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Abstract: Evaluating classification accuracy is a key component of the training and validation stages 
of thematic map production, and the choice of metric has profound implications for both the success 
of the training process and the reliability of the final accuracy assessment. We explore key consider-
ations in selecting and interpreting loss and assessment metrics in the context of data imbalance, 
which arises when the classes have unequal proportions within the dataset or landscape being 
mapped. The challenges involved in calculating single, integrated measures that summarize classi-
fication success, especially for datasets with considerable data imbalance, have led to much confu-
sion in the literature. This confusion arises from a range of issues, including a lack of clarity over 
the redundancy of some accuracy measures, the importance of calculating final accuracy from pop-
ulation-based statistics, the effects of class imbalance on accuracy statistics, and the differing roles 
of accuracy measures when used for training and final evaluation. In order to characterize classifi-
cation success at the class level, users typically generate averages from the class-based measures. 
These averages are sometimes generated at the macro-level, by taking averages of the individual-
class statistics, or at the micro-level, by aggregating values within a confusion matrix, and then, 
calculating the statistic. We show that the micro-averaged producer’s accuracy (recall), user’s accu-
racy (precision), and F1-score, as well as weighted macro-averaged statistics where the class preva-
lences are used as weights, are all equivalent to each other and to the overall accuracy, and thus, are 
redundant and should be avoided. Our experiment, using a variety of loss metrics for training, sug-
gests that the choice of loss metric is not as complex as it might appear to be, despite the range of 
choices available, which include cross-entropy (CE), weighted CE, and micro- and macro-Dice. The 
highest, or close to highest, accuracies in our experiments were obtained by using CE loss for models 
trained with balanced data, and for models trained with imbalanced data, the highest accuracies 
were obtained by using weighted CE loss. We recommend that, since weighted CE loss used with 
balanced training is equivalent to CE, weighted CE loss is a good all-round choice. Although Dice 
loss is commonly suggested as an alternative to CE loss when classes are imbalanced, micro-aver-
aged Dice is similar to overall accuracy, and thus, is particularly poor for training with imbalanced 
data. Furthermore, although macro-Dice resulted in models with high accuracy when the training 
used balanced data, when the training used imbalanced data, the accuracies were lower than for 
weighted CE. In summary, the significance of this paper lies in its provision of readers with an 
overview of accuracy and loss metric terminology, insight regarding the redundancy of some 
measures, and guidance regarding best practices. 
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1. Introduction 
The methods used in the assessment of class labeling success are of profound im-

portance in designing the procedures for classification or thematic mapping projects [1,2], 
though the topic is often given limited attention in the literature. The evaluation of class 
labeling success is carried out at two key points in a classification. For methods that rely 
on the iterative backpropagation of errors and optimization algorithms, such as deep 
learning-based methods, the choice of loss function, used to quantify whether or not each 
iteration has reduced classification error, directly affects the resulting classification, since 
the loss metric acts as the sole indicator for model performance during training and guides 
parameter updates [3,4]. Second, the final evaluation of the accuracy of a classification is 
an important attribute in defining the usefulness of the classification model, but if the ac-
curacy estimates themselves are biased, then the value of the model and its products is 
unclear. In addition, if we wish to compare methods or datasets, biased accuracy measures 
will likely result in incorrect evaluations [1]. 

The challenge with choosing accuracy assessment metrics is that we typically want a 
single metric to facilitate simple yes–no decisions, as in evaluating successive classification 
iterations with loss metrics, or to facilitate the ranking of classifications in experiments 
comparing different methods or datasets. Overall accuracy (OA), defined as the probabil-
ity that a randomly selected sample is correctly classified, superficially seems to fit this 
need, since it provides a single, integrated metric. However, it is well known that a classi-
fication can entirely miss an extremely rare class, and yet have an OA close to 100%. This 
has led many analysts to claim that OA is misleading in the case of imbalanced (i.e., non-
equal) class prevalence. However, this claim is not correct; as pointed out by Stehman and 
Foody [5], OA is not wrong or misleading, and does not underweight rare classes. The 
problem is instead that OA is the wrong choice for evaluating the success of discriminat-
ing individual classes, as OA merely evaluates whether the label (irrespective of the class) 
is correct. If the aim is to evaluate classification success on an individual-class basis, a 
class-based metric is needed. However, using class-based metrics causes its own prob-
lems, since defining the fundamental success of labeling at a class level requires, at a min-
imum for each class, two non-redundant class-based metrics, namely the user’s accuracy 
(UA, also known as precision) and producer’s accuracy (PA, also known as recall) [5,6]. 
Thus, characterizing the accuracy of the individual classes for a three-class classification 
requires a total of six separate accuracy measures (three UAs and three PAs). 

Analysts have attempted to overcome the problem of multiple-class-based metrics by 
averaging them in various ways. One approach is a simple arithmetic average of the class 
statistics, known as macro-averaging. An alternative approach is to use micro-averaging, 
in which the values for the individual classes are first aggregated within a confusion ma-
trix, and then, a single combined statistic is calculated [3,7,8] (the confusion matrix, micro- 
and macro-averaging, as well as the various accuracy measures, such as UA and PA, are 
defined and explained in more detail, in Section 2). In choosing a method for combining 
the class statistics to produce an integrated measure, it is important to consider the impli-
cations of these methods, as well as the anticipated use of the derived statistic. For exam-
ple, are the relative proportions of each class in the reference data meaningful (i.e., do they 
match the class abundance in the landscape being classified), and is the aim of the classi-
fication to produce high OA or to maximize the accuracy of each class or a particular sub-
set of classes, even at the potential expense of OA? These issues are rarely discussed in the 
literature, adding to the difficulty of designing appropriate experimental methods. 

In this paper, we provide a conceptual summary of the major loss metrics used in 
training and the accuracy assessment metrics used in evaluating classification success, 
with an emphasis on integrated summary metrics. The scope of this paper includes the 
exploration of the concept of imbalanced classes, and the implications for both training 
and classification evaluation. Through a series of experiments, we illustrate the different 
choices of accuracy measurements and methods for integrating them. The significance of 
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this paper is that it provides guidance and outlines best practices, particularly for imple-
menting macro- and micro-averaging for calculating loss metrics and multiclass accuracy 
in the context of imbalanced and balanced data. 

The rest of this paper is organized into four parts. Following this introduction, Sec-
tion 2 provides background material regarding accuracy assessment metrics, the mul-
ticlass averaging of class statistics, and loss metrics. Section 3 summarizes the data and 
methods for the experiments. Section 4 uses the results of the experiments to explore is-
sues related to micro- and macro-averaging for accuracy assessment and loss metrics in 
the context of class imbalance. The conclusions are presented in Section 5. 

2. Background 
2.1. Accuracy Assessment Metrics 

More than three decades of research into the assessment of the accuracy of remote 
sensing products has resulted in an extensive body of literature. Stehman and Czaplewski 
[9] provide a comprehensive discussion of the basic components of a statistically rigorous 
accuracy assessment of thematic maps, including sampling design, response design, and 
estimation and analysis protocols. They stress the importance of using probabilistic sam-
pling designs to ensure a rigorous statistical foundation for inference. Stehman [10] ex-
plains that probability-based sampling methods ensure that each element in the map pop-
ulation (e.g., pixel or sampling unit) has a known and non-zero chance of being selected 
in the sample. He also emphasizes the importance of consistent estimation to ensure that 
the estimates derived from the sample apply to the parameters of the entire population 
under study (e.g., every pixel in the mapped extent). Moreover, Stehman [11] highlights 
the impact of sample size allocation when using stratified random sampling for accuracy 
assessment and area estimation in the context of land-cover change mapping, with a focus 
on addressing the competing estimation objectives for rare and common classes, a fre-
quent issue in the context of class imbalance. 

A confusion matrix is a valuable tool for quantifying the performance of a classifica-
tion algorithm [1,2]. An example confusion matrix is provided in Table 1. By comparing 
the independently determined labels, which define the columns of the table, and predicted 
classes, which define the rows of the table, of data points or sampling units not included 
in the training process (e.g., validation or testing data), it presents a comprehensive picture 
of model performance. This matrix goes beyond merely summarizing the overall accuracy 
or error, as it helps to quantify the specific types of errors. Analyzing the confusion matrix 
enables users to discern which classes are accurately predicted, which are inaccurately 
predicted, and which tend to be confused with each other [1,2]. Below, we discuss the 
impact of class imbalance on the confusion matrix and derived metrics, and highlight the 
utility of a population confusion matrix in which the relative proportion of samples ap-
proximates those within the landscape being mapped.  

Table 1. Confusion matrix conceptualization where three classes, A, B, and C, are differentiated. Pij 
represents the proportion of samples classified as class i, but known to belong to class j. The + sym-
bol is used to represent summation; when the + symbol occurs in the first subscript position, the 
rows are summed; when the + symbol is in the second subscript position, the columns are summed. 
Gray cells represent correct classifications. UA = user’s accuracy (1 – commission error) and PA = 
producer’s accuracy (1 – omission error). 

  Reference   
  A B C Row Total UA 

Classification 
A PAA PAB PAC PA+ PAA/PA+ 
B PBA PBB PBC PB+ PBB/PB+ 
C PCA PCB PCC PC+ PCC/PC+ 

 Column total P+A P+B P+C   
 PA PAA/P+A PBB/P+B PCC/P+C   
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OA is a commonly employed metric in traditional remote sensing accuracy assess-
ment for evaluating the performance of classification models. It is calculated as the pro-
portion of correctly classified testing samples among the total number of withheld sam-
ples [1,12]. Using the symbology from Table 1, OA = (PAA + PBB + PCC)/P++, where P++ repre-
sents summation over both the rows and columns, and thus, P++ = 1.0. Alongside OA, it is 
common to calculate the class-level assessment metrics, PA and UA (see Section 1, above). 
PA represents a 1 – omission error, while UA represents a 1 – commission error [1]. 

The Kappa statistic has traditionally been calculated alongside OA as a measure of 
chance-adjusted agreement [13]. However, following decades of research highlighting its 
limitations, including the fact that it does not assume the reference labels are necessarily 
correct, the use of this metric is no longer regarded as useful in remote sensing accuracy 
assessment [14,15]. Therefore, Kappa will not be discussed further here.  

In binary classifications, when only two classes are differentiated, it is common to 
label the class of interest as the positive case, and the background as the negative case, as 
described in Table 2. True positives (TPs) and true negatives (TNs) are, respectively, pos-
itive and negative case samples that are correctly mapped. On the other hand, false posi-
tives (FPs) and false negatives (FNs) are samples that are incorrectly mapped to the posi-
tive and negative classes, respectively (see Table 2).  

Each of the UAs and PAs of the positive and negative classes are typically given their 
own names (Tables 2 and 3). Precision and negative predictive value (NPV) are equivalent 
to UA for positive and negative cases, respectively, while recall (also sometimes known 
as sensitivity) and specificity are, respectively, equivalent to PAs. As documented by Max-
well et al. [6], there is some confusion in the names used for class accuracies based on the 
binary model, and thus, it is important to always define the meaning of accuracy measures 
used in a study. The F1-score is commonly employed as a single metric that combines 
precision and recall, and is calculated as the harmonic mean of precision and recall. The 
F1-score considers both errors of omission, as estimated with recall, and errors of commis-
sion, as estimated with precision, relative to the positive case [12]. Table 3 summarizes 
these metrics, how they are calculated, and the relationships between them.  

Table 2. Conceptualization of binary confusion matrix and associated terminology. TP = true posi-
tive, TN = true negative, FN = false negative, FP = false positive, and NPV = negative predictive 
value. See Table 3 for equations for recall, precision, specificity, and NPV. 

  Reference Data   
  Positive Negative  1 – Commission Error 

Classification 
Result 

Positive TP FP 
TPTP + FP Precision 

Negative FN TN 
TNFN + TN NPV 

  
TPTP + FN 

TNFP + TN   

 1 – omission error Recall Specificity   

Table 3. Multiclass and binary metrics commonly calculated from the confusion matrix. TP = true 
positive, TN = true negative, FN = false negative, FP = false positive. 

Type of Classification Metric Equation Comments 

Binary and multiclass 
Overall 

accuracy  
(OA) 

Count of correct samplesCount of total samples  

or TP + TNTP + TN + FP + FN 

 

Multiclass 
User’s accuracy  

(UA) 
Count of correctly labeled samples in classTotal count of samples predicted to class  1 – commission error 
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Producer’s accuracy 
(PA) 

Count of correctly labeled samples in classTotal count of samples actually in class  1 – omission error 

Binary 

Recall 
TPTP + FN 

PA for positives  
(1 – positive case 
omission error) 

Precision 
TPTP + FP 

UA for positives 
(1 – positive case 

commission error) 

Specificity 
TNTN + FP 

PA for negatives 
(1 – negative case 
omission error) 

Negative  
predictive value (NPV) 

TNTN + FN 
UA for negatives 
(1 – negative case 
commission error) 

F1-score  
(Dice score) 

2 ×  Precision ×  RecallPrecision +  Recall  

or  2 ×  TP 2 × TP + FN + FP 

 

2.2. Averaged Multiclass Accuracy Measures 
The binary metrics discussed above, including precision, recall, and F1-score, and the 

related loss metrics, which will be discussed in the next section, have been adapted for 
use in multiclass classification problems. However, varying approaches to aggregating the 
metrics across classes are used. For example, macro-averaged multiclass recall (Equation 
(1)) entails separately calculating recall for each class (j) across all classes (C), then sum-
ming the metrics, and finally, dividing by the number of classes (N) to obtain an average 
recall. Since all classes are averaged, each takes on equal weight in the calculation. Macro-
averaged multiclass precision is an equivalent measure, in which the individual precision 
values for each class are combined in a simple arithmetic average (Equation (2)). Similarly, 
consistent with the basic F1 statistic definition (Table 3), the macro-averaged F1 statistic is 
simply the harmonic mean of the macro-averaged recall and macro-averaged precision. 

Macro-averaged multiclass recall = ଵே ∑ ୘୔ೕ୘୔ೕ ା ୊୒ೕ஼௝ୀଵ    (1)

Macro-averaged multiclass precision = ଵே ∑ ୘୔ೕ୘୔ೕ ା ୊୔ೕ஼௝ୀଵ    (2)

Unfortunately, there is considerable confusion in the literature regarding terminol-
ogy used for macro-averaging. Macro-averaged recall, macro-averaged precision, and 
macro-averaged F1 are also frequently referred to as, respectively, mean recall [16] (and 
sometimes, even more confusingly, labeled as mean accuracy [17]), mean precision [16], 
and mean F1 [18].  

As an alternative to the equal weighting of classes, micro-averaged multiclass recall, 
precision, and F1 have been proposed as prevalence-dependent measures. In micro-aver-
aged recall (Equation (3)), the total count of TPs across all C classes is summed and divided 
by the total count of all TPs and FNs across the C classes. The numerator in Equation (3) 
is therefore the sum of the correct samples, and the denominator is the overall total of the 
sum of each column, i.e., the sum of the entire confusion matrix. Thus, micro-averaged 
recall is equivalent to the definition of the OA statistic [8]. The associated micro-averaged 
precision statistic (Equation (4)) can also be shown to be equivalent to OA, and thus, mi-
cro-averaged recall and micro-averaged precision are identical. Furthermore, since the 
harmonic mean of identical values is itself equal to those values, micro-averaged recall, 
micro-averaged precision, and micro-averaged F1 are all identical and equal to OA [8]. 
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Micro-averaged multiclass recall = 
∑ ୘୔ೕ಴ೕసభ∑ ୘୔ೕ಴ೕసభ  ା ∑ ୊୒ೕ಴ೕసభ    (3)

Micro-averaged multiclass precision = 
∑ ୘୔ೕ಴ೕసభ∑ ୘୔ೕ಴ೕసభ  ା ∑ ୊୔ೕ಴ೕసభ    (4)

It is also possible to calculate a weighted macro-averaged recall, precision, and F1-
score where the contribution of each class in the final average is controlled by a user-de-
fined weight (wj) (Equations (5) and (6)) [7,8]. This allows the user to specify the relative 
weighting of each class in the aggregated metric, as opposed to traditional macro-averag-
ing, where all classes are equally weighted, or micro-averaging, in which the values in the 
confusion matrix are aggregated prior to calculating the accuracy metric, and thus, the 
relative proportion of each class in the testing or validation dataset is preserved [3,7,8]. An 
important caveat is that when the class prevalences are used as the weights, weighted 
macro-averaged class metrics are also equivalent to OA. 

Weighted macro-averaged multiclass recall =   ଵ∑ ௪ೕ಴ೕసభ ∑ (𝑤௝ ୘୔ೕ୘୔ೕ ା ୊୒ೕ஼௝ୀଵ ) (5)

Weighted macro-averaged multiclass precision =  ଵ∑ ௪ೕ಴ೕసభ ∑ (𝑤௝ ୘୔ೕ୘୔ೕ ା ୊୔ೕ஼௝ୀଵ )  (6)

2.3. Loss Metrics 
When using backpropagation and mini-batch stochastic gradient descent (SGD) and 

its derivatives to iteratively update trainable parameters in CNN-based deep learning 
models, the loss metric serves as the sole measure of error to guide the learning process. 
As a result, the choice of an appropriate loss metric is of great importance [3,4,19,20]. The 
level of class imbalance potentially has a large impact on the suitability of a classification 
loss metric [3], as will be discussed below.  

Binary cross-entropy (BCE) loss is the predominant loss metric used in binary classi-
fication tasks, while cross-entropy (CE) loss is common for multiclass classification tasks. 
The equations for these loss metrics are provided in Table 4. BCE and CE are examples of 
distribution-based-loss measures [4]. BCE loss is minimized when all n case samples, 
coded as 𝑦௜, with values of 1 when positive and 0 when negative, are predicted to have a 
positive class probability (𝑝పෝ ) approaching 1 for the former and 0 for the latter. CE loss also 
makes use of predicted class probabilities (𝑝௜௝) and is minimized when the class probabil-
ity for each sample (i) within each class (j) approaches 1 for the correct class and 0 for all 
other classes. Classes with more samples will have a larger weight or impact in the calcu-
lation; as a result, CE loss is sensitive to class imbalance. In response, a weighted cross-
entropy loss metric is sometimes used to specify the relative weights, wj, of each class in 
the calculation. The values of wj are commonly based on the inverse of the abundance of 
the class in the training dataset in order to attempt to offset the impact of sample size. It is 
possible to increase the impact of difficult to classify samples by including a γ parameter. 
This is known as focal loss [3].  

Table 4. Commonly used loss metrics for binary and multiclass classification. 

Loss Equation 

Binary cross-entropy (BCE) loss − 1𝑛 ෍ሾ𝑦௜ ⋅ log(𝑝పෝ ) + (1 − 𝑦௜) ⋅ log(1 − 𝑝పෝ )ሿ௡
௜ୀଵ  

Cross-entropy (CE) loss − 1𝑛 ෍ ෍ 𝑦௜௝஼
௝ୀଵ

௡
௜ୀଵ ⋅ log൫𝑝పఫෞ൯ 
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Weighted CE loss − 1𝑛 ෍ ෍ 𝑤௝஼
௝ୀଵ

௡
௜ୀଵ ⋅ 𝑦௜௝ ⋅ log൫𝑝పఫෞ൯ 

There are alternatives to BCE and CE loss and their derivatives. For example, there 
are several loss metrics that are derived from the Dice metric (an alternative name for the 
F1-score; see Table 3), and which are all region-based losses [4]. Since Dice is a measure of 
accuracy, the value of (1 – Dice) is used as the loss (i.e., error) metric [21–23]. Furthermore, 
in order to make the loss metric differentiable, class probabilities are generally used, as 
opposed to hard labels. Equations (7) and (8) present a generalization of Dice loss for mul-
ticlass classification. Equation (7) represents a micro-averaged version, while Equation (8) 
provides a macro-averaged version. As with the F1-score, these loss metrics consider 
omission and commission errors relative to the positive case.  

For Dice loss calculated using micro-averaging (Equation (7)), the predicted class 
probabilities relative to the correct class for the TPs (𝑝்̂௉) are summed and multiplied by 
two, and then, divided by the sum of 𝑝்̂௉ multiplied by two, FN class probabilities rela-
tive to the predicted class (𝑝̂ிே), and FP class probabilities relative to the predicted class 
(𝑝̂ி௉). A smoothing factor (𝜀) is commonly added to both the numerator and the denomi-
nator for computational stability and to exclude divide-by-zero errors. The result is then 
subtracted from 1 to convert from a measure of accuracy to an error metric. In Section 2.2, 
we explained that micro-averaging is equivalent to OA. The same logic applies to micro-
averaged Dice loss, which is related to 1 – OA; however, it makes use of predicted class 
probabilities as opposed to predicted class labels, so is not strictly equivalent to OA. 

In contrast to micro-averaging, the macro-averaged version (Equation (8)) calculates 
Dice loss separately for each class (j) of the C classes, and then, divides by the number of 
classes (N) to obtain an averaged Dice loss in which each class is equally weighted. It is 
also possible to calculate the weighted micro-averaged Dice loss where the user defines 
the relative weight of each class in the overall average [7,8,21,22,24,25]. 

Micro-averaged Dice loss = 1 − ( (ଶ × ఀ௣ො೅ು)ା ఌ(ଶ × ఀ௣ො೅ು)ାఀ௣ොಷಿାఀ௣ොಷುା ఌ) (7)

Macro-averaged Dice loss =  ଵே ∑ (1 − ( (ଶ × ఀ௣ො೅ು) ା ఌ(ଶ × ఀ௣ො೅ು)ାఀ௣ොಷಿାఀ௣ොಷು ାఌ஼௝ୀଵ )) (8)

Similar to CE loss, a focal version of Dice loss can be calculated by adding a γ term 
to control the relative impact of difficult-to-classify samples [25]. Tversky loss is a modifi-
cation of Dice loss that adds α and β terms to control the relative weights of false positive 
and false negative errors. These loss measures were developed in response to the concern 
that highly imbalanced training data tend to result in a classification biased towards high 
precision and low recall for rare classes [26]. Therefore, by setting β > α (typical values are 
0.7 and 0.3), FN is given increased weight in the loss function, and the resulting classifica-
tion typically has an increased recall for rare classes, though this is likely at some cost to 
precision [26,27]. 

3. Methods 
3.1. Data 

To illustrate the issues involved in selecting accuracy and loss metrics, we used the 
EuroSat dataset [28] (Figure 1), which is a large and diverse dataset of satellite images that 
can be used to train and evaluate land use and land cover classification models. These data 
were generated for use in scene labeling or scene classification problems, where the entire 
image extent is labeled as a single class, in contrast to semantic segmentation, where each 
individual pixel is labeled. The dataset consists of 27,000 64-by-64-pixel (representing 640 
by 640 m) image chips, each of which is labeled as one of ten land cover classes: “annual 
crop”, “forest”, “herbaceous vegetation”, “highway”, “industrial”, “pasture”, “permanent 
crop”, “residential”, “river”, or “sea/lake” [28]. The images were captured over European 
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countries by the Sentinel-2 satellite, which is operated by the European Space Agency 
(ESA), using the Multispectral Instrument (MSI) sensor. Of the 13 Sentinel-2 spectral 
bands (Table 5), three bands (B1, B9, and B10) are designed for atmospheric correction or 
quality control, and therefore, were excluded from our classification experiments. This left 
10 bands, all of which were used as the input variables [29]. 

 
Figure 1. Example image chips from EuroSat dataset. Chips are displayed as false color composites, 
with the NIR, red, and green bands displayed, respectively, as red, green, and blue. Each chip is 64 
by 64 pixels in size with a spatial resolution of 10 m. 

Table 5. Sentinel-2 (MSI) bands. RE = red edge, NIR = near infrared, SWIR = shortwave infrared. 
Wavelength units are in nanometers (nm). Y indicates bands used in the experiment. 

Band B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12 
Central wave-

length (nm) 443 490 560 665 705 740 783 842 865 940 1375 1610 2190 

Description Ultra 
blue Blue Green Red RE1 RE2 RE3 NIR NIR 

(narrow) 
Water 
vapor 

Cirrus 
cloud SWIR 1 SWIR 2 

Used in our 
experiment  Y Y Y Y Y Y Y Y   Y Y 

The non-overlapping training, validation, and testing partitions defined by the data 
originators were used in this study. In order to generate a balanced training set, we used 
stratified random sampling without replacement to sample 1400 images from each class 
available in the original dataset, for a total of 14,000 samples (Table 6). With ten classes, 
the balanced dataset has a class prevalence of 10% for every class. We also generated an 
imbalanced training set, with half of the classes (“annual crop”, “herbaceous vegetation”, 
“industrial”, “residential”, and “sea/lake”) randomly selected and assigned a reduced 
number of samples, 140, for an overall total of 7700 samples. In the imbalanced dataset, 
the class prevalences are 18.18% for each of the five common classes, and 1.82% for each 
of the five rare classes. This process was replicated for the validation datasets. We selected 
400 samples from each class, or 4000 samples in total, for the balanced set. For the imbal-
anced validation dataset, we randomly selected a subset of 40 samples from the same five 
classes that were subsampled in the training set, resulting in an imbalanced validation set 
with 2200 samples. The test set used the original dataset class proportions and was not 
subsampled. Instead, after all samples were predicted and a sample error matrix was gen-
erated, we adjusted the proportions in the sample error matrix to represent population 
confusion matrices. Two separate test set population confusion matrices were generated: 
a balanced confusion matrix with equal prevalences for all the classes, and an imbalanced 
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confusion matrix with class prevalence equivalent to the imbalanced training and valida-
tion sets. 

Table 6. Number of samples in each class for the balanced and imbalanced training and validation 
sets. The testing set proportions used the samples in the original dataset, and the results were used 
to estimate balanced and imbalanced error matrices. 

 Training  Validation Testing 
 Balanced Imbalanced Balanced Imbalanced Both 

Annual crop 1400 140 400 40 300 
Forest 1400 1400 400 400 300 

Herb veg 1400 140 400 40 300 
Highway 1400 1400 400 400 250 
Industrial 1400 140 400 40 250 

Pasture 1400 1400 400 400 200 
Perm crop 1400 1400 400 400 250 
Residential 1400 140 400 40 300 

River 1400 1400 400 400 250 
Sea/Lake 1400 140 400 40 359 

Total 14,000 7700 4000 2200 2509 

3.2. Classification Experiments 
3.2.1. CNN Scene Classification 

A series of experiments were performed using CNNs with the research objective of 
exploring the consequences of different averaging techniques within the context of scene 
classification using datasets with balanced and imbalanced classes. CNNs were defined 
and trained using the PyTorch library [30] in the Python language [31]. We designed the 
model to incorporate CNN design features that have been extensively used in the litera-
ture, rather than implementing state-of-the-art architectures that may be more rarely used, 
in order to ensure that our findings are relevant for typical CNN implementations. The 
CNN used a series of four 2D convolution, 2D batch normalization [32,33], rectified linear 
unit (ReLU) activation, and 2D max pooling layers followed by a series of two fully con-
nected, 1D batch normalization, and ReLU activation layers. The final layer consisted of a 
fully connected layer that returned a logit for each of the ten classes. All 2D convolution 
layers used a kernel size of 3 × 3 with a stride of 1 and padding to retain the original array 
sizes in the spatial dimensions. The 2D max pooling used a kernel size of 2 × 2 and a stride 
of 2 to decrease the size of the array in the spatial dimensions by half. For the 2D convo-
lution layers, 10, 20, 30, and 40 feature maps were generated, respectively. For the first two 
fully connected layers, 256 and 512 nodes or neurons were produced, respectively. Data 
augmentations and batch normalization were implemented to counteract overfitting and 
facilitate optimal convergence during training. For the data augmentations, we applied 
random horizontal and vertical flips using the albumentations Python library [34]. 

Each image in the training set had a 30% probability of undergoing these transfor-
mations. This probability setting ensured that each image had a substantial chance of be-
ing flipped either horizontally or vertically, thereby introducing necessary variability into 
the dataset. Such variability is particularly crucial when addressing issues of class imbal-
ance in the data. 

Our experiments were conducted using an NVIDIA GeForce RTX 3070 Ti GPU with 
16 GB of GDDR5 memory. This GPU was paired with an Intel Core i9 processor and 16 
GB of DDR5 RAM. This hardware configuration, combining a robust GPU with a power-
ful CPU and ample RAM, facilitated smooth and rapid processing of our CNN models. It 
allowed us to expedite iterations through various model architectures and parameter ad-
justments, essential for the success of our experimental setup. 
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Baseline experiments were executed using a range of loss functions. We used CE loss 
and Dice loss employing both macro- and micro-averaging techniques on the balanced 
and imbalanced datasets. We also trained a model using the imbalanced dataset and 
weighted CE loss in which the class weights were defined based on the inverse of their 
abundance in the training set. We did not train a model using the balanced dataset and 
weighted CE loss, since, with our weighting scheme, this would produce equal weights 
for the classes, and thus, would be equivalent to using non-weighted CE loss. At the end 
of each training epoch, both the balanced and imbalanced validation data were predicted. 

The training loop was executed for a maximum of 50 epochs using an AdamW opti-
mizer with a default learning rate of 0.001. Instead of using the model state after 50 epochs, 
we selected the model that provided the best performance with the validation data, as 
measured using the validation loss. When using a balanced training set, the epoch that 
provided the best performance for the balanced validation dataset was selected. In con-
trast, and when using an imbalanced training set, the best epoch was selected based on 
the imbalanced validation dataset loss. During the training process, we used a large train-
ing and validation mini-batch size of 700 samples to ensure that minority class samples 
were included in each mini-batch. This required using multiple GPUs to train the model. 

Accuracy assessment metrics were calculated from the prediction results obtained 
for the testing data. We used the R language and data science environment, and the yard-
stick [35], caret [36], rfUtilities [37], and diffeR [38] packages. We calculated the PAs (i.e., 
recalls) and UAs (i.e., precisions) for each of the ten classes. We also calculated OA and 
the class-aggregated recall, precision, and F1-score using both the macro- and micro-av-
eraging methods. 

3.2.2. Experiments Exploring the Effect of Changing Class Prevalences 
We undertook an experiment with the research objective of exploring the impact of 

changing the relative proportions of each class in the testing set on the resulting assess-
ment metrics. To accomplish this task, we used the sample2pop function provided in the 
diffeR R package [38]. The intended use of this function is to adjust the class proportions 
in a confusion matrix generated using stratified random sampling, where the strata are 
derived from the map itself. The output of the function is an estimate of the population 
confusion matrix, with row totals proportional to the area of each mapped class. In our 
case, however, we assumed the actual class prevalences were known, and thus, we wished 
to have instead column totals proportional to the class prevalences. We therefore trans-
posed our confusion matrix prior to running the program, and afterwards, transposed the 
results back again. We used this function to generate 1000 random adjustments of the con-
fusion matrix presented in Table 7 below with varying class proportions. This was accom-
plished by randomly selecting ten values that sum to 1.0 from a uniform distribution and 
adjusting the error matrix relative to these specified class proportions. From each gener-
ated confusion matrix, we then calculated all class PAs and UAs; the OA; and the class-
aggregated PA (i.e., class-aggregated recall), UA (i.e., class-aggregated precision), and F1-
score using both the macro- and micro- averaging methods. 
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Table 7. Example confusion matrix for classification of an imbalanced dataset using an imbalanced 
training set and cross-entropy loss. The table is an estimate of the population confusion matrix, and 
thus, the numbers in the table represent the percentage of the imbalanced data classified as class i, 
but known to belong to class j. 

  Reference   

  Annual 
Crop Forest 

Herb 
Veg 

High-
way 

Indus-
trial 

Pas-
ture 

Perm 
crop 

Residen-
tial River 

Sea/ 
Lake 

Row 
Total UA 

C
la

ss
ifi

ca
tio

n 

Annual crop 15.45 0.00 0.30 0.00 0.00 0.00 0.04 0.00 0.00 0.00 15.79 0.979 
Forest 0.24 1.79 0.12 0.00 0.00 0.02 0.00 0.00 0.00 0.00 2.18 0.825 

Herb veg 0.06 0.00 13.09 0.01 0.07 0.03 0.01 0.06 0.00 0.00 13.33 0.982 
Highway 0.30 0.00 0.91 1.75 4.73 0.01 0.01 1.58 0.04 0.00 9.33 0.188 
Industrial 0.00 0.00 0.00 0.00 12.51 0.00 0.00 0.24 0.00 0.00 12.75 0.981 

Pasture 0.61 0.02 0.85 0.00 0.00 1.76 0.01 0.00 0.01 0.00 3.27 0.539 
Perm crop 1.52 0.00 2.67 0.03 0.00 0.00 1.72 0.30 0.00 0.00 6.24 0.276 
Residential 0.00 0.00 0.00 0.01 0.65 0.00 0.01 16.00 0.00 0.00 16.68 0.959 

River 0.00 0.00 0.24 0.01 0.22 0.00 0.01 0.00 1.77 0.56 2.81 0.630 
Sea/lake 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.62 17.62 1.000 

 Column total 18.18 1.82 18.18 1.82 18.18 1.82 1.82 18.18 1.82 18.18   

 PA 0.850 0.987 0.720 0.964 0.688 0.970 0.948 0.880 0.972 0.969   

4. Results, Discussion, and Recommendations 
4.1. Micro- and Macro-Averaged Accuracy Assessment Metrics 

Table 7 provides the accuracy assessment results for the CNN-based scene classifica-
tion model described above, trained using the imbalanced training set and standard CE 
loss, and applied to the withheld testing data, with the confusion matrix adjusted to the 
imbalanced class proportions. The numbers in the table represent the percentages of the 
assumed imbalanced population. The OA for this classification is 0.835, and the class PAs 
and UAs, included on the table margins, vary from 0.688 to 0.972 and from 0.188 to 1.000, 
respectively. 

Table 8 provides the class-aggregated metrics calculated from Table 7. It is notable 
that the micro-averaged multiclass metrics, micro-UA (i.e., micro-precision), micro-PA 
(i.e., micro-recall), and micro-F1-score, are identical to the OA value. This is because, as 
was explained in Section 2.2 [8], micro-averaged multiclass metrics are directly equivalent 
to OA. The differentiation between FP and FN that is central to a binary approach to ac-
curacy assessment (see Table 2) breaks down with the application of micro-averaging to 
multiclass accuracy measures. For example, in Table 7, 0.04% of the imbalanced test da-
taset comprises “permanent crop” reference samples incorrectly classified as “annual 
crop,” and represent errors of omission or FNs from the perspective of the “permanent 
crop” class. However, this same 0.04% of samples represent commission errors (FPs) rel-
ative to the prediction of the “annual crop” class. Thus, every non-diagonal element is 
both an FN and an FP, and therefore, summing TPs and FNs (recall; Equation (3)), or TPs 
and FPs (precision; Equation (4)), results in the same overall total, equal to the sum of the 
matrix. Thus, micro-averaged multiclass recall and precision both represent the division 
of the sum of TPs by the confusion matrix total, i.e., OA. Similarly, since the F1-score is 
the harmonic mean of precision and recall, and the harmonic mean of two identical num-
bers is also identical to those two numbers, the micro-averaged F1-score is also equivalent 
to the micro-averaged precision and micro-averaged recall, as well as OA. Grandini et al. 
[8] provide further elaboration on the equivalency of the micro-averaged metrics and OA. 

Since OA is a well-known and intuitive statistic, with well-understood properties, it 
is not only unnecessary and redundant to use micro-averaged measures, but their use is 
likely to add confusion. Perhaps more importantly, since OA is not a useful measure for 
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assessing class-level statistics, micro-averaged recall, micro-averaged precision, and mi-
cro-averaged F1 are also not useful for that purpose. 

In contrast to micro-averaged metrics, macro-averaged metrics are unique and not 
equivalent to OA. Since each metric is calculated separately for each class, and then, sub-
sequently averaged, this is not equivalent to simply dividing the number of TPs by the 
confusion matrix total. 

Table 8. Class-aggregated accuracy metrics for the classification reported in Table 8 (i.e., using an 
imbalanced training set and a cross-entropy loss). 

 Micro Macro 

OA 
UA  

(Precision) 
PA  

(Recall) F1-Score 
UA  

(Precision) 
PA  

(Recall) F1-Score 

0.835 0.835 0.835 0.835 0.736 0.895 0.755 

4.2. Accuracy Assessment Metrics and Class Imbalance 
Figure 2 summarizes the class-level UA and PA results for CE loss and a balanced 

training set, with 1000 replicates of varying class proportions, generated using the diffeR 
R package’s sample2pop function [38], which converts a sample confusion matrix to a 
population matrix. In calculating the population confusion matrices, class-level PAs are 
not impacted by changes in the relative class proportions in the reference dataset, since 
each class’s PA is calculated only from samples in that particular reference class. In con-
trast, class-level UAs are affected by changing class proportions in the reference classes, 
since a class’s UA is calculated from the samples labeled as that class, and the number of 
samples from other classes incorrectly labeled as the class of interest is affected by the 
prevalence of those classes. For example, in Table 8, there is some confusion between the 
“annual crop” and “permanent crop” classes. If the relative proportion of “permanent 
crop” samples in the population increases, this will likely reduce the UA for the “annual 
crop” class, since there will be more opportunities for misclassification. In contrast, this 
will not affect the PA for the “annual crop” class, since this metric depends only on the 
samples belonging to the “annual crop” reference class. 

It is also important to note that, as has been pointed out by Foody [14], although PA 
as a statistic is not prevalence-dependent, remote sensing classifiers themselves may be 
prevalence-dependent. Furthermore, even if classifiers were not prevalence-dependent, 
simply focusing on PAs and ignoring UAs would not provide a method for avoiding the 
problem of class prevalence, since PAs alone are not useful in characterizing class-based 
classification performance. 

It is notable in Figure 2 that the range of UAs varies greatly by class. However, some 
classes, such as “forest” and “sea/lake”, are consistently well mapped, with UAs close to 
1.0. In contrast, the two classes with the lowest median UAs, “highway” and “permanent 
crop”, have the largest interquartile range of UA values and the largest number of in-
stances of UAs less than 0.1. This illustrates the point that although UAs are affected by 
class prevalence, the effect is smaller for classes with higher accuracies, tending to zero for 
classes mapped with a UA of 1.0. Furthermore, it is worth emphasizing that in Figure 2b, 
the UA for each class is generally lowest when that class’s prevalence is lowest. 
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Figure 2. Boxplots of class PAs (a) and UAs (b) for 1000 randomly generated class proportions that 
sum to 1, selected from a uniform distribution. 

Figure 3 shows the results for OA and the class-aggregated, macro-averaged metrics. 
Since the micro-averaged metrics are equivalent to OA (see Section 4.1), they are not 
shown. OA varies with changes in class proportions. This is expected, since the relative 
proportions of samples will change the number of correct and misclassified samples in the 
table. For example, Table 8 shows that the “sea/lake” class was generally well differenti-
ated from the other classes. As a result, if a larger proportion of the testing samples were 
from the “sea/lake” class, higher OA accuracy and related metrics would be expected. The 
macro-averaged UA and F1-score are sensitive to class prevalence, while the macro-aver-
aged PA is not. This is because the individual-class PAs are not sensitive to class preva-
lence, and therefore, their averages will also not be affected. On the other hand, since UAs 
are affected by class prevalence, their averages will also be affected, as will their F1-scores, 
since they rely in part on UAs. 
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Figure 3. Boxplots of OA and class-aggregated, macro-averaged assessment metrics using 1000 var-
ying class proportions that sum to 1, selected from a uniform distribution. 

As noted above, accuracy assessment should take into account the relative class pro-
portions in the landscape being mapped, since class prevalence has an effect on classifica-
tion accuracy [2,5,10,39–43]. If simple random sampling is used to collect testing or vali-
dation samples, then the resulting confusion matrix will be an unbiased estimate of the 
population matrix, and therefore, can be used directly to estimate class accuracies. If some 
other probability-based sampling method is used, such as class-stratified random sam-
pling, an approach which is often used when there are particularly rare classes, the result-
ing confusion matrix will have different class proportions from the thematic map being 
assessed [44]. In this circumstance, either the sample confusion matrix should be adjusted 
to reflect the population proportions, or the correction may be incorporated directly into 
the accuracy estimator formulas [5]. 

The importance of using reference sample proportions that align with landscape pro-
portions for accuracy assessment provides a useful framework for selecting and interpret-
ing class-aggregated assessment metrics. If the confusion matrix is based on a number of 
samples that are deliberately chosen to be uniform in each class, and the confusion matrix 
is not subsequently adjusted to represent population proportions, then the class-level 
UAs, class-level F1-scores, and OA will be representative of the accuracies of a hypothet-
ical map with equal class prevalence. Since most real maps have at least one rare class, 
and rare classes are more difficult to map, the value of simulating a hypothetical equal-
prevalence map is unclear. However, the class-level PAs will not vary with changes in 
class proportions [5]. 

Macro-averaging is based on a simple average after the statistics are calculated, and 
therefore, macro-averaged measures give equal weighting to each class’s UA or PA that is 
combined with the integrated metric. Some analysts favor macro-averaged class statistics 
precisely because rare classes are given equal weight to more common classes. However, 
UAs and, thus, F1 statistics are sensitive to class proportions, and rare classes are inher-
ently more difficult to classify. Therefore, it is essential to use an estimate of the population 
matrix for the calculations to ensure that rare classes are not treated over-optimistically in 
the calculation of UAs and F1-scores. 
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Weighted macro-averaging methods are another way in which analysts sometimes 
attempt to deal with imbalance. Typically, class weights used for aggregating PAs are de-
rived from the relative abundance of classes on the landscape, which can be estimated 
based on the column totals in a population confusion matrix set up, as in Table 1. Similarly, 
the class weights used for aggregating UAs are class prevalences in the classified map, 
and, in turn, can be estimated using the row totals in the population error matrix. How-
ever, when such an approach is used, these measures are equivalent to the micro-averaged 
PA and UA, respectively, and thus, in turn, are equivalent to OA. Prevalence-weighted 
macro-averaging is redundant, and therefore not a useful approach. 

In summary, in calculating summary multi-class accuracy measures, macro-averag-
ing is the only approach that appears to provide a useful average class-based measure, 
since micro-averaged measures are redundant with OA. Weighted macro-averaged 
measures that use class prevalence as the weights are also redundant. Neither micro-av-
eraged measures nor prevalence-weighted macro-averaged measures should be reported, 
since the equivalent OA is a conceptually simpler term. Class prevalence affects the calcu-
lation of UA and F1-scores, and therefore, accuracy measures should always be estimated 
from the population confusion matrix. Although macro-averaged PA is not affected by 
class prevalence, it has been suggested that remote sensing classifiers may be affected by 
prevalence [14]. Since there is so much confusion in the literature, we recommend that 
authors clearly document their methods. 

4.3. Impact of Class Imbalance on the Training Process 
In Sections 4.1 and 4.2 above, we focused on assessing map accuracy. In this section, 

we explore the impact of class imbalance in the context of choosing a loss metric. On one 
level, determining the final map accuracy and loss metrics are very similar tasks, as both 
deal with assessing classification performance. However, an important distinction is that 
a key purpose of map accuracy assessment is usually communication of the uncertainty 
in the classification results. In contrast, losses calculated during training are primarily de-
signed to guide the classifier towards an optimal model. Although not usually explicitly 
articulated, an optimal model is generally conceptualized as one in which most classes are 
classified well, which implies the need for a multiclass average of some sort. To explore 
these issues, we trained models using both a balanced and an imbalanced training set, and 
with the CE, macro-averaged Dice, and micro-averaged Dice losses. We also trained a 
model using weighted CE, where the class weights were defined based on the inverse of 
their abundance in the imbalanced training dataset. Since using weighted CE loss and our 
weighting scheme with a balanced dataset would be equivalent to unweighted CE with a 
balanced dataset, this combination was not tested; as a result, a total of seven models were 
trained. 

Figure 4 shows the loss for the training, balanced validation set, and imbalanced val-
idation set across the 50 training epochs, while Figure 5 shows the overall accuracy, and 
Figure 6 shows the macro-averaged F1-score. These results generally suggest that the 
choice of loss metric is less important when a balanced training set is used, as the CE and 
dice losses provided similar performance. However, the choice of loss function had a 
larger impact when the training set was imbalanced. For the imbalanced training data, 
loss metrics indicated a slower improvement between successive epochs compared to the 
balanced data training, and there was a notably larger divergence between the training 
loss metric and the associated validation loss. Furthermore, models trained using CE as 
the loss metric generally required a greater number of epochs to stabilize compared to 
using the alternative Dice loss metrics, although after 50 epochs, the metrics indicated 
comparatively high accuracy for the CE training. 

For models trained with balanced data, micro-Dice appears to be a potentially appro-
priate loss metric, resulting in models with high accuracy values, as indicated by the val-
idation data. However, for the imbalanced data, the use of micro-Dice loss for training 
resulted in consistently low macro-F1 trends (Figure 6), despite the moderate-to-high 
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overall accuracy values (Figure 5). These figures illustrate the problem with micro-Dice as 
a loss measure. Since micro-Dice is similar to OA, except that class probabilities are used 
in the calculation as opposed to class labels, it is particularly unsuitable for imbalanced 
data. 

 
Figure 4. Loss curves for training of EuroSat dataset for 50 epochs using four different losses and 
balanced and imbalanced training sets. 
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Figure 5. Overall accuracy for training of EuroSat dataset for 50 epochs using four different losses 
and balanced and imbalanced training sets. 

 
Figure 6. Macro-averaged class-aggregated F1-score for training of EuroSat dataset for 50 epochs 
using four different losses and balanced and imbalanced training sets. 
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The aggregated assessment metrics obtained when using the resulting models to pre-
dict the withheld testing data are provided in Table 9. Generally, regardless of the loss 
metric used, training and testing using the balanced datasets yielded higher model accu-
racy than training and testing using imbalanced data. This was true for all accuracy 
measures, including OA and the class-averaged measures of macro-F1, macro-UA, and 
macro-PA. This is not surprising, since imbalanced datasets are inherently more difficult 
to train than balanced datasets. However, the difference between the accuracy measures 
of the balanced training and testing, compared to the imbalanced training and testing, was 
smaller for CE and macro-Dice compared to micro-Dice. In addition, micro-Dice per-
formed particularly poorly with imbalanced training and testing, resulting in the lowest 
accuracy measures observed. This emphasizes that micro-Dice, since it is similar to OA, is 
not effective as a loss measure for training with imbalanced data. 

When class prevalences differed between training and testing (e.g., balanced training 
and imbalanced testing, a common approach, or the less common imbalanced training 
and balanced testing), models trained with CE and weighted CE generally resulted in high 
accuracies. Macro-Dice loss produced the highest accuracies for balanced training and im-
balanced testing. However, imbalanced training followed by testing with balanced data 
resulted in low accuracies for macro-Dice and very low accuracies for micro-Dice. 

To summarize Table 9, the optimum training strategy in our experiments was to use 
balanced training data, irrespective of whether the modeled population (and the preva-
lences in the testing data) was balanced or imbalanced. Balanced training data not only 
led to higher accuracies, but the differences in accuracies between the loss metrics were 
small, making the choice of loss metric less important. However, in many situations, it is 
not possible to build balanced training data, and thus, training has to be carried out with 
imbalanced training data. With imbalanced training, using weighted CE as the loss metric 
generally produced the highest accuracy. Conveniently, weighted CE for balanced train-
ing is equivalent to CE, and thus, weighted CE provides the best overall choice for a loss 
metric, whether the data are balanced or imbalanced. 

Table 9. Comparison of assessment metrics for models trained using different loss functions and 
with balanced or imbalanced training sets. 

Loss Metric Training Set Test Prevalences OA Macro-F1 Macro-UA 
(Precision)  

Macro-PA 
(Recall) 

CE 

Balanced Balanced 0.959 0.958 0.959 0.959 
Balanced Imbalanced 0.970 0.929 0.907 0.958 

Imbalanced Balanced 0.895 0.895 0.911 0.895 
Imbalanced Imbalanced 0.835 0.755 0.736 0.894 

Weighted CE 
Imbalanced Balanced 0.912 0.912 0.916 0.912 
Imbalanced Imbalanced 0.890 0.804 0.765 0.911 

Micro-Dice (OA) 

Balanced Balanced 0.954 0.954 0.955 0.954 
Balanced Imbalanced 0.956 0.913 0.883 0.954 

Imbalanced Balanced 0.581 0.466 0.452 0.581 
Imbalanced Imbalanced 0.261 0.264 0.251 0.581 

Macro-Dice 

Balanced Balanced 0.956 0.956 0.957 0.956 
Balanced Imbalanced 0.971 0.927 0.904 0.956 

Imbalanced Balanced 0.873 0.872 0.894 0.873 
Imbalanced Imbalanced 0.805 0.712 0.697 0.872 

Figure 7 shows the UAs and PAs calculated for the withheld testing data for each 
class when using each loss metric, and balanced and imbalanced training sets to train the 
model, and balanced and imbalanced test sets to assess the model. Of note is that for train-
ing with the micro-Dice loss, the UAs and PAs for the five rare classes were generally low, 
indicating that the model learned to ignore these less abundant classes since they had a 
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small impact on the loss metric. These findings highlight the conclusion that micro-aver-
aged Dice loss is inappropriate when classes are highly imbalanced, because micro-aver-
aged Dice is equivalent to OA. The class imbalance had less of an impact when using CE, 
weighted CE, or macro-averaged Dice loss, although the UAs and PAs for the less abun-
dant classes were nevertheless still lower than when the balanced training dataset was 
used. We attribute this in part to the reduced sample size for these classes, which could 
result in the complexity of these classes not being represented in the training set. In other 
words, the low sample size may be confounding the class imbalance issue. 

 
Figure 7. Class-level UA and PA metrics of CNN models trained using cross-entropy, weighted 
cross-entropy, and macro- and micro-averaged Dice loss metrics. Results using balanced and imbal-
anced training sets are differentiated by color. The names of rare classes, with a reduced number of 
samples in the training set, are printed in green.  

In summary, our experiments suggest that choosing a loss metric may not be as com-
plex as has been thought. Dice loss is often suggested as an alternative to CE loss when 
classes are imbalanced [3,23], and the fact that there are choices between the micro- and 
macro- averaging of Dice would seem to make choosing between them difficult. However, 
since micro-averaged Dice loss is similar to 1 – OA and is sensitive to class imbalance, it 
can be ruled out as a choice. Therefore, if an integrated Dice loss measure is used, this only 
leaves macro-averaged Dice loss, but macro-Dice only performed well with balanced 
training, suggesting that it is not particularly robust in the presence of class imbalance. 
Therefore, we conclude that CE loss with class weightings offers the best overall choice 
for a loss metric. When the training data classes were imbalanced, weighted CE resulted 
in models with the highest accuracy, and when the training data were balanced, weighted 
CE was equivalent to CE without weighting, the loss metric that resulted in the highest 
accuracy for balanced training. 

Our results are also informative for other commonly used classification loss metrics 
that offer augmentations of CE or Dice loss. As noted above, Tversky loss offers an aug-
mentation of Dice loss that allows the user to specify relative weightings for FP and FN 
errors using α and β parameters, respectively [25–27]. Although this metric is commonly 
used for binary classification problems, especially when the positive class is rare, it can be 



Remote Sens. 2024, 16, 533 20 of 24 
 

 

modified for multiclass problems. Equation (9) provides a micro-averaged multiclass ver-
sion of the metric, while Equation (10) provides a macro-averaged multiclass version. 
Since the micro-averaged version does not differentiate between classes, but instead, uses 
the total counts of TP, FN, and FP samples and associated probabilities to calculate the 
loss, different α and β terms cannot be specified for each class. When micro-averaging is 
used, FP samples relative to one class become FN samples relative to other classes; as a 
result, the value and meaning of adding α and β terms is unclear in the context of micro-
averaging. However, when using a macro-averaged version, the user could specify differ-
ent α and β terms for each class to allow for differing class-level relative weightings of FP 
and FN errors. It is also possible to calculate the class-weighted macro-averaged Tversky 
loss. As a result, the user has control over relative class weightings in the final metric along 
with the relative weightings of FP and FN errors for each class separately. Although this 
allows for a high degree of refinement and customization, the tradeoff is increased com-
plexity in configuring the metric. Based on our findings relating to Dice loss, we argue 
that a macro-averaged version of multiclass Tversky loss can be considered if classes are 
imbalanced; however, a micro-averaged version would not be appropriate. In regard to 
focal versions of the losses, such as focal CE loss [45] and focal Tversky loss [27], in which 
the primary goal is to control the relative impact of difficult-to-predict samples based on 
their prediction confidence, we argue that the results highlighted above for the associated 
non-focal versions hold for the augmented, focal versions. For example, if classes are im-
balanced, a focal version of weighted CE or macro-averaged multiclass Tversky loss is 
preferable to focal CE or focal micro-averaged multiclass Tversky loss. 

Micro-Averaged Multiclass Tversky Loss = 1 − ( ఀ௣ො೅ು ା ఌఀ௣ො೅ುାఈఀ௣ොಷುାఉఀ௣ොಷಿା ఌ)  (9)

Macro-Averaged Multiclass Tversky Loss = ଵே ∑ 1 − ( ఀ௣ො೅ು ା ఌఀ௣ො೅ುାఈఀ௣ොಷುାఉఀ௣ොಷಿ ାఌ஼௝ୀଵ ) (10)

It is important, however, to note that these findings may not hold for all problems or 
use cases. The performance of these different metrics may be case-specific, so the user may 
need to experiment with multiple loss metrics. Furthermore, different metrics may be ap-
propriate for different stages of the analysis. For example, during the training phase, the 
primary concern is to produce an effective model. How to define its effectiveness is left up 
to the user, and questions of how the loss metrics relate to map accuracy may be of only 
minimal interest. At this initial stage, the emphasis may be on providing sufficient samples 
to train the model and ensure that all classes meet some basic minimum classification ac-
curacy. On the other hand, during the final accuracy assessment stage, the metrics should 
have intuitive meaning, and most importantly, quantify real properties of the map itself, 
rather than of a hypothetical map. This requires that the accuracy be calculated from an 
estimate of the population confusion matrix. 

It is also important to consider these findings within the broader context of research 
into class imbalance and classification. In their review paper, Ghosh et al. [46] point out 
that the class imbalance problem is tightly connected to dataset size issues and concept 
complexity (which, in turn, includes class separability). In our results, this is illustrated by 
the consistently high classification accuracies of the sea/lake class, irrespective of the loss 
metric used, despite its rarity in the imbalanced training data (Figure 7). The distinct spec-
tral and spatial properties of water presumably compensate for any problems due to the 
limited number of training samples. On the other hand, the spectrally variable industrial 
and highway classes both suffer from large declines in PA (recall), when trained with the 
imbalanced data, despite the fact that, of the two classes, only industrial is a rare class in 
the imbalanced dataset (Figure 7). 

Ghosh et al. [46] also identify three categories of approaches for dealing with class 
imbalance in the deep learning literature: those that are applied through pre-processing 
of the input data, post-processing of the predictions, and special purpose algorithms (see 
also Johnson and Khoshgoftaar [47]). For example, at the algorithmic level, Ding et al. [48] 
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found that a very deep architecture, with greater than 10 layers in the CNN, increased 
accuracy for the classification of imbalanced classes. Addressing imbalance through the 
selection of an appropriate loss metric is also an algorithmic approach [46]. Loss metrics 
represents a particularly attractive way of addressing imbalance because it is a conceptu-
ally simple approach, directly affects the decision boundary, and places very little, if any, 
additional burden on the classifier. 

5. Conclusions 
When training and assessing classification models with imbalanced classes in the 

training set and/or within the landscape being mapped, it is important to consider the 
appropriate use and interpretation of accuracy assessment metrics. In this paper, we fo-
cused on choosing between and interpreting class-aggregated accuracy assessment met-
rics and multiclass loss metrics. Here, we conclude with best practices and recommenda-
tions. 

All final summary accuracy assessment statistics, including both the statistics of in-
dividual classes and averages over the classes, should be calculated from a population 
confusion matrix. An important feature of the population matrix is that it incorporates the 
class prevalences, which are a fundamental feature of the classification. For example, if 
OA is calculated from a confusion matrix that does not take into account landscape pro-
portions, or appropriate corrections are not made in the analysis, the reported OA will be 
biased, since it is sensitive to relative class proportions. PA (recall) is usually listed as a 
metric insensitive to class prevalence, with the implication that it can be calculated from 
the sample confusion matrix. However, the classifier itself, rather than the statistic, may 
be prevalence-dependent [14]. Thus, all accuracy statistics, including OA, UA (precision), 
PA (recall), F1-score, and their macro-averages, should be calculated from population con-
fusion matrices. 

Macro-averaged assessment metrics provide a summary of how well classes are dif-
ferentiated on average. When class-level UA and PA are aggregated using the micro-av-
eraging method, they are equivalent to OA. Since these metrics are redundant, they 
should not be reported, as doing so is only likely to add confusion. Weighted macro-aver-
aging, where the weights are the class prevalences, is also equal to OA, and thus, should 
also be avoided. 

Loss metrics, though they are a measure of classification success, serve a purpose that 
differs from that of final map accuracy assessment. Loss metrics guide the model devel-
opment, and thus, affect the accuracy of the final product. The communication of map 
uncertainty is generally not relevant for loss metrics, and thus, it is not necessary to calcu-
late the loss from estimates of the population. Our examples demonstrate that, since users 
typically wish to maximize class accuracy across all classes, balanced training data are 
preferable to imbalanced data, irrespective of whether the actual dataset to be classified is 
imbalanced or not. In practice, however, generating a balanced training dataset may not 
be possible, and thus, consideration of how loss metrics are affected by class imbalance is 
important. 

In our experiments, the CE loss metric with weighting proportional to class preva-
lences in the training data generally resulted in models with the highest accuracy statis-
tics. This was true for models trained with both balanced training data (in which case, the 
loss metric is equivalent to CE without weighting) and also for imbalanced training data. 
This is an important finding, since as noted above, developing balanced training data is 
challenging for many applications. Dice loss has been suggested as an alternative to CE 
loss when classes are imbalanced. However, the type of averaging of Dice losses is im-
portant. Macro-Dice is a simple average of the individual F1-statistics, thus weighting all 
classes equally. Macro-Dice loss resulted in accuracies similar to, but consistently slightly 
lower than, the accuracies obtained with the CE loss without weighting. Micro-averaged 
dice loss is similar to 1 – OA, except that class probabilities as opposed to class labels are 
used in the calculation. Because OA, by definition, gives low weight to rare classes, the 
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use of the micro-averaged Dice loss resulted in low accuracies when the model was 
trained with imbalanced data. However, when the model was trained with balanced train-
ing data, the accuracies were very similar to those obtained with macro-Dice. In our data, 
there was no apparent benefit to using Dice loss instead of weighted CE. 

Our experiments provide valuable insight regarding how different loss measures 
work in practice. Nevertheless, it is important to note that the best or most appropriate 
loss metric may be case-specific, and therefore, our results may not be applicable to every 
situation. As a result, the analyst may need to experiment with multiple loss metrics to 
determine which one is most appropriate for a specific use case. 
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