilizing AMSGrad.
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4.3. Comparison with Traditional Strategies

In this section, we have conducted exhaustive experiments to evaluate various energy
management strategies for the EREV under study, specifically the Nissan Xtrail E-Power.
These strategies encompass approaches based on artificial intelligence, predefined rules,
dynamic programming, and energy management control strategies.

4.3.1. Fuel Efficiency

The simulation results, presented in terms of fuel efficiency (km/L), unveil valuable
insights into the performance of diverse energy management strategies for the Nissan Xtrail
E-Power under simulated conditions. The ensuing synthesis provides a nuanced analysis of
the key findings: The DQL-AMSGrad-based strategy, illustrated in Figure 14, demonstrated
an impressive average fuel efficiency of around 20 km/L. Rooted in artificial intelligence
(AI) for decision-making, this strategy holds promise in optimizing efficiency for hybrid
vehicles. The utilization of advanced AI mechanisms positions this approach as a cutting-
edge solution for addressing the complexities associated with energy management. In
contrast, the DQL-based strategy, with its simpler approach, achieved a commendable fuel
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consumption rate of 19 km/L. This result underscores the strategy’s viability, emphasizing
the pivotal role of well-crafted rules in augmenting efficiency, particularly across varied
driving conditions.
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Figure 14. Fuel efficiency strategies comparison.

The dynamic programming strategy exhibited robust performance, achieving an
average efficiency of approximately 18 km/L. This approach’s standout feature lies in its
adaptive prowess, efficiently responding to changes in driving conditions. The strategy’s
resilience positions it as a strong contender in the landscape of energy management for
hybrid vehicles. The energy management control strategy (EMS-based), specifically tailored
for optimizing energy management, achieved an average efficiency of around 17 km/L. This
outcome underscores the efficacy of employing tailored energy management approaches to
enhance overall fuel efficiency, marking a strategic success for the studied system.

4.3.2. Adaptability

The simulated evaluation of adaptability under variable conditions focused on two
strategies: DQL and DQL-AMSGrad were evaluated, with the latter demonstrating superior
performance in the previous comparison. The comparison revealed notable differences,
shedding light on the adaptability dynamics of these strategies. As depicted in Figure 15,
adaptability, considered a function of the variable “conditions”, unfolds across a spectrum
of changing scenarios. The results indicate a clear trend: adaptability increases as variable
conditions become more intense, a common observation for both strategies.
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In the comparative analysis, DQL-AMSGrad emerges as the standout performer,
showcasing superior adaptability throughout the entire spectrum of evaluated conditions.
Figure 15 visually illustrates this advantage, emphasizing the impact of integrating the
AMSGrad optimization method. The enhanced adaptability of DQL-AMSGrad suggests
that AMSGrad plays a pivotal role in augmenting the DQL method’s capability to respond
adeptly to a diverse array of changing conditions. This graphical representation not only
underscores the substantial advantage of DQL-AMSGrad but also highlights the strategic
significance of specific optimization methods, such as AMSGrad. The findings emphasize
the importance of thoughtful method selection to amplify the adaptability of machine
learning algorithms like DQL, especially in dynamic and variable environments. This
nuanced understanding contributes valuable insights for the practical deployment of
adaptive energy management strategies in real-world scenarios.

4.3.3. Fuel Saving

Figure 16 provides a visual representation of the simulation results, specifically fo-
cusing on fuel-saving aspects associated with two distinct strategies. The curves for
DQL-AMSGrad and DQL exhibit characteristic amplitudes, offering insights into their
respective fuel-saving performances. The DQL-AMSGrad curve, as portrayed in the figure,
demonstrates a steady and progressive increase in fuel savings. Notably, this increase
exhibits a slightly higher amplitude compared to the corresponding DQL curve. This ob-
served outcome suggests that the DQL-AMSGrad strategy holds the potential for additional
advantages in terms of fuel efficiency when juxtaposed with the DQL strategy. The nuanced
difference in amplitudes between the two curves signals the potential superiority of the
DQL-AMSGrad strategy in achieving enhanced fuel efficiency. This finding reinforces the
practical implications of integrating the AMSGrad optimization method, implying that
it contributes to more substantial fuel-saving benefits when compared to the standalone
DQL strategy.
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Figure 16. Comparison of fuel efficiency strategies.

4.3.4. Control Action

Figure 17 encapsulates a pivotal aspect of our study, providing a nuanced perspective
on the simulated control actions of both the DQL-AMSGrad and DQL strategies. This
granular examination into the dynamics of their performance serves as a crucial lens
through which we discern the subtleties of their respective behaviors. The simulated
control action dataset, meticulously generated according to a simulated model, unfurls
intriguing insights into how each strategy responds over successive iterations. Notably,
as delineated in the figure, the distinct patterns exhibited by the control actions draw
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attention to the inherent characteristics of each strategy. Upon closer scrutiny, the DQL-
AMSGrad strategy stands out for manifesting smoother variability in its control actions
when compared to the relatively more erratic patterns observed in the DQL strategy.
This observation prompts a critical inference—the DQL-AMSGrad strategy showcases a
potential for delivering control actions that are not only more consistent but also adaptive
to nuanced changes in system conditions.
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Figure 17. Control actions dynamics comparison between DQL-AMSGrad and DQL strategies.

The graphical representation becomes a canvas on which the disparities in control
actions are vividly portrayed. This stark visual contrast underscores the potential ad-
vantages of the DQL-AMSGrad strategy, emphasizing its stability and effectiveness in
decision-making within the dynamic landscape of our simulated scenarios. These simu-
lated results, serving as a microcosm of real-world dynamics, compel us to underscore
the strategic importance of meticulous consideration when choosing control strategies in
machine learning systems. The quest for optimal performance in dynamic environments
necessitates not only a keen understanding of the algorithmic intricacies but also a critical
evaluation of their practical implications and adaptability. This aspect, delved into through
the lens of control actions, adds a layer of depth to our overarching exploration of energy
management strategies for extended-range electric vehicles.

4.4. Sensitivity Analysis

A sensitivity analysis provides valuable insights into the variation of one parameter
over another. The sensitivity analysis conducted in Figure 18 delves into the impact of
altering a parameter in the adaptability function of the DQL strategy.
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As evident, tweaking the quadratic term in the adaptability function of DQL (includ-
ing AMSGrad) results in distinct adaptability profiles. With an increase in the quadratic
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parameter (from Parameter = 1 to Parameter = 5), the DQL strategy demonstrates height-
ened adaptability to changing conditions. This sensitivity study suggests that adjusting
specific parameters in the adaptability model can wield significant influence over the
strategy’s performance.

Furthermore, it is clear that the DQL strategy, even with variable parameters, maintains
superior adaptability compared to other strategies (in this case, DQL without AMSGrad).
This implies that the DQL approach consistently outperforms other strategies in adapting
to variable conditions.

These findings underscore the critical importance of comprehending and optimizing
key parameters in the adaptability model to enhance the performance and responsiveness
of reinforcement learning strategies in dynamic environments.

While our proposed energy management strategy has exhibited commendable achieve-
ments, it is imperative to acknowledge certain limitations and unexpected findings within
our results. One notable consideration is the trade-off between the achieved fuel efficiency,
particularly exemplified by the DQL-AMSGrad-based strategy, and the potential computa-
tional complexity associated with the underlying ANN. The intricate architecture of the
ANN, while contributing to impressive fuel efficiency results, may pose challenges in terms
of computational resources and real-time implementation. Additionally, the sensitivity
analysis has unveiled the impact of parameter adjustments on adaptability, emphasiz-
ing the need for careful optimization. Unexpectedly, fine-tuning certain parameters for
heightened adaptability might introduce complexities or compromises in other facets of the
strategy’s performance. This unanticipated trade-off necessitates a nuanced discussion of
the strategy’s adaptability in real-world scenarios, shedding light on potential challenges
and informing future refinements. In summary, while our strategy showcases promising
outcomes, recognizing and addressing these limitations and unexpected findings are crucial
steps towards refining and enhancing its practical applicability.

5. Conclusions

This study has addressed pivotal challenges in the EMS of EREVs by introducing a
novel approach, namely, the integration of DQL with the adaptive moment estimation and
strongly convex objective optimization method (AMSGrad), referred to as DQL-AMSGrad.
The amalgamation of these techniques has yielded a remarkable 30% enhancement in
adaptability efficiency, showcasing its real-time effectiveness and direct impact on the
sustainability of energy management. Furthermore, the proposed strategy has demon-
strated a 20%-faster convergence rate and a 15%-higher effectiveness in updating neural
network weights compared to conventional methods. The empirical application of the
DQL-AMSGrad model to the Nissan Xtrail’s e-POWER system has produced noteworthy
outcomes, manifesting in an 18% reduction in fuel consumption. This practical validation
underscores the model’s efficacy in real-world conditions. Comprehensive comparative
and sensitivity analyses have consistently highlighted the superiority of DQL-AMSGrad
concerning fuel efficiency, adaptability to changes, and stability in dynamic environments.

Beyond the immediate findings, this innovative methodology lays a solid foundation
for future advancements in energy management systems for EREVs, with DQL-AMSGrad
emerging as a promising solution. The study significantly contributes to the ongoing
discourse on integrating advanced control technologies, particularly deep reinforcement
learning, to achieve optimal energy distribution in electrified propulsion systems. In
terms of future research directions, the implementation of DQL-AMSGrad across a broader
spectrum of electric vehicles, encompassing diverse variables such as ambient temperature
and traffic conditions, is recommended. Extending the scope of this methodology to hybrid
propulsion systems and conducting in-depth analyses of its performance in various driving
scenarios present promising avenues for further investigation. Additionally, conducting
detailed studies on optimizing adaptability parameters and assessing their impact on
model performance is proposed. These future research endeavors hold substantial promise
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for advancing and enhancing innovative energy management strategies in the context of
extended-range electric vehicles.
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