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For a wide class of solutions to multiplicatively advanced differential equations (MADEs), a comprehensive set of relations is
established between their Fourier transforms and Jacobi theta functions. In demonstrating this set of relations, the current
study forges a systematic connection between the theory of MADEs and that of special functions. In a large subset of the
general case, we introduce a new family of Schwartz wavelet MADE solutions W μ,λðtÞ for μ and λ rational with λ > 0. These
W μ,λðtÞ have all moments vanishing and have a Fourier transform related to theta functions. For low parameter values derived
from λ, the connection of the W μ,λðtÞ to the theory of wavelet frames is begun. For a second set of low parameter values
derived from λ, the notion of a canonical extension is introduced. A number of examples are discussed. The study of
convergence of the MADE solution to the solution of its analogous ODE is begun via an in depth analysis of a normalized
example W −4/3,1/3ðtÞ/W −4/3,1/3ð0Þ. A useful set of generalized q-Wallis formulas are developed that play a key role in this study
of convergence.

1. Introduction

This paper expands the study of a class of solutions of mul-
tiplicatively advanced differential equations (MADEs) by
determining the relationship of their Fourier transforms to
Jacobi theta functions. The class of solutions under consider-
ation consists of the Dirichlet-like [1] series:

f μ,λ tð Þ ≡ 〠
∞

m=−∞
−1ð Þm e−qmt

qm m−μð Þ/λ ,

 for t ≥ 0, where μ ∈ℚ, λ ∈ℚ+ and q > 1:
ð1Þ

Each of the f μ,λðtÞ in (1) satisfies the MADE.

f δð Þ
μ,λ tð Þ = −1ð Þγ+δqγ γ+μð Þ/λ f μ,λ qγtð Þ, ð2Þ

where λ/2 = γ/δ with γ/δ in a reduced form and γ, δ ∈ℕ; see
[2]. Note that (2) is multiplicatively advanced in that the

argument qγt is an advancing of the parameter t by qγ > 1,
as q is taken to be greater than 1 and γ ∈ℕ.

In general, as is shown in [2], there are nonunique ways
to extend the f μ,λðtÞ from 0 ≤ t <∞ to the negative reals,
obtaining Fμ,λðtÞ on −∞ < t <∞ with Fμ,λðtÞ also satisfying
the MADE (2). To overcome this issue of nonuniqueness, we
first extend f μ,λðtÞ (perhaps discontinuously) to the negative

reals by defining ~f μ,λðtÞ to be.

~f μ,λ tð Þ ≡
f μ,λ tð Þ, t ≥ 0,
0, t < 0:

(
ð3Þ

Then, we utilize only ~f μ,λðtÞ to obtain a new function
W μ,λðtÞ in C∞ðℝÞ which is naturally generated by f μ,λðtÞ,
and we further observe that for low parameters (namely, 1
≤ δ ≤ 3 and δ = 0 mod β) W μ,λðtÞ is indeed an extension
of f μ,λðtÞ satisfying (2). Here, β is obtained as ðμ + 1Þ/2 = α

/β with α/β in a reduced form.
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In attempting to compute the Fourier transform

F ~f μ,λ tð Þ
h i

xð Þ = 1ffiffiffiffiffiffi
2π

p
ð∞
−∞

e−ixt~f μ,λ tð Þ dt, ð4Þ

of ~f μ,λðtÞ, we are led, instead, into discovering a relation

between a weighted average of the F½~f μ,λðtÞ�ðxÞ of form

1
M

〠
M−1

ℓ=0
ωℓ� �p1F ~f μ,λ tð Þ

h i x

ωℓ½ �p2
� �

, ð5Þ

whereM, p1, p2 depend on μ, λ and ω is anMth root of unity
to a similar weighted average of zp33 /θðQ ; zM3 Þ:

1
Dγ

〠
Dγ−1

κ=0

~ωκz3½ �p3
θ Q ; ~ωκz3½ �M
� � , ð6Þ

where M,D, γ, p3 are determined by μ, λ and ~ω is a ðDγÞth
root of unity, while θ is the Jacobi theta function given by
(10) below, z3 is a scaled ðDγÞth root of ix, and Q = q2/λ.
See equations (98) and (99) of Theorem 13 for further
details.

One then applies the inverse Fourier transform to (5) to
obtain the new functions

W μ,λ tð Þ =F−1 〠
M−1

ℓ=0
ωℓ� �p1F ~f μ,λ tð Þ

h i x

ωℓ½ �p2
� �" #

tð Þ, ð7Þ

which are central to this study. These new W μ,λðtÞ compre-
hensively generalize each of the main examples we have pre-
viously studied, including Kðq, tÞ in [3] and qCosðtÞ, qSinðtÞ
in [4, 2]. For certain low values of δ, we show that the
W μ,λðtÞ give unique, canonical extensions of the associated
f μ,λðtÞ which satisfy the MADE (2). In general, for higher
values of δ, the W μ,λðtÞ are not extensions of f μ,λðtÞ; how-
ever, they are all Schwartz wavelets with connections not
only to wavelet theory but also to special function theory
in that F½W μ,λðtÞ�ðxÞ is expressed in terms of (6) and thus
in terms of the Jacobi theta function. See (98) and (99) of
Theorem 13 for specifics.

We next determine a simple criteria for the W μ,λðtÞ to
not identically vanish, whereby the relationship of their Fou-
rier transforms to the theta function remains substantive, as
described in Theorem 23. This relationship is seen to greatly
extend and generalize each of the special cases of Fourier
transform computations that have been computed in all of
our previous collected work, including [2–6]. Furthermore,
even in those cases where W μ,λðtÞ vanishes identically, we
are still able to provide a (more technical) relation between
the Fourier transform of ~f μ,λðtÞ and the Jacobi theta function
in Theorem 28. We then begin applying the above discover-
ies to wavelet theory, producing numerous examples of new
Schwartz wavelets generating frames for L2ðℝÞ.

Furthermore, considering the MADE (2) to be a pertur-
bation of the classical ODE

f δð Þ tð Þ = −1ð Þγ+δ f tð Þ, ð8Þ

with q > 1 in (2) considered to be the perturbation parameter
as q⟶ 1+, we then initiate a study of convergence of the
normalized solution of (2) to the classical solution of (8).
In particular, we prove convergence for the normalized
W −4/3,1/3ðtÞ to the classical solution of (8) with convergence
being uniform on any compact set of ℝ; see Figure 1. We
also exhibit graphical evidence for such convergence of other
normalized W μ,λðtÞ.

The convergence seen in Figure 1 mirrors earlier conver-
gence results [4] we have been previously able to obtain in
the canonical extensions for the special cases: (1) μ = 0 ; λ
= 1 which normalizes to qCosðtÞ discussed in Section 5;
and (2) μ = 1 ; λ = 1 which normalizes to qSinðtÞ, also dis-
cussed in Section 5. The convergence of qCosðtÞ to cos ðtÞ
and the convergence of qSinðtÞ to sin ðtÞ are illustrated in
Figure 2.

We conclude the paper with a set of generalizations of
Wallis’ formula for π/2 that we call generalized q-Wallis for-
mulas, and we demonstrate their utility in the study of con-
vergence of normalized solutions of MADEs to their classical
analogue ODEs.

We mention that the current work falls in the area of
functional differential equations of multiplicatively advanced
type. Studies in functional differential equations include for
instance [7–9]. More precisely, the current work falls under
the area of q-difference differential equations, where the
multiplicative advancement yðtÞ⟶ yðqtÞ is seen as a dila-
tion that is denoted σq½y�ðtÞ = yðqtÞ. There is a robust study
within the area of q-difference differential equations with
dilations involving q > 1. This is highlighted by works of L.
Di Vizio [10–12]; C. Hardouin [11]; T. Dreyfus [13, 14]; A.
Lastra [14], [15–20], [21–23]; S. Malek [14], [15–20],
[21–23], [24–27]; J. Sanz [21–23]; H. Tahara [28]; and C.
Zhang [12, 29], along with further references by these
researchers and others. Also, for good background refer-
ences to the current work, consult [2–6, 30–34] (especially
[2, 4]). These last references also exhibit a number of various
applications of global solutions of MADEs.

1.1. Preliminaries and Salient Properties of the Jacobi Theta
Function. We shall need to extend the definition of f μ,λðtÞ
to the case that the argument is complex and lying in the
right half plane.

Definition 1. Let q > 1, μ, λ ∈ℚ, with λ > 0. Then for t ≥ 0
and the function f μ,λðtÞ given by (1), one defines for RðzÞ
≥ 0 (that is, for the real part of z ∈ℂ nonnegative)

f μ,λ zð Þ ≡ 〠
∞

m=−∞
−1ð Þm e−qmz

qm m−μð Þ/λ , ð9Þ

which is analytic for RðzÞ > 0.
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Next, recall that for q > 1 the Jacobi theta function is
given by

θ q ; uð Þ = 〠
∞

n=−∞

un

qn n−1ð Þ/2 = μq
Y∞
n=0

1 + u
qn

� �
1 + 1

uqn+1

� �
,

ð10Þ

where

μq =
Y∞
n=0

1 − 1
qn+1

� �
: ð11Þ

Two properties of the Jacobi theta function of interest
are that

for all p ∈ℤ θ q ; qpuð Þ = qp p+1ð Þ/2upθ q ; uð Þ,
 uθ q ; u−1

	 

= θ q ; uð Þ, ð12Þ

which are proven in [5] and [6], respectively. From the prod-
uct formula in (10), one sees that

θ q ; uð Þ = 0⟺ u = −qp for some p ∈ℤ: ð13Þ

As indicated earlier, the Jacobi theta function plays a major
role in this study in the computation of Fourier transforms.

Figure 1: Plot of y = cos ðtÞ (blue dots) approached by y =W −4/3,1/3ðtÞ/W −4/3,1/3ð0Þ for: q = 1:3 (red dashed), q = 1:1 (solid black).
Convergence is uniform on compact subsets of ℝ as q⟶ 1+.
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Figure 2: (a) y = cos ðxÞ (solid black) approached by y = qCosðtÞ for q = 1:35 (dotted-dash blue), q = 1:15 (dashed red). (b) y = sin ðxÞ (solid
black) approached by y = qSinðtÞ for q = 1:35 (dotted-dash blue), q = 1:15 (dashed red).
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2. Proof of the Relation of Fourier
Transforms to Jacobi Theta Functions

We proceed immediately to the computation of Fourier
transforms. For μ, λ ∈ℝ with λ > 0 and given f μ,λðtÞ is as
in (1), we define

~f μ,λ tð Þ ≡
f μ,λ tð Þ = 〠

∞

k=−∞
−1ð Þke−qkt/qk k−μð Þ/λ, for t ≥ 0,

0, for t < 0:

8><>:
ð14Þ

We now restrict μ, λ ∈ℚ to be rational with λ > 0, and
let x ∈ℝ. One then has the following computation of the
Fourier transform F½~f μ,λðtÞ�ðxÞ of ~f μ,λðtÞ:

F ~f μ,λ tð Þ
h i

xð Þ = 1ffiffiffiffiffiffi
2π

p
ð∞
−∞

e−ixt~f μ,λ tð Þdt

= 1ffiffiffiffiffiffi
2π

p
ð∞
0
e−ixt 〠

∞

k=−∞
−1ð Þk e−qkt

qk k−μð Þ/λ dt

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞
−1ð Þk 1

qk k−μð Þ/λ

ð∞
0
e−ixt−q

kt dt

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞
−1ð Þk 1

qk k−μð Þ/λ
e−ixt−q

kt

−ix − qk

�����
∞

0

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

1
ix + qk
	 
" #

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k+1ð Þ/λ

qk μ+1ð Þ/λ

ix + qk
	 
" #

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
q2/λ
	 
k k+1ð Þ/2

q2/λ
	 
k μ+1ð Þ/2

ix + q2/λ
	 
kλ/2� �

24 35
= 1ffiffiffiffiffiffi

2π
p 〠

∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk μ+1ð Þ/2

ix +Qkλ/2	 
" #
ð15Þ

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk� � α/βð Þ

ix + Qk� � γ/δð Þ� �
24 35, ð16Þ

where in (15) and (16) Q ≡ q2/λ and for conciseness in mov-
ing from (15) to (16), one has ðμ + 1Þ/2 ≡ α/β and λ/2 ≡ γ/δ,
where α/β and γ/δ in ℚ are taken to be in a reduced form
with α ∈ℤ and β, γ, δ ∈ℕ. We extend F½~f μ,λðtÞ�ðxÞ to the
complex plane by setting

F ~f μ,λ tð Þ
h i

ζð Þ ≡ 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk� � α/βð Þ

iζ + Qk� � γ/δð Þ� �
24 35,

ð17Þ

for ζ ∈ℂ \ S where S = fiQkγ/δ ∣ k ∈ℤg denotes the set of ζ
where the denominator in (17) vanishes. Note that F½~f μ,λ
ðtÞ�ðζÞ is defined at ζ = 0 by virtue of the quadratic exponent
kðk + 1Þ/2 ofQ in the denominator counteracting any growth
of the linear exponent k½α/β − γ/δ� of Q in the numerator of
(17). Also for ℂ∗ =ℂ \ f0g, note that, if U is any open region
with compact closure �U ⊂ℂ∗ \ S, one has that for ζ ∈U the
distance dζ from ζ to S is positive, as the only cluster point
of S is 0. Furthermore, the distance dð�U , SÞ from �U to S is also
positive. Hence, we have

1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk� � α/βð Þ

iζ + Qk� � γ/δð Þ� �
24 35������

������
≤

1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

1
Qk k+1ð Þ/2

Qk� � α/βð Þ

dζ

" #

≤
1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

1
Qk k+1ð Þ/2

Qk� � α/βð Þ

d �U , S
	 
" #

<∞:

ð18Þ

Hence, the truncated sums

1ffiffiffiffiffiffi
2π

p 〠
N

k=−N

−1ð Þk
Qk k+1ð Þ/2

Qk� � α/βð Þ

iζ + Qk� � γ/δð Þ� �
24 35, ð19Þ

which are analytic on U , approach F½~f μ,λðtÞ�ðζÞ uniformly

on U as N ⟶∞. Thus, F½~f μ,λðtÞ�ðζÞ is analytic on U [35]
and therefore analytic on ℂ∗\S.

We have seen in [2] that the “alternating Q-combina-
toric” ð−1Þk/Qkðk+1Þ/2 in (16) can be given by the residue of
1/½uθðQ ; uÞ� at a simple pole u = −Qk under a computation
of an appropriate contour integral about a region containing
u = −Qk. Here, θðQ ; uÞ is the Jacobi theta function given by

(10). Observe that the term ½Qk�ðα/βÞ/ðix + ½Qk�ðγ/δÞÞ in (16)

would then be obtained from evaluation of ½−u�ðα/βÞ/ðix +
½−u�γ/δÞ at u = −Qk. Therefore, as a starting point, we would
be interested in integrating the expression

1
u θ Q ; uð Þ

−u½ �α/β
z + −u½ �γ/δ
� � du, ð20Þ

around an appropriate closed contour Γ in the complex
u-plane, where we set z = ix later. However, since there is in
general a multivalued issue with expression (20) if α/β or γ/δ
are not integers, we set u = vM in (20), where M > 0 is the
least integer such that Mα/β and Mγ/δ are both integers,
and we integrate
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ð
Γ

1
vMθ Q ; vMð Þ

−vM
� � α/βð Þ

z + −vM½ � γ/δð Þ
� � MvM−1dv

=M
ð
Γ

1
v θ Q ; vMð Þ

vα½ � M/βð Þeiπα/β

z + vγ½ � M/δð Þeiπγ/δ
� � dv:

ð21Þ

Note that, since α and β have no common factors and
since Mα/β ∈ℤ, one has that β divides M. Similarly, since γ
and δ have no common factors and since Mγ/δ ∈ℕ, δ also
divides M. Since M is the least such integer, M is the least
common multiple of β and δ. Thus,

for α ∈ℤ, β, γ, δ ∈ℕ with μ + 1
2 = α

β
,

 
λ

2 = γ

δ
in reduced form,

ð22Þ

we set

M = lcm β, δf g, B = M
β
, D = M

δ
: ð23Þ

We then divide (21) by M and integrate the following
simplified version of (21)

ð
Γ

1
v θ Q ; vMð Þ

vBαeiπα/β
z + vDγeiπγ/δ
	 
 dv, ð24Þ

around a closed contour Γ in the complex v-plane, where
the exponentsM, Bα, and Dγ are now integers (avoiding any
multivalued issue in a would-be contour integral involving
(20) by instead using the integration in (24)). The contour
Γ will later be taken to be the oriented boundary of an annu-
lus centered at the origin. This key step in avoiding multiva-
lued issues in moving away from (20) to the integral in (24)
allows us to overcome the limiting assumptions in earlier
work (that μ is odd and λ is even in Theorem 6.3 of [2] or that
μ is an integer and λ is 1 in Theorem 6.5 of [2]) to now handle
the general case in this study (where μ and λ are allowed to be
rational, with λ > 0).

In anticipation of a residue computation of the expres-
sion (24), we begin by examining the product representation
of the Jacobi theta function θðQ ; uÞ in (10) and removing
one appropriate factor from the product corresponding to
the vanishing of θðQ ; uÞ when u = −Qk. That is, note that
from (10), one has that for k ≥ 0

θ Q ; uð Þ = μQ
Y∞
n=0

1 + u
Qn

� �
1 + 1

uQn+1

� �

= 1 + u

Qk

� �
μQ

Y∞
n=0,n≠k

1 + u
Qn

� �Y∞
n=0

1 + 1
uQn+1

� �" #
ð25Þ

= 1 + u

Qk

� �
θ k ∣Q ; uð Þ = Qk + u

Qk

 !
θ k ∣Q ; uð Þ, ð26Þ

where for k ≥ 0, the expression θðk ∣Q ; uÞ in (26) is defined
by the bracketed expression in (25), namely,

θ k ∣Q ; uð Þ ≡ μQ
Y∞

n=0,n≠k
1 + u

Qn

� �Y∞
n=0

1 + 1
uQn+1

� �" #
:

ð27Þ

Similarly, for k < 0 one has that

θ Q ; uð Þ = μQ
Y∞
n=0

1 + u
Qn

� �
1 + 1

uQn+1

� �

= 1 + 1
uQ kj j

� �
μQ
Y∞
n=0

�
1

"

+ u
Qn

� Y∞
n=0,n≠ kj j−1

�
1 + 1

uQn+1

�35
ð28Þ

= 1 + 1
uQ kj j

� �
θ k ∣Q ; uð Þ = u +Qk

u

 !
θ k ∣Q ; uð Þ, ð29Þ

where for k < 0, the expression θðk ∣Q ; uÞ in (29) is defined
by the bracketed expression in (28), namely,

θ k ∣Q ; uð Þ ≡ μQ
Y∞
n=0

1 + u
Qn

� � Y∞
n=0,n≠ kj j−1

1 + 1
uQn+1

� �24 35:
ð30Þ

Thus, via (27) and (30), the expression θðk ∣Q ; uÞ is
defined for each k ∈ℤ.

We pause the discussion on representing θðQ ; uÞ in
terms of θðk ∣Q ; uÞ in order to record a series of useful com-
putational lemmas. The first such lemma evaluates θðk ∣Q;
−QkÞ as an “alternating combinatoric.”

Lemma 2. For k ≥ 0 and θðk ∣Q ; uÞ as in (26), one has

θ k ∣Q;−Qk
� �

= μQ
Y∞

n=0,n≠k
1 −

Qk

Qn

 !Y∞
n=0

1 −
1

Qk+n+1

� �" #
= −1ð Þkμ3QQk k+1ð Þ/2:

ð31Þ
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And for k < 0 and θðk ∣Q ; uÞ as in (29), one has

θ k ∣Q;−Qk
� �

= μQ
Y∞
n=0

1 −
Qk

Qn

 ! Y∞
n=0,n≠ kj j−1

1 −
1

Qk+n+1

� �24 35
= − −1ð Þkμ3QQk k+1ð Þ/2:

ð32Þ

Proof. The proof is given in Lemma 5.1 of [2].

The second lemma will provide a structure for the proof
of the third lemma, and it will be utilized in a subsequent
residue computation.

Lemma 3. For an integer M ≥ 2, let ω = e2πi/M be an Mth root
of unity. Then,

xM − bM = x − bð Þ 〠
M−1

j=0
xjbM−1−j = x − bð Þ

YM−1

p=1
x − ωpbð Þ: ð33Þ

Hence,

〠
M−1

j=0
xjbM−1−j =

YM−1

p=1
x − ωpbð Þ: ð34Þ

Proof. Upon expansion of the middle expression in (33), the
left-most equality is self-evident. The right-most equality in
(33) follows from the fact that for each p ∈ f0, 1,⋯,M − 1g
one has ωpb is a root of xM − bM , and hence, x − ωpb is a fac-
tor. To obtain (34), one divides the right two expressions in
(33) by ðx − bÞ. The lemma is now proven.

The third lemma will simplify the computation in (50)
below.

Lemma 4. For an integer M ≥ 2 let ω = e2πi/M be an Mth root
of unity. One has

YM−1

p=1
1 − ωpð Þ =M: ð35Þ

Proof. Set x = 1 = b in (34) to obtain (35). The lemma is
shown.

We record three further lemmas on the behavior of roots
of unity for later computational use.

Lemma 5. Let ω = e2πi/M be an Mth root of unity, and let ϕ
= ωp for some p ∈ℤ have order N . Then,

〠
N−1

ℓ=0
ϕℓ =

1, if N = 1,

0, if N ≥ 2,

(
 In particular, 

〠
M−1

ℓ=0
ωℓ =

1, if M = 1,

0, if M ≥ 2:

( ð36Þ

Proof. If N = 1, then ϕ0 = 1. If N ≥ 2, then let σ =∑N−1
ℓ=0 ϕ

ℓ.
Observe that since ϕN = ϕ0 we have ϕσ = σ which gives 0 =
ð1 − ϕÞσ. Since 1 − ϕ ≠ 0, we conclude σ = 0. In particular,
if p = 1, then N =M and the second equality in (36) holds.
The lemma is demonstrated.

The next lemma generalizes the previous lemma.

Lemma 6. Let ω = e2πi/M be anMth root of unity. Let p ∈ℤ be
fixed. Then,

〠
M−1

ℓ=0
ωℓ� �p = M, if p = 0 mod M,

0, if p ≠ 0 mod M:

(
: ð37Þ

Proof. If p is a multiple of M then ½ωℓ�p = 1 and then ∑M−1
ℓ=0

½ωℓ�p =∑M−1
ℓ=0 1 =M. If p is not divisible by M, then ωp ≠ 1 is

a root of unity with order, say, N > 1, with NT =M. Then,

〠
M−1

ℓ=0
ωℓ� �p = 〠

M−1

ℓ=0
ωp½ �ℓ = 〠

N−1

ℓ=0
ωp½ �ℓ + 〠

2N−1

ℓ=N
ωp½ �ℓ

+⋯ 〠
jN−1

ℓ= j−1ð ÞN
ωp½ �ℓ+⋯+ 〠

TN−1

ℓ= T−1ð ÞN
ωp½ �ℓ

ð38Þ

= 0, ð39Þ

where the vanishing in (39) follows from the vanishing of
each summand

〠
jN−1

ℓ= j−1ð ÞN
ωp½ �ℓ = ωp½ � j−1ð ÞN 〠

N−1

ℓ=0
ωp½ �ℓ, ð40Þ

in (38), which in turn follows from an application of Lemma
5. This proves the lemma.

The following is a refinement of Lemma 6.

Lemma 7. Let ω = e2πi/M be anMth root of unity, withM = ab,
where a, b ∈ℕ. Let p ∈ℤ be fixed. Then if a = 1, one has

〠
a−1

ℓ=0
ωℓ� �p = 1, for all p, ð41Þ

6 Abstract and Applied Analysis



and if a > 1, one has

〠
a−1

ℓ=0
ωℓ� �p =

a, if p = 0 mod M,
0, if p ≠ 0 mod Mand p = 0 mod b,
ωa½ �p − 1
	 

ωp − 1ð Þ ≠ 0, if p ≠ 0 mod Mand p ≠ 0 mod b:

8>>>><>>>>:
:

ð42Þ

Proof. Let σ =∑a−1
ℓ=0 ½ωℓ�p. Then, if a = 1, one has σ = ½ω0�p =

1p = 1, giving (41). If a > 1, one has

ωpσ = 〠
a−1

ℓ=0
ωℓ+1� �p = ωa½ �p + 〠

a−1

ℓ=0
ωℓ� �p − ω0� �p = ωa½ �p + σ − 1:

ð43Þ

Hence,

ωp − 1½ �σ = ωa½ �p − 1: ð44Þ

If p = 0 mod M, σ =∑a−1
ℓ=0 ½ωℓ�p =∑a−1

ℓ=01 = a, giving the
first case in (42). If p ≠ 0 modM and p = 0 mod b, then ωa

is a bth root of unity and the right hand side of (44) vanishes
while ½ωp − 1� ≠ 0, giving σ = 0 for the second case. Finally, if
p ≠ 0 mod M and p ≠ 0 mod b, then ωa is a bth root of unity
and the right hand side of (44) does not vanish while ½ωp −
1� ≠ 0, resulting in σ = ð½ωa�p − 1Þ/½ωp − 1� ≠ 0. This shows
the third case and finishes the proof. Note that the third case
is the only case with p ≠ 0 mod b, because in the first case if
p = 0 mod M withM = ab, then p = 0 mod b. This gives the
lemma.

We return now to the discussion in (25)–(30). Let k ≥ 0.
In (25) and (26), we let u = vM and ω = e2πi/M be theMth root
of unity; one then has that, for each ℓ with 0 ≤ ℓ ≤M − 1,

θ Q ; vM
	 


= μQ
Y∞
n=0

1 + vM

Qn

� �
1 + 1

vMQn+1

� �

= 1 + vM

Qk

� �"
μQ

Y∞
n=0,n≠k

�
1

+ vM

Qn

�Y∞
n=0

�
1 + 1

vMQn+1

�#
ð45Þ

= 1 + vM

Qk

� �
θ k ∣Q ; vM
	 


= Qk + vM

Qk

 !
θ k ∣Q ; vM
	 
 ð46Þ

=
QM−1

j=0 v − ωjeiπ/MQk/M	 

Qk

 !
θ k ∣Q ; vM
	 


= v − ωℓeiπ/MQk/M	 

Qk

YM−1

j=0,j≠ℓ
v − ωjeiπ/MQk/M
� � !

� θ k ∣Q ; vM
	 


,

ð47Þ

where (27) was used to move from (45) to (46) and (33) in
Lemma 3 was used to move from (46) to (47). Thus, for k
≥ 0, the residue of f1ðvÞ = 1/½vθðQ ; vMÞ� at vk,ℓ = ωℓeiπ/M
Qk/M is given by

Res f1, vk,ℓð Þ = Qk

ωℓeiπ/MQk/M

� 1QM−1
j=0,j≠ℓ ωℓeiπ/MQk/M − ωjeiπ/MQk/M	 
� �

⋅
1

θ k ∣Q ; ωℓeiπ/MQk/M� �M� �
ð48Þ

= Qk

ωℓeiπ/MQk/M� �M 1QM−1
j=0,j≠ℓ 1 − ωj−ℓð Þ

� �
θ k ∣Q;−Qk	 
 ð49Þ

= Qk

−Qk

1
M θ k ∣Q;−Qk	 
� � = 1

−1
1

M −1ð Þkμ3QQk k+1ð Þ/2
h i ð50Þ

= −1ð Þk+1
μ3QQ

k k+1ð Þ/2
1
M

, ð51Þ

where we have factored out ωℓeiπ/MQk/M from each factor in
ðQM−1

j=0,j≠ℓðωℓeiπ/MQk/M − ωjeiπ/MQk/MÞÞ in the denominator

of (48) to obtain (49); and the first equality in (50) follows
from Lemma 4 if M ≥ 2 (and is automatic if M = 1); and
the second equality in (50) follows from (31) of Lemma 2.

Let k < 0. In (28) and (29), we let u = vM and ω = e2πi/M ;
one then has that, for each ℓ with 0 ≤ ℓ ≤M − 1,

θ Q ; vM
	 


= μQ
Y∞
n=0

1 + vM

Qn

� �
1 + 1

vMQn+1

� �

= 1 + 1
vMQ kj j

� �
μQ
Y∞
n=0

�
1

"

+ vM

Qn

� Y∞
n=0,n≠ kj j−1

�
1 + 1

vMQn+1

�35
ð52Þ

= 1 + 1
vMQ kj j

� �
θ k ∣Q ; vM
	 


= vM +Qk

vM

 !
θ k ∣Q ; vM
	 


ð53Þ

=
QM−1

j=0 v − ωjeiπ/MQk/M	 

vM

 !
θ k ∣Q ; vM
	 


= v − ωℓeiπ/MQk/M	 

vM

YM−1

j=0,j≠ℓ
v − ωjeiπ/MQk/M
� � !

� θ k ∣Q ; vM
	 


,

ð54Þ
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where (30) was used to move from (52) to (53) and (33) in
Lemma 3 was used to move from (53) to (54). Thus, for k
< 0, the residue of f1ðvÞ = 1/½vθðQ ; vMÞ� at vk,ℓ = ωℓeiπ/M

Qk/M is given by

Res f1, vk,ℓð Þ = ωℓeiπ/MQk/M� �M
ωℓeiπ/MQk/M

� 1QM−1
j=0,j≠ℓ ωℓeiπ/MQk/M − ωjeiπ/MQk/M	 
� �

⋅
1

θ k ∣Q ; ωℓeiπ/MQk/M� �M� �
ð55Þ

= −Qk

ωℓeiπ/MQk/M� �M 1QM−1
j=0,j≠ℓ 1 − ωj−ℓð Þ

� �
θ k ∣Q;−Qk	 
 ð56Þ

= −Qk

−Qk

1
M θ k ∣Q;−Qk	 
� � = 1

1
1

M − −1ð Þkμ3QQk k+1ð Þ/2
h i ð57Þ

= −1ð Þk+1
μ3QQ

k k+1ð Þ/2
1
M

, ð58Þ

where we have factored out ωℓeiπ/MQk/M from each factor in
ðQM−1

j=0,j≠ℓðωℓeiπ/MQk/M − ωjeiπ/MQk/MÞÞ in the denominator

of (55) to obtain (56); and the first equality in (57) follows
from Lemma 4 if M ≥ 2 (and is automatic if M = 1); and
the second equality in (57) follows from (32) of Lemma 2.

Note that the form of the final expression in (51) agrees
with the form of the final expression in (58). Hence, we have
that for all k ∈ℤ the residue of f1ðvÞ = 1/½vθðQ ; vMÞ� at vk,ℓ
= ωℓeiπ/MQk/M is given by

Res f1, vk,ℓð Þ = −1ð Þk+1
μ3QQ

k k+1ð Þ/2
1
M

: ð59Þ

The previous discussion allows us to reach the following
conclusion:

Proposition 8. Let α, β, γ, δ,M, B and D be as in (22) and
(23). Let k ∈ℤ, ω = e2πi/M , and ℓ satisfying 0 ≤ ℓ ≤M − 1 all

be fixed. Let z ∈ℂ\f−½ωℓ+1Qk/M�Dγg be fixed. Then the resi-
due of

f2 vð Þ = 1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
 ð60Þ

at vk,ℓ = ωℓeiπ/MQk/M is given by

Res f2, vk,ℓð Þ = −1ð Þk+1
μ3QQ

k k+1ð Þ/2
1
M

ωℓeiπ/MQk/M� �Bα
eiπα/β

z + ωℓeiπ/MQk/M� �Dγ
eiπγ/δ

� �
ð61Þ

= −1ð Þk+1
μ3QQ

k k+1ð Þ/2
1
M

ωℓ+1Qk/M� �Bα
z + ωℓ+1Qk/M� �Dγ� � : ð62Þ

Proof. Referring to (24) and (59) and the discussion above,
equality in (61) follows immediately, once one determines
that

vBαeiπα/β

z + vDγeiπγ/δ
	 
 ð63Þ

is analytic in v at vk,ℓ = ωℓeiπ/MQk/M . Thus, we must require

that z + ½ωℓeiπ/MQk/M�Dγeiπγ/δ ≠ 0, which is equivalent to z

≠ −½ωℓ+1Qk/M�Dγ, as seen in the next sentence. Equality in

(62) follows directly from the facts that eiπα/β = ½eiπ/M�Mα/β

= ½eiπ/M�Bα and eiπγ/δ = ½eiπ/M�Mγ/δ = ½eiπ/M�Dγ. The proposi-
tion is now shown.

Note that when ℓ =M − 1 and z = ix in (62), the resulting
expression matches the kth summand in (16) up to the con-
stant factors 1/

ffiffiffiffiffiffi
2π

p
and ð−1/½Mμ3Q�Þ.

Having found the residues at ωℓeiπ/MQk/M , the next prop-
osition allows for the determination of the residues of f2ðvÞ
in (60) at the roots of ðz + vDγeiπγ/δÞ. First, observe that ðz
+ vDγeiπγ/δÞ = 0 precisely when vDγ = eiπe−iπγ/δz, namely,
when v = ~ωκeiπ/½Dγ�e−iπγ/½δDγ�z0 where z0 is a ½Dγ�th root of z,
~ω = e2πi/½Dγ� is the ½Dγ�th root of unity, and 0 ≤ κ ≤Dγ − 1.

Proposition 9. Let z ∈ℂ∗\~S where ~S ≡ f−½ωj+1Qk/M�Dγ ∣ k ∈
ℤ, 0 ≤ j ≤M − 1g. For 0 ≤ κ ≤Dγ − 1, ~ω = e2πi/½Dγ�, z0 a fixed
½Dγ�th root of z, and z1 = eiπ/½Dγ�e−iπγ/½δDγ�z0, the residue of

f2 vð Þ = 1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
 ð64Þ

at vκ = ~ωκeiπ/½Dγ�e−iπγ/½δDγ�z0 = ~ωκz1 is given by

Res f2, vκð Þ = 1
Dγ

1
−z½ �

~ωκz1½ �Bαeiπα/β
θ Q ; ~ωκz1½ �M
� � : ð65Þ

Proof. Equation (65) holds for Dγ = 1 upon setting v = −
e−iπγ/δz in the expression vBαeiπα/β/½vθðQ ; vMÞeiπγ/δ�. Observe
that for Dγ ≥ 2 the expression ðz + vDγeiπγ/δÞ can be factored
as follows:
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z + vDγeiπγ/δ
� �

= eiπγ/δ vDγ − eiπe−iπγ/δz
� �

ð66Þ

= eiπγ/δ
YDγ−1
j=0

v − ~ωjeiπ/ Dγ½ �e−iπγ/ δDγ½ �z0
� �

ð67Þ

= eiπγ/δ
YDγ−1
j=0

v − ~ωjz1
	 
 ð68Þ

= v − ~ωκz1ð Þ eiπγ/δ
YDγ−1

j=0,j≠κ
v − ~ωjz1
	 
" #

, ð69Þ

where one uses (33) to move from (66) to (67) and one uses
the definition z1 = eiπ/½Dγ�e−iπγ/½δDγ�z0 to simplify (67) into
(68). Notice next that evaluation of the bracketed expression
in (69) at ~ωκz1 yields

eiπγ/δ
YDγ−1

j=0,j≠κ
~ωκz1 − ~ωjz1
	 
" #

= eiπγ/δ ~ωκz1½ �Dγ−1
YDγ−1

j=0,j≠κ
1 − ~ωj−κ	 
" #

= eiπγ/δ ~ωκz1½ �Dγ−1 Dγ½ �,

ð70Þ

where equality in (70) follows from (35) in Lemma 4.

To compute the residue of f2ðvÞ in (64) at v = vκ = ~ωκz1
one observes

Res f2, vκð Þ = 1
~ωκz1½ �θ Q ; ~ωκz1½ �M

� �
� ~ωκz1½ �Bαeiπα/β
eiπγ/δ

QDγ−1
j=0,j≠κ ~ωκz1 − ~ωjz1

	 
h i ð71Þ

= 1
~ωκz1½ �θ Q ; ~ωκz1½ �M

� � ~ωκz1½ �Bαeiπα/β
eiπγ/δ ~ωκz1½ �Dγ−1Dγ ð72Þ

= 1
eiπγ/δ ~ωκz1½ �Dγ θ Q ; ~ωκz1½ �M

� � ~ωκz1½ �Bαeiπα/β
Dγ ð73Þ

= 1
−z½ �θ Q ; ~ωκz1½ �M

� � ~ωκz1½ �Bαeiπα/β
Dγ

: ð74Þ

where (71) follows from (69) and (72) follows from (70),
while (73) follows from a consolidation of the factors ½~ωκz1
� and (74) follows from the facts that ~ω is a ½Dγ�th root of
unity and zDγ1 = −e−πiγ/δz. Of course, we must have that 1/ð
vθðQ ; vMÞÞ is analytic at v = vκ = ~ωκz1, and hence, ½~ωκz1�M
≠ −Qk for any k ∈ℤ, which is seen to be equivalent to z ≠
−½ωj+1Qk/M�Dγ for any j = 0,⋯,M − 1, and any k ∈ℤ.
Furthermore, we must have ½~ωκz1� ≠ 0, which is equivalent

to z ≠ 0. Thus, we require that z ∈ℂ∗\~S, as hypothesized.
The proposition is now proven.

Lemma 10. Let M = lcm fβ, δg, and let N ∈ℕ. Set ΓN =
CN − cN = ∂AN be the positively oriented boundary of the
annular region AN in ℂ enclosed by the circular paths CN

= ððQðN+1Þ/M +QN/MÞ/2Þeiϕ and cN = ððQð−N−1Þ/M +Q−N/MÞ/
2Þeiϕ, where ϕ increases from 0 to 2π. Let z ∈ℂ∗\~S, where ~S
≡ f−½ωj+1Qk/M�Dγ ∣ k ∈ℤ, 0 ≤ j ≤M − 1g and ω = e2πi/M .

Let v = ~ωκz1 for 0 ≤ κ ≤Dγ − 1 denote the roots of z +
vDγeiπα/β = 0, where ~ω = e2πi/½Dγ�, z0 is a ½Dγ�th root of z, and
z1 = eiπ/½Dγ�e−iπγ/½δDγ�z0. Choose N sufficiently large so that
for 0 ≤ κ ≤Dγ − 1 one has ~ωκz1 ∈ IntðANÞ, the interior of
AN . Then, for f2ðvÞ as in (62), one has

ð
ΓN

f2 vð Þdv =
ð
ΓN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
 dv

= 2πi
1

μ3Q

1
M

〠
M−1

ℓ=0
〠
N

k=−N

−1ð Þk+1
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
z + ωℓ+1Qk/M� �Dγ

" #
ð75Þ

+2πi e
iπα/β

−zð Þ
1
Dγ

〠
Dγ−1

κ=0

~ωκz1½ �Bα

θ Q ; ~ωκz1½ �M
� � : ð76Þ

Proof. The integral over ΓN yields 2πi times the enclosed res-
idues, which occur at v = vκ = ~ωκz1 for 0 ≤ κ ≤Dγ − 1 in Int
ðANÞ the interior of AN , as well as at the zeroes of θðQ ; vMÞ
in AN , which by construction of ΓN are v = vk,ℓ = ωℓeiπ/M
Qk/M for −N ≤ k ≤N and 0 ≤ ℓ ≤M − 1. So the residue theo-
rem gives

ð
ΓN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
 dv

= 2πi 〠
M−1

ℓ=0
〠
N

k=−N
Res f2, vk,ℓð Þ

 !
+ 2πi 〠

Dγ−1

κ=0
Res f2, vκð Þ

 !
ð77Þ

= 2πi 1
μ3Q

1
M

〠
M−1

ℓ=0
〠
N

k=−N

−1ð Þk+1
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
z + ωℓ+1Qk/M� �Dγ

" #
ð78Þ

+2πi e
iπα/β

−zð Þ
1
Dγ

〠
Dγ−1

κ=0

~ωκz1½ �Bα

θ Q ; ~ωκz1½ �M
� � , ð79Þ

where Resð f2, vk,ℓÞ in (77) has been replaced by (62) to obtain
the summation in (78) and where Resð f2, vκÞ in (77) has been
replaced by (65) to obtain the summation in (79). The
expressions in (78) and (79) now give (75) and (76), and
the lemma is proven.
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Lemma 11. Let the assumptions in the first paragraph of
Lemma 10 hold. Then,

lim
N⟶∞

ð
CN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
�����

����� dvj j = 0, ð80Þ

lim
N⟶∞

ð
cN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
�����

����� dvj j = 0, ð81Þ

and hence,

lim
N⟶∞

ð
ΓN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
�����

����� dvj j = 0, ð82Þ

lim
N⟶∞

ð
ΓN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
 dv = 0: ð83Þ

Proof. We show (80) and (81), which implies immediately
that (82) and (83) hold. Now, the vanishing of each of the
limits in (80) and (81) holds because θðQ ; vMÞ grows suffi-
ciently rapidly as N approaches infinity for v ∈ CN or v ∈
cN . This rapid growth will follow directly from the identity
(12). Designate C0 = fw ∣w = ððQ1/M + 1Þ/2Þeiϕ, ϕ ∈ ½0, 2π�g
as a reference circle of radius ρ≔ ðQ1/M + 1Þ/2 > 1 which
by construction satisfies that θðQ ;wMÞ never vanishes. This
nonvanishing is the result of the fact that 1 < ρ = jwj <Q1/M ,
whereby 1 < jwMj <Q, along with the fact that all zeros of
θðQ ; vMÞ occur for vM = −Qk for some k ∈ℤ, from (13).
By continuity of θðQ ;wMÞ on the compact set C0, there exist
constants b and B, each depending on Q, such that for all
w ∈ C0

0 < b ≤ θ Q ;wM	 
�� �� ≤ B <∞: ð84Þ

Note that v ∈ CN implies ∃ w ∈ C0 with v =QN/Mw, and
by (12), one has

θ Q ; vM
	 


= θ Q ; QN/Mw
� �M� �

= θ Q ;QNwM	 

=QN N+1ð Þ/2wNMθ Q ;wM	 


,
ð85Þ

with jθðQ ; vMÞj =QNðN+1Þ/2ρNMjθðQ ;wMÞj ≥QNðN+1Þ/2ρNM

b. Then for N0 such that ð½QN0/Mρ�Dγ − jzjÞ > 0 and all N ≥
N0, one hasð

CN

1
v θ Q ; vMð Þ

vBαeiπα/β
z + vDγeiπγ/δ
	 
�����

����� dvj j

=
ð
CN

1
θ Q ; vMð Þj j

vj jBα
z + vDγeiπγ/δ
�� �� dvj j

vj j

≤
1

QN N+1ð Þ/2ρNMb
	 
 QN/Mρ

� �Bα
QN/Mρ
� �Dγ − zj j
� � 2π,

ð86Þ

which approaches 0 as N approaches infinity, as QNðN+1Þ/2 is
the dominant term. Similarly, v ∈ cN implies ∃ w ∈ C0 with
v =Qð−N−1Þ/Mw, and by (12), one has

θ Q ; vM
	 


= θ Q ; Q −N−1ð Þ/Mw
h iM� �

= θ Q ;Q −N−1ð ÞwM
� �

=Q −N−1ð Þ −Nð Þ/2wM −N−1ð Þθ Q ;wM	 

,

ð87Þ

with jθðQ ; vMÞj =QNðN+1Þ/2ρMð−N−1ÞjθðQ ;wMÞj ≥QNðN+1Þ/2

ρMð−N−1Þb:
Thus, for N1 such that ðjzj − ½Qð−N1−1Þ/Mρ�DγÞ > 0 and all

N ≥N1, one hasð
cN

1
v θ Q ; vMð Þ

vBαeiπα/β
z + vDγeiπγ/δ
	 
�����

����� dvj j

=
ð
cN

1
θ Q ; vMð Þj j

vj jBα
z + vDγeiπγ/δ
�� �� dvj j

vj j

≤
1

QN N+1ð Þ/2ρM −N−1ð Þb
	 
 Q −N−1ð Þ/Mρ

� �Bα
zj j − Q −N−1ð Þ/Mρ

� �Dγ� � 2π,

ð88Þ

which also vanishes as N approaches infinity, as QNðN+1Þ/2 is
the dominant term. The lemma is now shown.

With Lemma 11 in mind, we record the following corol-
lary which will be utilized later.

Corollary 12. Let S ≡ Sðϕ1, ϕ2Þ = fv ∈ℂ∗ ∣ ϕ1 ≤ arg ðvÞ ≤ ϕ2g
∪ f0g be the sector in ℂ emanating from the origin with
argument falling in the interval ½ϕ1, ϕ2� with ϕ2 − ϕ1 ≤ 2π.
Let sN ≡ S ∩ cN and SN ≡ S ∩ CN , where z, CN , and cN are as
in Lemma 10. Then

lim
N⟶∞

ð
SN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
 dv = 0, ð89Þ

lim
N⟶∞

ð
sN

1
v θ Q ; vMð Þ

vBαeiπα/β

z + vDγeiπγ/δ
	 
 dv = 0: ð90Þ

Proof. One has

0 ≤
ð
SN

1
v θ Q ; vMð Þ

vBαeiπα/β
z + vDγeiπγ/δ
	 
 dv�����

����� ð91Þ

≤
ð
SN

1
v θ Q ; vMð Þ

vBαeiπα/β
z + vDγeiπγ/δ
	 
�����

����� dvj j ð92Þ

≤
ð
CN

1
v θ Q ; vMð Þ

vBαeiπα/β
z + vDγeiπγ/δ
	 
�����

����� dvj j: ð93Þ
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Since the limit as N approaches infinity of (93) vanishes,
by (80), the vanishing in (89) holds. The vanishing in (90)
holds by replacing SN with sN and CN with cN in
(91)–(93), taking limits as N approaches infinity, and relying
on (81). This proves the corollary.

We have now arrived at a preliminary version of the
main theorem of this study. It is “preliminary” in that in cer-
tain cases each side of the main equality (98) and (99) in
Theorem 13 immediately below reduces to an identically 0
function, and it will be necessary later to give nonidentically
vanishing criteria in our main result Theorem 23, where we
will also relate the expression in (99) to the Fourier trans-
form of a function naturally generated by f μ,λðtÞ. First, we
pause to catalogue the current set of results.

Theorem 13. For q > 1, let f μ,λðtÞ be as in (1) and ~f μ,λðtÞ be
as in (14), respectively, where we assume μ ∈ℚ and λ ∈ℚ+.

Let z ∈ℂ∗\~S where ~S ≡ f−½ωj+1Qk/M�Dγ ∣ k ∈ℤ, 0 ≤ j ≤M −
1g. Then,

1

μ3Q

1
M

〠
M−1

ℓ=0
〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
z + ωℓ+1Qk/M� �Dγ

" #
ð94Þ

= eiπα/β

−zð Þ
1
Dγ

〠
Dγ−1

κ=0

~ωκz1½ �Bα

θ Q ; ~ωκz1½ �M
� � , ð95Þ

where μQ is given by (11), where θðQ ; zÞ is the Jacobi
theta function, where

α

β
= μ + 1

2
  

γ

δ
= λ

2
 M = lcm β, δf g

Q = q2/λ = qδ/γ B = M
β

 D = M
δ

ω = e2πi/M    ~ω = e2πi/ Dγ½ �

, ð96Þ

and where α ∈ℤ and β, γ, δ ∈ℕ with α/β and γ/δ in
reduced form. M is taken to be the least common multiple
of β and δ. Also, for z0 any fixed ½Dγ�th root of z, one has
that z1 in (95) is given by

z1 = eiπ/ Dγ½ �e−iπγ/ δDγ½ �z0, whereby zDγ1 = −e−πiγ/δz: ð97Þ

Setting z = ix (94) for x ∈ℝ and requiring that δ ≠ 0
mod 4 give the following relation of the weighted average
of the rotations of the Fourier transforms F ½~f μ,λðtÞ�ðxÞ
with the average of the rotations of z3/θðQ ; zM3 Þ:

1
M

F ~f μ,λ tð Þ
h i

xð Þ + 〠
M−2

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !" #

ð98Þ

= μ3Qe
iπα/βffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
Dγ

〠
Dγ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 350@ 1A: ð99Þ

Here, F ½~f μ,λðtÞ�ðx/½ωℓ+1�DγÞ is given by (17). Also, for

z2 any fixed ½Dγ�th root of ix, one has that z3 in (99) is
given by

z3 = eiπ/ Dγ½ �e−iπγ/ δDγ½ �z2,whereby zDγ3 = −e−πiγ/δix: ð100Þ

Proof. Integrating the integrand (64) over the oriented
boundary ΓN of the annular region AN as in Lemma 10
gives expressions (75) and (76). Taking the limit of (75)
and (76) as N approaches infinity, and relying on Lemma
11 gives

0 = 2πi 1
μ3Q

1
M

〠
M−1

ℓ=0
〠
∞

k=−∞

−1ð Þk+1
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
z + ωℓ+1Qk/M� �Dγ

" #
ð101Þ

+ 2πi e
iπα/β

−zð Þ
1
Dγ

〠
Dγ−1

κ=0

~ωκz1½ �Bα

θ Q ; ~ωκz1½ �M
� � , ð102Þ

where z1 is given by (97). Dividing (101) and (102) by
2πi and moving the double summation to the left side
of the equality give (94) and (95). Now, multiplying
(94) and (95) by μ3Q/

ffiffiffiffiffiffi
2π

p
gives

1
M

〠
M−1

ℓ=0

1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
z + ωℓ+1Qk/M� �Dγ

" #" #
ð103Þ

= μ3Qffiffiffiffiffiffi
2π

p eiπα/β
−zð Þ

1
Dγ

〠
Dγ−1

κ=0

~ωκz1½ �Bα

θ Q ; ~ωκz1½ �M
� � : ð104Þ

Setting z = ix in (103) and (104) gives that (97) becomes
(100), and we then also replace z1 in (104) by z3 to obtain
(105)–(107) below. Factoring out the powers of ωℓ+1 from
(103) now yields

1
M

〠
M−1

ℓ=0

ωℓ+1� �Bα
1

1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk/M� �Bα
ix + ωℓ+1Qk/M� �Dγ

" #" #
ð105Þ

= 1
M

〠
M−1

ℓ=0

ωℓ+1� �Bα
ωℓ+1½ �Dγ

1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk/M� �Bα
ix/ ωℓ+1½ �Dγ + Qk/M� �Dγ

" #" #
ð106Þ

= μ3Qffiffiffiffiffiffi
2π

p eiπα/β
−ixð Þ

1
Dγ

〠
Dγ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� � : ð107Þ
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One now recognizes that in (106)

1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk/M� �Bα
ix/ ωℓ+1½ �Dγ + Qk/M� �Dγ

" #

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk/M� � M/βð Þα

ix/ ωℓ+1½ �Dγ + Qk/M� � M/δð Þγ

24 35
= 1ffiffiffiffiffiffi

2π
p 〠

∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk� � α/βð Þ

ix/ ωℓ+1½ �Dγ + Qk� � γ/δð Þ

24 35
ð108Þ

=F ~f μ,λ tð Þ
h i

x/ ωℓ+1� �Dγ� �
, ð109Þ

where (109) follows from (17).
Relying on (109) one sees that (106)-(107) becomes

1
M

〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i

x/ ωℓ+1� �Dγ� �h i
ð110Þ

= μ3Qffiffiffiffiffiffi
2π

p eiπα/β
−ixð Þ

1
Dγ

〠
Dγ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� � , ð111Þ

which is equivalent to (98) and (99) when one observes that
for ℓ =M − 1 in (110) one has ωℓ+1 = ωM = 1.

At this point, we have shown (98) and (99) only for x ≠ 0
, so we next handle the case that x = 0. Notice that (108) and
(109) are defined at x = 0 via

F ~f μ,λ tð Þ
h i

x/ ωℓ+1� �Dγ� ����
x=0

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk� � α/βð Þ

0 + Qk� � γ/δð Þ

24 35 ð112Þ

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−Qα/β−γ/δ−1	 
k
Qk k−1ð Þ/2

" #
ð113Þ

= 1ffiffiffiffiffiffi
2π

p θ Q;−Qα/β−γ/δ−1
� �

, ð114Þ

where (114) follows from (10). Now, at x = 0, from (114) one
observes that (110) and (111) still hold in the sense that it
becomes

1
M

〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγh i

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !" #�����

x=0

= 1
M

〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγh i" #

1ffiffiffiffiffiffi
2π

p θ Q;−Qα/β−γ/δ−1
� �� �

ð115Þ

= 0 = lim
x⟶0

μ3Qffiffiffiffiffiffi
2π

p eiπα/β
−ixð Þ

1
Dγ

〠
Dγ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 35, ð116Þ

where the vanishing of (115) follows from the vanishing of
(159) which is proven in the paragraph containing (164) in
Proposition 20 below (with n set to 0) and the vanishing of
the limit in (116) follows from Corollary 32 below. Finally
the requirement that δ ≠ 0 mod 4 is equivalent to the condi-
tion that z = ix does not belong to ~S for any x ∈ℝ by Lemma
14 below. The theorem is now proven.

The following lemma gives a simple characterization for
having some x with ix ∈ ~S (which is to be avoided in Theo-
rem 13).

Lemma 14. In the setting of Theorem 13, with the notation as
in (96), one has

∃ x ∈ℝ such that ix ∈ ~S = − ωj+1Qk/M
h iDγ

∣ j, k ∈ℤ
� 


ð117Þ

⟺δ = 0 mod 4: ð118Þ

Proof. Observe that the existence of an x ∈ℝ with ix ∈ ~S is

equivalent to the existence of a j ∈ℤ with either i = ½ωj+1�Dγ
(in which case x = −½Qk/M�Dγ for some k ∈ℤ) or i = −
½ωj+1�Dγ (in which case x = ½Qk/M�Dγ for some k ∈ℤ).

Since ω = exp ð2πi/MÞ, one has

∃ x ∈ℝwith ix ∈ ~S

⟺ ∃ j ∈ℤwith ± i = ωj+1� �Dγ
⟺ ∃ j ∈ℤ,m ∈ 1, 3f g, and
n ∈ℤwith eπim/2e2πin = e2πi j+1ð ÞDγ/M

ð119Þ

⟺∃ j ∈ℤ,m ∈ 1, 3f g, and n ∈ℤwith m
2 + 2n = 2 j+1ð Þ γ

δ
ð120Þ

⟺∃ j ∈ℤ,m ∈ 1, 3f g, and n ∈ℤwith δ m + 4n½ � = 4 j + 1ð Þγ,
ð121Þ

where (120) follows from the fact that D =M/δ. Now from
(121), one has that δ must be divisible by 4. Thus,

∃ x ∈ℝ with ix ∈ ~S⇒ δ = 0 mod 4: ð122Þ

Conversely, if δ = 0 mod 4, then ∃ p ∈ℕ with δ = 4p.
Since γ and δ have no common factors, one concludes that
γ is not divisible by 2 or 4. Thus, γ = ½m + 4n� for some m
∈ f1, 3g and some n ∈ℤ. Hence,

4pγ = δγ = δ m + 4n½ �: ð123Þ
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Setting j = p − 1 gives that (121) holds. We conclude

δ = 0 mod 4⇒ ∃ x ∈ℝwith ix ∈ ~S: ð124Þ

Equations (122) and (124) now give the equivalence
(117) and (118), and the lemma is proven.

3. The Functions Naturally Generated by
the f μ,λðtÞ

In this section, we again assume the notation of the previ-
ous section. In particular, the notation in (96) holds.
Namely, μ, λ ∈ℚ are rational with λ > 0, with x, t ∈ℝ. Also

ðμ + 1Þ/2 = α/β and λ/2 = γ/δ with α ∈ℤ and β, γ, δ ∈ℕ,
where both α/β and γ/δ are in a reduced form. Finally, M
= lcm fβ, δg is the least common multiple of β and δ, B =
M/β, D =M/δ, and ω = e2πi/M . Let Q = q2/λ, and let 0 ≤ ℓ ≤
M − 1. With this notation in mind, we are able to make the
following definitions.

Definition 15. Assume that δ ≠ 0 mod 4. Then by Lemma

14, one sees from (117), (118), and (119) that ∄ j ∈ℤwith
± i = ½ωj+1�Dγ. Hence, the real part Rð½ωℓ+1�DγÞ ≠ 0. For the
real part Rð½ωℓ+1�DγÞ > 0 define

and for real part Rð½ωℓ+1�DγÞ < 0 define

while for Rð½ωℓ+1�DγÞ < 0 we also define

~f μ,λ ωℓ+1� �Dγ
t

� �
≡ χ −∞,0ð Þ tð Þ~f

≤
μ,λ ωℓ+1� �Dγ

t
� �

ð127Þ

=
0, for t ≥ 0,

−1ð Þf μ,λ ωℓ+1� �Dγ
t

� �
, for t < 0,

8<: ð128Þ

where χð−∞,0ÞðtÞ is the characteristic function of the interval
ð−∞, 0Þ. We emphasize the ð+1Þ coefficient in (125) versus
the ð−1Þ coefficient in (126) and (128).

Note that for Rð½ωℓ+1�DγÞ < 0

lim
t⟶0−

~f μ,λ ωℓ+1� �Dγ
t

� �
= ~f

≤
μ,λ 0ð Þ = −f μ,λ 0ð Þ, ð129Þ

and for Rð½ωℓ+1�DγÞ > 0

lim
t⟶0+

~f μ,λ ωℓ+1� �Dγ
t

� �
= ~f μ,λ 0ð Þ = f μ,λ 0ð Þ: ð130Þ

Definition 16. Assume δ ≠ 0 mod 4. The function naturally
generated by f μ,λðtÞ is given by

W μ,λ tð Þ ≡ 〠
M−1

ℓ=0
ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ

t
� �

ð131Þ

= 〠
−f g

ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ
t

� �
+ 〠

+f g
ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ

t
� �

,

ð132Þ
where the leftmost summation over the negative index f−g
in (132) stands for summation over the indices ℓ with Rð
½ωℓ+1�DγÞ < 0 and the rightmost summation over the positive
index f+g in (125) stands for summation over the indices ℓ
with Rð½ωℓ+1�DγÞ > 0.

While the W μ,λðtÞ are constructed here in Definition 16,
they were originally obtained as the inverse Fourier trans-
form of the expression in (98) in Theorem 13 (scaled by
M). In this sense, the W μ,λðtÞ are natural. We point out
that the W μ,λðtÞ may vanish identically, as discussed in
Proposition 21 below. However, there are a wealth of

~f μ,λ ωℓ+1� �Dγ
t

� �
≡ +1ð Þ〠

k∈ℤ

−1ð Þk exp − ωℓ+1Qk/M� �Dγ
t

� �
qk k−μð Þ/λ = +1ð Þf μ,λ ωℓ+1� �Dγ

t
� �

, for t ≥ 0,

0, for t < 0,

8>><>>: ð125Þ

~f
≤
μ,λ ωℓ+1� �Dγ

t
� �

≡

0, for t > 0,

−1ð Þ〠
k∈ℤ

−1ð Þk exp − ωℓ+1Qk/M� �Dγ
t

� �
qk k−μð Þ/λ = −1ð Þf μ,λ ωℓ+1� �Dγ

t
� �

, for t ≤ 0,

8>><>>: ð126Þ
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W μ,λðtÞ that are not vanishing identically, as characterized
in Proposition 21. In any case, the W μ,λðtÞ have useful
properties that are now recorded as a series of proposi-
tions. The first observation is that W μ,λðtÞ is real valued.

Proposition 17. For all t ∈ℝ, W μ,λðtÞ ∈ℝ.

Proof. Observe that for ½ωℓ+1�Dγ =Rð½ωℓ+1�DγÞ + iI ð
½ωℓ+1�DγÞ one has Conjð½ωℓ+1�DγÞ =Rð½ωℓ+1�DγÞ − iI ð
½ωℓ+1�DγÞ, and hence, conjugation preserves the sign of R

ð½ωℓ+1�DγÞ. Thus, conjugation also preserves the sets f−g
≡ fℓ ∣Rð½ωℓ+1�DγÞ < 0g and f+g ≡ fℓ ∣Rð½ωℓ+1�DγÞ > 0g.
This allows us to conclude that

Conj ~f μ,λ ωℓ+1� �Dγ
t

� �h i
= ~f μ,λ �ωℓ+1� �Dγ

t
� �

ð133Þ

independently of the ð−1Þ factor in (128) versus the ð+1Þ
factor in (125), where �ω = ConjðωÞ = e−2πi/M . Hence, from
(132), one has

Conj W μ,λ tð Þ	 

= 〠

−f g
�ωℓ+1� �Bα~f μ,λ �ωℓ+1� �Dγ

t
� �

+ 〠
+f g

�ωℓ+1� �Bα~f μ,λ �ωℓ+1� �Dγ
t

� �
= 〠

M−1

ℓ=0
�ωℓ+1� �Bα~f μ,λ �ωℓ+1� �Dγ

t
� �

= 〠
M−1

ℓ=0
ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ

t
� �

,

ð134Þ

where the last equation in (134) follows since conjuga-
tion permutes each of the sets fωℓ ∣ 0 ≤ ℓ ≤M − 1g, fωℓ

∣ ℓ ∈ f−gg, and fωℓ ∣ ℓ ∈ f+gg. The proposition now follows.

The second result gives smoothness.

Proposition 18. W μ,λðtÞ is C∞ at t = 0, and hence, W μ,λðtÞ
is in C∞ðℝÞ. Furthermore, W μ,λðtÞ is Schwartz.

Proof. Away from t = 0,W μ,λðtÞ is C∞ via (125)-(126). From

(132), note that for t < 0, one has W μ,λðtÞ =∑f−g½ωℓ+1�Bα
~f μ,λð½ωℓ+1�DγtÞ and for t ≥ 0 one has W μ,λðtÞ =∑f+g½ωℓ+1�Bα
~f μ,λð½ωℓ+1�DγtÞ. Smoothness will follow at t = 0, by showing

that limt⟶0−W
ðnÞ
μ,λðtÞ = limt⟶0+W

ðnÞ
μ,λðtÞ for all n ∈ℕ0. From

(125) and (126), one has

lim
t⟶0−

W
nð Þ
μ,λ tð Þ = lim

t⟶0−
〠
−f g

ωℓ+1� �Bα dn

dtn
~f μ,λ ωℓ+1� �Dγ

t
� �

= lim
t⟶0−

〠
−f g

ωℓ+1� �Bα −1ð Þn ωℓ+1� �Dγn
� ~f μ+nλ,λ ωℓ+1� �Dγ

t
� �

= 〠
−f g

ωℓ+1� �Bα −1ð Þn ωℓ+1� �Dγn ~f ≤μ+nλ,λ 0ð Þ

ð135Þ

= 〠
−f g

ωℓ+1� �Bα −1ð Þn ωℓ+1� �Dγn −1ð Þf μ+nλ,λ 0ð Þ, ð136Þ

where (135) follows directly from differentiating (126) and
(136) also follows from (126). Also,

lim
t⟶0+

W
nð Þ
μ,λ tð Þ = lim

t⟶0+
〠
+f g

ωℓ+1� �Bα dn

dtn
~f μ,λ ωℓ+1� �Dγ

t
� �

= lim
t⟶0+

〠
+f g

ωℓ+1� �Bα −1ð Þn ωℓ+1� �Dγn
� ~f μ+nλ,λ ωℓ+1� �Dγ

t
� �

= 〠
+f g

ωℓ+1� �Bα −1ð Þn ωℓ+1� �Dγn ~f μ+nλ,λ 0ð Þ

ð137Þ

= 〠
+f g

ωℓ+1� �Bα −1ð Þn ωℓ+1� �Dγn
f μ+nλ,λ 0ð Þ, ð138Þ

where (135) follows directly from differentiating (125) and
(138) follows from (1). Equality of (136) with (138) would
be equivalent with

0 = 〠
−f g

ωℓ+1� �Bα
ωℓ+1� �Dγn + 〠

+f g
ωℓ+1� �Bα

ωℓ+1� �Dγn" #
f μ+nλ,λ 0ð Þ:

ð139Þ

Now if Bα +Dγn ≠ 0 mod M, then

〠
−f g

ωℓ+1� �Bα
ωℓ+1� �Dγn + 〠

+f g
ωℓ+1� �Bα

ωℓ+1� �Dγn = 0 ð140Þ

from Lemma 6. Hence (139) holds. On the other hand, if B
α +Dγn = 0 mod M, then

〠
−f g

ωℓ+1� �Bα
ωℓ+1� �Dγn + 〠

+f g
ωℓ+1� �Bα

ωℓ+1� �Dγn =M ≠ 0

ð141Þ
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from Lemma 6. In this case, one has that for some k ∈ℤ

Mk = Bα +Dγn =M
α

β
+ γ

δ
n

� �
⇔ k = α

β
+ γ

δ
n

� �
∈ℤ

ð142Þ

⇔k − 1 = α

β
− 1 + γ

δ
n

� �
∈ℤ, ð143Þ

where we have used (96) to rewrite B =M/β,D =M/δ in the
second equality of (142). Now from Lemma 2.4 of [2], one
has f μ+nλð0Þ = θðq2/λ;−qðμ+nλ−1Þ/λÞ= θðQ;−Qðμ+nλ−1Þ/2Þ, where
from (96) we have used q2/λ =Q. From (13), it follows that
θðQ;−Qðμ+nλ−1Þ/2Þ = 0 if and only if there is a k ∈ℤ with k
= ðμ + nλ − 1Þ/2. Now,

k = μ + nλ − 1
2 ⇔ k = μ + 1

2 − 1 + n
λ

2 ⇔ k

= α

β
− 1 + γ

δ
n

� �
∈ℤ,

ð144Þ

where (96) was used to rewrite ðμ + 1Þ/2 = α/β and λ/2 = γ/δ.
Observing equality of the rightmost expression in (144) with
the rightmost expression (143), one has that in (139)

〠
M−1

ℓ=0
ωℓ+1� �Bα

ωℓ+1� �Dγn" #
≠ 0 precisely when f μ+nλ,λ 0ð Þ = 0:

ð145Þ

Thus, in all cases, (139) holds, whence equality of (136)
and (138) holds. We conclude that W μ,λðtÞ is C∞ at t = 0
and thus on ℝ.

Finally, the fact thatW μ,λðtÞ is Schwartz follows from (1)
the fact that it is in C∞ðℝÞ and (2) from the fact that for jtj
sufficiently large one has jW μ,λðtÞj ≤ K1jtj−K2 ln ðjtjÞ+K3 for
constants K1, K2 > 0 and K3 ∈ℝ, which in turn follows from
the expressions (125) and (126) and from Proposition 8.1 of
[2]. The proposition is now proven.

One consequence of Proposition 18 is that W μ,λðtÞ has a
Fourier transform which is Schwartz. The following proposi-
tion allows us to observe that W μ,λðtÞ was defined so that its
Fourier transform would be given by (98) (up to the con-
stant factor 1/M).

Proposition 19. The Fourier transform ofW μ,λðtÞ is given by

F W μ,λ tð Þ� �
xð Þ = F ~f μ,λ tð Þ

h i
xð Þ + 〠

M−2

ℓ=0
ωℓ+1� �Bα−Dγ"

�F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !#

:

ð146Þ

Proof. From (131), one has

F W μ,λ
� �

xð Þ = 〠
M−1

ℓ=0
ωℓ+1� �Bα

F ~f μ,λ ωℓ+1� �Dγ
t

� �h i
xð Þ: ð147Þ

We next evaluateF ½~f μ,λð½ωℓ+1�DγtÞ�ðxÞ in (147). Observe

that for Rð½ωℓ+1�DγÞ > 0 one has

F ~f μ,λ ωℓ+1� �Dγ
t

� �h i
xð Þ

= 1ffiffiffiffiffiffi
2π

p
ð∞
0
e−ixt 〠

∞

k=−∞
−1ð Þk

exp − ωℓ+1Qk/M� �Dγ
t

� �
qk k−μð Þ/λ dt

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

ð∞
0

exp −ixt − ωℓ+1Qk/M
h iDγ

t
� �

dt

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

exp −ixt − ωℓ+1Qk/M� �Dγ
t

� �
−ix − ωℓ+1Qk/M� �Dγ

������
∞

0

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

1
ix + ωℓ+1Qk/M� �Dγ :

ð148Þ

Similarly, for Rð½ωℓ+1�DγÞ < 0, one has

F ~f μ,λ ωℓ+1� �Dγ
t

� �h i
xð Þ

= 1ffiffiffiffiffiffi
2π

p
ð0
−∞

e−ixt −1ð Þ 〠
∞

k=−∞
−1ð Þk

exp − ωℓ+1Qk/M� �Dγ
t

� �
qk k−μð Þ/λ dt

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

ð0
−∞

−1ð Þ exp −ixt − ωℓ+1Qk/M
h iDγ

t
� �

dt

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

−1ð Þ exp −ixt − ωℓ+1Qk/M� �Dγ
t

� �
−ix − ωℓ+1Qk/M� �Dγ

������
0

−∞

= 1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

1
ix + ωℓ+1Qk/M� �Dγ :

ð149Þ

From the matching forms of (148) and (149), one sees
that (147) becomes

F W μ,λ tð Þ� �
xð Þ = 〠

M−1

ℓ=0
ωℓ+1� �Bα 1ffiffiffiffiffiffi

2π
p 〠

∞

k=−∞

−1ð Þk
qk k−μð Þ/λ

� 1
ix + ωℓ+1Qk/M� �Dγ : ð150Þ
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Noticing that

−1ð Þk
qk k−μð Þ/λ =

−1ð Þkqk μ+1ð Þ/λ

qk k+1ð Þ/λ = −1ð Þk q2/λ
� �k μ+1ð Þ/2

q2/λ
	 
k k+1ð Þ/2

= −1ð Þk Qk� � μ+1ð Þ/2

Qk k+1ð Þ/2 = −1ð Þk Qk/M� �M α/βð Þ

Qk k+1ð Þ/2

= −1ð Þk Qk/M� �Bα
Qk k+1ð Þ/2

ð151Þ

reexpresses (150) as

F W μ,λ tð Þ� �
xð Þ = 〠

M−1

ℓ=0
ωℓ+1� �Bα 1ffiffiffiffiffiffi

2π
p 〠

∞

k=−∞

−1ð Þk Qk/M� �Bα
Qk k+1ð Þ/2

� 1
ix + ωℓ+1Qk/M� �Dγ

ð152Þ

= 〠
M−1

ℓ=0

ωℓ+1� �Bα
ωℓ+1½ �Dγ

1ffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk/M� �Bα
ix/ ωℓ+1½ �Dγ + Qk/M� �Dγ

= 〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i

x/ ωℓ+1� �Dγ� �
,

ð153Þ

where (153) follows from (17). Now, (153) gives (146) and
the proposition is proven.

Another property of W μ,λðtÞ is that all of its moments
vanish.

Proposition 20. All moments of W μ,λðtÞ vanish. That is,ð∞
−∞

tnW μ,λ tð Þdt = 0, ∀ n ∈ℕ ∪ 0f g: ð154Þ

Equivalently, all the derivatives of F½W μ,λðtÞ�ðxÞ satisfy

dn

dxn
F W μ,λ tð Þ� �

xð Þ
����
x=0

= 0: ð155Þ

Proof. We proceed by showing (155). Differentiating (152)
yields

dn

dxn
F W μ,λ tð Þ� �

xð Þ	 

= −ið Þnn! 〠

M−1

ℓ=0

ωℓ+1� �Bαffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk/M� �Bα
ix + ωℓ+1Qk/M� �Dγ� �n+1

264
375

264
375:

ð156Þ

Evaluating at x = 0 gives

dn

dxn
F W μ,λ tð Þ� �

xð Þ
����
x=0

= −ið Þnn! 〠
M−1

ℓ=0

ωℓ+1� �Bαffiffiffiffiffiffi
2π

p 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

Qk/M� �Bα
ωℓ+1Qk/M� �Dγ� �n+1

264
375

264
375

= −ið Þnn!ffiffiffiffiffiffi
2π

p 〠
M−1

ℓ=0

ωℓ+1� �Bα
ωℓ+1½ �Dγ n+1ð Þ 〠

∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2 Qk/M

h iBα−Dγ n+1ð Þ
" #" #

ð157Þ

= −ið Þnn!ffiffiffiffiffiffi
2π

p 〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγ n+1ð Þ

θ Q;−Qα/β− n+1ð Þγ/δ−1
� �h i

ð158Þ

= −ið Þnn!ffiffiffiffiffiffi
2π

p 〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγ n+1ð Þ

" #
θ Q;−Qα/β− n+1ð Þγ/δ−1
� �

: ð159Þ

Here, movement from (157) to (158) is justified as fol-
lows:

〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2 Qk/M

h iBα−Dγ n+1ð Þ
" #

= 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2 Qk/M

h iM α/β−γ n+1ð Þ/δ½ �
" # ð160Þ

= 〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2 Q α/β−γ n+1ð Þ/δ½ �

h ik" #
ð161Þ

= 〠
∞

k=−∞

−1ð Þk
Qk k−1ð Þ/2 Q α/β−γ n+1ð Þ/δ−1½ �

h ik" #
ð162Þ

= θ Q;−Qα/β− n+1ð Þγ/δ−1
� �

, ð163Þ

where (160) follows from B =M/β,D =M/δ as in (96); (161)
follows from cancelling out M; (162) follows from multiply-
ing up and down by Q−k; and (163) follows from (10).

Examining (159), one sees that if Bα −Dγðn + 1Þ ≠ 0
modM in (159), then by Lemma 6, one has ∑M−1

ℓ=0
½ωℓ+1�Bα−Dγðn+1Þ = 0 and (159) vanishes. On the other hand,
if Bα −Dγðn + 1Þ = 0 mod M, then there is a k ∈ℤ with

Mk = Bα −Dγ n + 1ð Þ =M
α

β
−
γ

δ
n + 1ð Þ

� �
⟺ k

= α

β
−
γ

δ
n + 1ð Þ

� �
⟺ k − 1 = α

β
−
γ

δ
n + 1ð Þ − 1

� �
∈ℤ,

ð164Þ

whence θðQ;−Qα/β−ðn+1Þγ/δ−1Þ = 0 by (13). Thus, (159) again
vanishes. Since (159) now vanishes in all cases, we have van-
ishing of every derivative of F½W μ,λðtÞ�ðxÞ at x = 0, giving
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(155). Thus, (154) now holds, and we have vanishing of all
moments. This completes the proof of the proposition.

Notice the similarity of the argument in Proposition 20
with that of Proposition 18. In each case, a factor formed
from the sum of powers of roots of unity fails to vanish pre-
cisely when the remaining theta function factor vanishes.

The next proposition gives a simple characterization for
W μ,λðtÞ to vanish (and to not vanish) identically.

Proposition 21. For all notation as in (96), the following
equivalences hold:

δ ≠ 0 mod β½ �⇔W μ,λ tð Þ ≡ 0⇔ 1
M

F W μ,λ tð Þ� �
xð Þ ≡ 0

ð165Þ

⇔ 1
M

〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !" #

≡ 0 ð166Þ

⇔ μ3Qe
iπα/βffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
Dγ

〠
Dγ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 350@ 1A ≡ 0:

ð167Þ

Thus, ½δ = 0 mod β� occurs precisely when W μ,λðtÞ does
not vanish identically, which in turn occurs precisely when
the identity (98) and (99) in Theorem 13 is not an identically
zero tautology.

Proof. The right-most equivalence in (165) holds by linearity
and injectivity of the Fourier transform; and the equivalences
in (166) and (167) hold by Proposition 19 and Theorem 13,
respectively. It remains to show the following equivalence:

δ ≠ 0 mod β½ �⇔ the vanishing of 167ð Þ½ �: ð168Þ

Observe that in the argument of the theta function in

(167), the expression ½~ωκ�M = ½~ωk�M holds precisely when ∃ j
with e2πij/D~ωκ = ~ωk (and then k = κ + jγ). One might expect
that the previous statement would be that ∃ J with e2πiJ/M~ωκ

= ~ωk; however, e2πiJ/M = e2πiJ/½Dδ� = e2πiJγ/½ðDγÞδ� is an integral
power of ~ω = e2πi/½Dγ� precisely when J = jδ is a multiple of δ,
resulting in canceling of δ terms.

Next, summing over indices with like values of ½~ωκ�M
first gives

〠
Dγ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 35
= 〠

γ−1

κ=0
〠
D−1

j=0

e2πij/D~ωκz3
� �Bα

θ Q ; e2πij/D~ωκz3½ �M
� �

24 35

= 〠
γ−1

κ=0
〠
D−1

j=0

e2πij/D
� �Bα

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 35
= 〠

γ−1

κ=0
〠
D−1

j=0
e2πij/D
� �Bα !

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 35
ð169Þ

= 〠
D−1

j=0
e2πj/D
� �Bα" #

〠
γ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 3524 35: ð170Þ

By Proposition 22 below, the expression ∑γ−1
κ=0½½~ωκz3�Bα/

θðQ ; ½~ωκz3�MÞ� in (170) does not vanish identically. Thus,

(169) and (170) vanish identically if and only if ∑D−1
j=0

½e2πj/D�Bα vanishes. However, this summation of Dth roots
of unity to the Bα power vanishes precisely when Bα ≠ 0
mod D by Lemma 6. Thus, Bα ≠ 0 mod D is equivalent to
identically vanishing in (169) and (170) and therefore equiv-
alent to identically vanishing in (167). Now,

Bα ≠ 0 mod D⟺ ∄ n such thatBα

=Dn⟺ ∄ n such that M
β
α

= M
δ
n⟺ ∄ n such that α δ

β

= n⇔ δ ≠ 0 mod β,

ð171Þ

where the last equivalence holds from the fact that α/β is in a
reduced form. Thus, the leftmost equivalence in (165) holds.
From this left-most equivalence, one deduces that W μ,λðtÞ
does not vanish identically precisely when δ = 0 mod β.
The proposition is now proven.

The following proposition, utilized in Proposition 21,
relies on properties of the Jacobi theta function to obtain a
nonidentically vanishing condition.

Proposition 22. The function

〠
γ−1

κ=0

~ωκz½ �Bα

θ Q ; ~ωκz½ �M
� �

24 35 ð172Þ

is not identically 0 in the argument z ∈ℂ. Hence,

〠
γ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 35 ð173Þ

given in (170) is not identically 0 in z3, where z3 is as in (100)
and (184).

Proof. If γ = 1, then (172) becomes ½z�Bα/θðQ ; zMÞ, which
does not vanish identically. For instance when z = 1, it
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becomes 1/θðQ ; 1Þ ≠ 0. If γ > 1, we show that the function

〠
γ−1

κ=0

~ωκz½ �Bα

θ Q ; ~ωκz½ �M
� �

24 35 =
∑γ−1

κ=0 ~ωκz½ �BαQγ−1
0≤j≠κθ Q ; ~ωjz

� �M� �� �
Qγ−1

j=0 θ Q ; ~ωjz
� �M� �

ð174Þ

is also not identically 0. This in turn is equivalent to the
numerator in the right hand side of (174), namely,

〠
γ−1

κ=0
~ωκz½ �Bα

Yγ−1
0≤j≠κ

θ Q ; ~ωjz
� �M� � !

= zBαθ Q ; ~ωz½ �M	 

θ Q ; ~ω2z

� �M� �
⋯ θ Q ; ~ωγ−1z

� �M� �
ð175Þ

+ θ Q ; z½ �M	 

〠
γ−1

κ=1
~ωκz½ �Bα

Yγ−1
1≤j≠κ

θ Q ; ~ωjz
� �M� � !

, ð176Þ

not being identically 0 in z. Setting z = ð−QÞ1/M in (175)
and (176) gives that

θ Q ; −Qð Þ1/M� �M� �
= θ Q;−Qð Þ = 0 ð177Þ

and then only the summand in (175) survives:

〠
γ−1

κ=0
~ωκ −Qð Þ1/M� �Bα Yγ−1

0≤j≠κ
θ Q ; ~ωj� �M −Q½ �
� � !

= −Qð Þ1/M� �Bα
θ Q ; ~ω½ �M −Qð Þ	 


θ

� Q ; ~ω2� �M −Qð Þ
� �

⋯ θ Q ; ~ωγ−1� �M −Qð Þ
� �

≠ 0,

ð178Þ

where the nonvanishing in (178) is obtained from (13) along
with the fact that

−Q ~ωj� �M = −Q e2πij/ Dγ½ �
h iM

= −Q e2πijδ/γ
h i

ð179Þ

does not lie on the negative real axis for j = 1,⋯, γ − 1. To
see this latter point, if jδ/γ = n ∈ℤ, one has jδ = γn, from
which one has that j is divisible by γ (as γ/δ is assumed to
be in reduced form). However, each j = 1,⋯, γ − 1 is not
divisible by γ. Thus, (172) does not vanish identically. By
the identity theorem, (172) does not vanish on any subset
of ℂ having a limit point. One concludes that (173) is not
identically 0 in z3, as the set of z3 as in (184) ranges over a
set with limit point as x varies in ℝ. The proposition is
now shown.

In light of Proposition 21 and Lemma 14, we refine and
sharpen Theorem 13 by

(1) removing all identically 0 = 0 tautologies in (98) and
(99) via making the additional assumption that δ =
0 mod β

(2) guaranteeing that the expressions in (98) and (99)
are well-defined via making the easily checked
assumption that δ ≠ 0 mod 4

(3) incorporating W μ,λðtÞ into the theorem while
including the additional properties of W μ,λðtÞ gar-
nered from Propositions 17–20

In doing so, we arrive at the main theorem of this study.

Theorem 23. Let q > 1, and for t ≥ 0, let f μ,λðtÞ be defined as
in (1), with μ ∈ℚ, λ ∈ℚ+. For t ∈ℝ, let W μ,λðtÞ, as in Defi-
nition 16, be the function naturally generated by f μ,λðtÞ. Let
the notation of (96) hold. In particular, let ðμ + 1Þ/2 = α/β
and λ/2 = γ/δ be in a reduced form; let δ ≠ 0 mod 4 with δ
= 0 mod β (which gives M = δ and D = 1); and let ω =
e2πi/δ with ~ω = e2πi/γ. Then, W μ,λðtÞ is a real valued Schwartz
wavelet with all moments vanishing with Fourier transform
given by F ½W μ,λðtÞ�ðxÞ satisfying

1
δ
F W μ,λ tð Þ� �

xð Þ ð180Þ

= 1
δ

F ~f μ,λ tð Þ
h i

xð Þ + 〠
δ−2

ℓ=0
ωℓ+1� �Bα−γ

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �γ
� �" #

ð181Þ

= μ3Qe
iπα/βffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
γ

〠
γ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �δ
� �

24 350@ 1A, ð182Þ

where θðQ ; zÞ is the Jacobi theta function, where

Q = qδ/γ, B = δ

β
, ω = e2πi/δ, ~ω = e2πi/γ, ð183Þ

and where for z2 any fixed γth root of ix, one has that z3
in (182) is given by

z3 = eiπ/γe−iπ/δz2, zγ3 = −e−πiγ/δix: ð184Þ

Also, F ½~f μ,λðtÞ�ðx/½ωℓ+1�DγÞ is given by (17). Further-
more, given f μ,λðtÞ, one has that W μ,λðtÞ is uniquely defined
by Definition 16, and it satisfies the same multiplicatively
advanced differential equation (MADE) on ℝ as does f μ,λðtÞ
on ½0,∞Þ, namely,

W
δð Þ
μ,λ tð Þ = −1ð Þγ+δqγ γ+μð Þ/λW μ,λ qγtð Þ: ð185Þ

Proof.W μ,λðtÞ is real valued and Schwartz via Propositions 17
and 18. From Proposition 19, one has that equality in (187)
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below holds, and, from equation (98) and (99) in Theorem 13,
one has that equality in (188) below holds.

1
M

F W μ,λ tð Þ� �
xð Þ ð186Þ

= 1
M

F ~f μ,λ tð Þ
h i

xð Þ + 〠
M−2

ℓ=0
ωℓ+1� �Bα−Dγ"

�F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !# ð187Þ

= μ3Qeiπα/βffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
Dγ

〠
Dγ−1

κ=0

~ωκz3½ �Bα
θ Q ; ~ωκz3½ �M
� �

24 350@ 1A: ð188Þ

From Lemma 14, the hypothesis that δ ≠ 0 mod 4 is
equivalent to the condition that (186)–(188) are defined for
all x ∈ℝ. By Proposition 21, W μ,λðtÞ is identically 0 in t pre-
cisely when δ ≠ 0 mod β; thus, the hypothesis that δ = 0
mod β in the theorem gives precisely all the nonidentically
zero examples of (186)–(188). Furthermore, from the hypoth-
esis that δ = 0 mod β, one has thatM = lcm fβ, δg = δ, from
which we conclude that D =M/δ = δ/δ = 1. SettingM = δ and
D = 1 in (186)–(188) yields equations (180)–(182). Similarly,
setting M = δ and D = 1 in (96) (respectively (100)) yields
(183) (respectively (184)). Next, all moments vanish by Prop-
osition 20. It remains to show that W μ,λðtÞ is a wavelet solv-
ing the MADE (185). The wavelet property follows from the
following three criteria:

(1) W μ,λðtÞ ∈L1ðℝÞ ∩L2ðℝÞ ∩L∞ðℝÞ because W μ,λ
ðtÞ is Schwartz

(2)
Ð∞
−∞W μ,λðtÞ dt = 0 because each moment, including

the 0th-moment, of W μ,λðtÞ vanishes
(3)

Ð∞
−∞ððjF½W μ,λðtÞ�ðxÞj2Þ/jxjÞ dx <∞ becauseF½W μ,λ

ðtÞ�ðxÞ is Schwartz and decays rapidly in the tails and
because F½W μ,λðtÞ�ðxÞ vanishes to infinite order at
x = 0 by Proposition 20

Now, from [2], f μ,λðtÞ on ½0,∞Þ satisfies the MADE

f δð Þ
μ,λ tð Þ = −1ð Þγ+δqγ γ+μð Þ/λ f μ,λ qγtð Þ: ð189Þ

This follows, since

λ

2 = γ

δ
, whence λ = 2γ

δ
: ð190Þ

Setting A = γ and L = δ in equations (16)–(18) in Theo-
rem 2.2 of [2] gives the MADE (189). The MADE for W μ,λ
ðtÞ now follows from (189) as W μ,λðtÞ is a linear combina-
tion of expressions involving f μ,λðtÞ (by Definition 16 and
by (125)–(127)). This proves the theorem.

Remark 24. While the assumption that δ = 0 mod β in The-
orem 23 may at first seem to be limiting, in fact, there
remains a wealth of nonidentically-zero cases (with δ = 0
mod β). The examples below in Sections 5 and 6 demon-
strate that Theorem 23 is quite general in nature. For now,
observe that if δ is a multiple of β then lcm fβ, δg = δ =M.
Hence, if M = δ =QJ

j=1p
nj

j is the prime factorization of M,

the nonidentically zero cases for W μ,λðtÞ and its Fourier

transform are handled by those β =QJ
j=1p

kj
j with 0 ≤ kj ≤ nj

for all j ∈ f1,⋯, Jg and with the parameters μ and λ satisfy-
ing ðμ + 1Þ/2 = α/β and λ/2 = γ/δ in a reduced form.

Remark 25. We also point out that even when δ ≠ 0 mod β,
we are able to relate the Fourier transform of f μ,λðtÞ to the
Jacobi theta function. However, the Fourier relation in this
setting comes from an analogue ofW μ,λðtÞ that is generically
noncontinuous at t = 0 and is not a wavelet. See Theorem 28
and the related discussion below.

Remark 26. In a development similar to (169)-(170), it is also
possible to show that

〠
M−1

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !" #

ð191Þ

= 〠
D−1

j=0
e2πj/D
� �Bα" #

〠
δ−1

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !" #

:

ð192Þ
However, the development in (169) and (170) is pre-

ferred in order to harness properties of the Jacobi theta func-
tion to gain a nonidentically vanishing criterion, as in
Proposition 22. Nonetheless, in comparing the expression
in (170) with that in (192), observing that they share a com-

mon factor ½∑D−1
j=0 ½e2πj/D�Bα�, and contemplating equation

(98) - (99), one is led to consider the relation between

〠
γ−1

κ=0

~ωκz3½ �Bα
θ Q ; ~ωκz3½ �M
� �

24 35 and 

〠
δ−1

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !" #

,

ð193Þ

including when δ ≠ 0 mod β. This will be done in The-
orem 28 below, where it will allow for the recovery of Fou-
rier transform information for f μ,λðtÞ in the cases that
δ ≠ 0 mod β.

Remark 27. At this juncture, we pause to convey a surprising
consequence of expressing the Fourier transform of W μ,λ in
terms of Jacobi theta functions, as in Theorem 23. Knowl-
edge of the Fourier transform of W μ,λ in terms of the Jacobi
theta function allows for the proof of nonvanishing results in
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the cases of γ = 1, 2 in Corollary 34 and Proposition 36
below. This pair of nonvanishing results serves to underpin
a main connection between the solutions of MADEs of type
W μ,λ to the theory of wavelet frames in harmonic analysis.
That is, in these cases, W μ,λ is a mother wavelet generating

a wavelet frame for the square integrable functions L2ðℝÞ,
as is demonstrated in Theorem 37 below. Thus, the current
study lays the foundation for a set of strong connections
between solutions of MADEs, special function theory, and
the theory of wavelet frames. Next, we recover information
on the Fourier transform of ~f μ,λðtÞ when δ ≠ 0 mod β in
the second main theorem of this work, again relating the
Fourier transform to the Jacobi theta function.

Theorem 28. For q > 1, let f μ,λðtÞ be as in (1) and ~f μ,λðtÞ be
as in (14), respectively, where we assume μ ∈ℚ and λ ∈ℚ+,
with notation as in (96), in particular ðμ + 1Þ/2 = α/β and λ
/2 = γ/δ are in reduced form. Let θðQ ; zÞ be the Jacobi theta
function. Let δ ≠ 0 mod β and let δ ≠ 0 mod 4. Then,

1

μ3Q

1
δ
〠
δ−2

ℓ=−1
〠
∞

k=−∞

−1ð Þk
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
ix + ωℓ+1Qk/M� �Dγ

" #
ð194Þ

= eiπα/β

−ixð Þ
1
γ

〠
κ1+γ−1

κ=κ1

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

0@ 1A ð195Þ

+ D e2πiαδ/β − 1
� �

2πi

ð
R1

1
vθ Q ; vMð Þ

vBαeiπα/β

ix + vDγeiπγ/δ
	 
 dv:

ð196Þ
Here, for z2 a fixed ½Dγ�th root of ix, one has that z3 in

(195) (and (201) below) is given by

z3 = eiπ/ Dγ½ �e−iπγ/ δDγ½ �z2, whereby zDγ3 = −e−πiγ/δix: ð197Þ

Also, R1 is the ray emanating from the origin given by
(210) and (206), and

κ1 ≡min κ ∣ arg ~ωκz3ð Þ>− π

M

n o
: ð198Þ

Furthermore, μQ is given by (11), with

ω = e2πi/M and ~ω = e2πi/ Dγ½ �, ð199Þ

whereM is taken to be the least common multiple of β and δ.
One also has the following relation of the weighted partial

average of the rotations of the Fourier transforms F½~f μ,λðtÞ�
ðxÞ with a partial average of rotations of z3/θðQ ; zM3 Þ:

1
δ

F ~f μ,λ tð Þ
h i

xð Þ + 〠
δ−2

ℓ=0
ωℓ+1� �Bα−Dγ

F ~f μ,λ tð Þ
h i x

ωℓ+1½ �Dγ
 !" #

ð200Þ

= μ3Q eiπα/βffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
γ

〠
κ1+γ−1

κ=κ1

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

24 350@ 1A ð201Þ

+ μ
3
Q D e2πiαδ/β − 1
� �
2π½ �3/2i

ð
R1

1
vθ Q ; vMð Þ

vBαeiπα/β

ix + vDγeiπγ/δ
dv:

ð202Þ
Again, z3 in (201) is given by (197). The expression in

(202) is referred to as the defect.

Proof. Instead of integrating the integrand f2ðvÞ in (64) over
the oriented boundary ΓN of the annulus AN as in Theorems
13 and 23, we shall integrate f2ðvÞ over the oriented bound-
ary eΓN of the intersection of the sector S = Sðϕ1, ϕ2Þ = fv ∈
ℂ∗ ∣ ϕ1 ≤ arg ðvÞ ≤ ϕ2g ∪ f0g with the annulus AN , where
ϕ1 is chosen as in (206) below and ϕ2 − ϕ1 = 2π/D. Thus,eΓN = R1,N + SN − R2,N − sN . Here, sN ≡ S ∩ cN and SN ≡ S ∩
CN , where as before, CN = eiϕ½QðN+1Þ/M +QN/M�/2 and cN =
eiϕ½Qð−N−1Þ/M +Q−N/M�/2, but in the current setting, one has
SN and sN that ϕ increases from ϕ1 to ϕ2. Also, R1,N and
R2,N are portions of two rays, as given by

R1,N = v = ρeiϕ1 Q −N−1ð Þ/M +Q−N/M

2 ≤ ρ ≤
Q N+1ð Þ/M +QN/M

2

�����
( )

,

ð203Þ

R2,N = v = ρeiϕ2 Q −N−1ð Þ/M +Q−N/M

2 ≤ ρ ≤
Q N+1ð Þ/M +QN/M

2

�����
( )

:

ð204Þ

Referring to (117) and (118) in Lemma 14, one has

δ ≠ 0 mod 4⟺ ∀ x ∈ℝ 

ix ∉ ~S = − ωj+1Qk/M
h iDγ ���� j, k ∈ℤ� 


,
ð205Þ

and this in turn is equivalent to the fact that for all x ∈ℝ the
roots (in v) of ix + ½v�Dγeiπγ/δ = 0 do not lie among the zeroes
of θðQ ; vMÞ by the remarks at the ends of Propositions 8 and
9. Hence, for all x ∈ℝ and each associated z3 as in (197) and
for each integer κ, one has ~ωκz3 which does not fall among
the zeroes of θðQ ; vMÞ. Namely, for all x ∈ℝ and each asso-
ciated z3, and for all values of κ one has ~ωκz3 ∉ feπi/Mωℓ

Qk/M ∣ ℓ, k ∈ℤg. In particular, setting ℓ = −1, then, for all x
∈ℝ and each associated z3 and for all values of κ and n,
one has that arg ð~ωκz3Þ ≠ −π/M + 2πn. We now choose

ϕ1 ≡ −π/M − ε, ϕ2 ≡ ϕ1 + 2π/D, ð206Þ

where ε < 2π/M is chosen sufficiently small so that none of
the ~ωκz3 falls in the sector Sð−π/M − ε,−π/MÞ. Then, the
corresponding sector S = Sðϕ1, ϕ2Þ gives the intersection S
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∩ AN which has oriented boundary eΓN = R1,N + SN − R2,N
− sN as describe above. Define κ1 ≡min fκ ∣ arg ð~ωκz3Þ>−π
/Mg. Choose N sufficiently large such that all ~ωκz3 are con-
tained in AN . Then integrating f2ðvÞ in (64) over the contoureΓN gives 2πi times the enclosed residues. Namely,

ð
eΓN

f2 vð Þ dv =
ð
eΓN

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv

= 2πi 〠
δ−2

ℓ=−1
〠
N

k=−N
Res f2, ωℓeiπ/MQk/M
� �

+ 2πi 〠
κ1+γ−1

κ=κ1
Res f2, ~ωκz3ð Þ

ð207Þ

= 2πi 1
μ3Q

1
M

〠
δ−2

ℓ=−1
〠
N

k=−N

−1ð Þk+1
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
ix + ωℓ+1Qk/M� �Dγ

" #
ð208Þ

+2πi e
iπα/β

−ixð Þ
1
Dγ

〠
κ1+γ−1

κ=κ1

~ωκz3½ �Bα
θ Q ; ~ωκz3½ �M
� � , ð209Þ

where the evaluation of the enclosed residues in (207) occurs
via Propositions 8 and 9, similar to the analogous computa-
tion in the setting of Theorem 13. Also, comparing (208)
with (75), notice the summation (over ℓ) in (208) has M/D
= δ terms (as compared to M terms in (75)) as the sector
S = Sðϕ1, ϕ2Þ sweeps through an argument of 2π/D in (208)
as opposed to sweeping through an argument of 2π in
(75). The choice of ϕ1 = −π/M − ε is made in order to have
ℓ start at −1 in (208), whereby the first term (at ℓ = −1) in
the double summation in (208) will have ωℓ+1 = ω0 = 1,
matching the expression for F½~f μ,λ�ðxÞ in (16) after letting
N approach infinity. Again, comparing (209) with (76),
notice the summation (over κ) in (209) has ½Dγ�/D = γ terms
(as compared to Dγ terms in (76)) as the sector S = Sðϕ1, ϕ2Þ
sweeps through an argument of 2π/D in (209) as opposed to
sweeping through an argument of 2π in (76). The choice of
κ1 is made to give ~ωκ1z3 as the first (v) root of ix + vDγ

eπiγ/δ = 0 falling in Sðϕ1, ϕ2Þ ∩ AN , that is with smallest argu-
ment such that ϕ1 < arg ð~ωκz3Þ < ϕ2.

Now, defining the rays

R1 = v = ρeiϕ1 ∣ 0 ≤ ρ<∞
� �

, ð210Þ

R2 = v = ρeiϕ2 ∣ 0 ≤ ρ<∞
� �

, ð211Þ

one has that integration along Rm,N approaches integration
along Rm for m = 1, 2 as N ⟶∞. Hence, one has the fol-
lowing limit:

lim
N⟶∞

ð
eΓN

f2 vð Þ dv

= lim
N⟶∞

ð
eΓN

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv

= lim
N⟶∞

ð
R1,N+SN−R2,N−sN

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv

= lim
N⟶∞

ð
R1,N

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv

ð212Þ

− lim
N⟶∞

ð
R2,N

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv

=
ð
R1

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv ð213Þ

−
ð
R2

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv

=
ð
R1

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv ð214Þ

−
ð
R1

1
ve2πi/Dθ Q ; ve2πi/D½ �M

� � ve2πi/D
� �Bαeiπα/β

ix + ve2πi/D½ �Dγeiπγ/δ
� � e2πi/Ddv

ð215Þ

=
ð
R1

vBαeiπα/β
vθ Q ; vMð Þ ix + vDγeiπγ/δ

	 
"

−
ve2πi/D
� �Bαeiπα/β

vθ Q ; vMð Þ ix + vDγeiπγ/δ
	 
#dv ð216Þ

= 1 − e2πiαδ/β
h ið

R1

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv, ð217Þ

where in moving from (212) to (213), one can drop the inte-
grals over SN and sN in the limit by Corollary 12; in moving
from (213) to (214), we have relied on the remarks following
(211); in moving from (214) to (215) we used R2 = e2πi/DR1;
in moving from (215) to (216), we have simplified powers of
e2πi/D by utilizing M/D = δ and Dγ/D = γ; and in moving
from (216) to (217), we have used B =M/β and D =M/δ.
Relying on (217) and taking the limit of (207)–(209) as N
approaches infinity yield

1 − e2πiαδ/β
h ið

R1

1
vθ Q ; vMð Þ

vBαeiπα/β
ix + vDγeiπγ/δ
	 
 dv

= 2πi 1
μ3Q

1
M

〠
δ−2

ℓ=−1
〠
∞

k=−∞

−1ð Þk+1
Qk k+1ð Þ/2

ωℓ+1Qk/M� �Bα
ix + ωℓ+1Qk/M� �Dγ

" # ð218Þ

+2πi e
iπα/β

−ixð Þ
1
Dγ

〠
κ1+γ−1

κ=κ1

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� � : ð219Þ

21Abstract and Applied Analysis



Rearranging terms in (218) and (219) and multiplying
through by D/½2πi� give (194)–(196). Referring to (16), mul-
tiplying (194)-(196) by μ3Q/

ffiffiffiffiffiffi
2π

p
, and factoring out the pow-

ers ½ωℓ+1�Bα from the numerator and ½ωℓ+1�Dγ from the
denominator of (194) give (200)–(202). The theorem is
now demonstrated.

Remark 29. When x = 0, we will consider the expression
(202) (the integral together with its coefficient) to be the
defect from having the expression in (200) vanish at x = 0,
as the expression in (201) vanishes as x approaches 0 by
Corollary 32 below. As a consequence, one concludes that
if the defect (202) (when x = 0) does not vanish, then expres-
sion (200) cannot be the Fourier transform of a wavelet.
Observe that when δ ≠ 0 mod β, the term ½e2πiαδ/β − 1� in
(202) does not vanish, and vanishing of the defect when x
= 0 is equivalent to the vanishing of the integral expression
in (202).

Remark 30. If one were to allow for the case δ = 0 mod β in
Theorem 28, one would then have M = lcm fβ, δg = δ and
D =M/δ = 1 in this case. Furthermore, in this case, Theorem
28 would reduce to Theorem 23, as the coefficient would be
½e2πiαδ/β − 1� = ½1 − 1� = 0 in (202). Thus, if one were to
remove the hypothesis that δ ≠ 0 mod β in Theorem 28,
Theorem 23 could be subsumed into Theorem 28. We
choose to keep the cases δ = 0 mod β and δ ≠ 0 mod β sepa-
rate in order to highlight the special properties of W μ,λðtÞ
when δ = 0 mod β.

The following proposition gives a pair of flatness condi-
tions, and it forms the technical basis for the proof of Corol-
lary 32.

Proposition 31. Let q > 1 and ϕ be fixed with −π < ϕ < π.
Then for 0 < r <∞ and for any power p ∈ℝ, one has

lim
r⟶0

rp

θ q ; reϕð Þ = 0 = lim
r⟶∞

rp

θ q ; reϕð Þ : ð220Þ

Due to its length, we leave the proof of Proposition 31
until the end of this section, where the interested reader
can peruse it. Instead, we immediately proceed to Corollary
32 and its proof, as Corollary 32 is used throughout this
study.

Corollary 32. Let δ ≠ 0 mod 4, and let z3 be as in (184) and
(197). Namely, z3 = eiπ/½Dγ�e−iπγ/½δDγ�z2, where z2 is any ½Dγ�th
root of ix. As a consequence, zDγ3 = −e−πiγ/δix. Let ~ω = e2πi/½Dγ�.
Then for κ = 1,⋯,Dγ

lim
x⟶0

1
ix

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

0@ 1A = 0: ð221Þ

Proof. Note that −eπiγ/δzDγ3 = ix. Hence,

1
ix

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� � = 1

−eπiγ/δzDγ3
� � ~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

= −e−πiγ/δ ~ωκ½ �Dγ ~ωκz3½ �Bα−Dγ
θ Q ; ~ωκz3½ �M
� � : ð222Þ

One concludes that

1
ix

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �M
� �

������
������ = z3j jM� � Bα−Dγð Þ/M

θ Q ; ~ωκz3½ �M
� ���� ��� : ð223Þ

Applying Proposition 31 with p = ðBα −DγÞ/M as x
⟶ 0 gives (221). Note that the assumption that δ ≠ 0
mod 4 assures that ½~ωκz3�M does not fall along the negative
real axis. This gives the corollary.

We finish this section with the proof of Proposition 31.
Proof of Proposition 31. Set r = qτ, where τ ranges from

−∞ to ∞. Then, from (10), one has

θ q ; reiϕ
	 
�� ��2 = θ q ; qτeiϕ

	 
�� ��2 = θ q ; qτeiϕ
	 


θ q ; qτe−iϕ
	 


= μq
Y∞
n=0

1 + qτeiϕ
qn

� �
1 + 1

qτeiϕqn+1
� �

⋅ μq
Y∞
n=0

1 + qτe−iϕ
qn

� �
1 + 1

qτe−iϕqn+1
� �

= μq

� �2Y∞
n=0

1 + 2qτ cos ϕð Þ
qn

+ q2τ

q2n

� �
�
Y∞
n=0

1 + 2 cos ϕð Þ
qτqn+1

+ 1
q2τq2 n+1ð Þ

� �
= μq

� �2Y∞
n=0

qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ
� �

⋅
Y∞
n=0

q−τ−n−1 + cos ϕð Þ� �2 + sin2 ϕð Þ
� �

ð224Þ

= μq

� �2
J τð ÞJ −τ − 1ð Þ, ð225Þ

where

J τð Þ ≡
Y∞
n=0

qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ
� �

: ð226Þ
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From (224) and (10), one has that, for cos ðϕÞ ≥ 0,

θ q ; qτeiϕ
	 
�� ��2 ≥ μq

� �2Y∞
n=0

1 + q2τ

q2n

� �Y∞
n=0

1 + 1
q2τq2 n+1ð Þ

� �

=
μq

� �2
μq2

θ q2 ; q2τ
	 


=
μq

� �2
μq2

〠
m∈ℤ

q2τ
	 
m

q2ð Þm m−1ð Þ/2

ð227Þ

>
μq

� �2
μq2

q2τ
	 
m

q2ð Þm m−1ð Þ/2 ,
ð228Þ

where the inequality in (228) holds for all m ∈ℤ. Hence,
inverting (227) and (228), taking square roots, and multiply-
ing by rp = qτp, one obtains that for each m ∈ℤ

rp

θ q ; reiϕð Þ
���� ���� = qτp

θ q ; qτeiϕð Þ
���� ���� ≤

ffiffiffiffiffiffi
μq2

p
μq

qm m−1ð Þ/2q p−mð Þτ: ð229Þ

To handle the limit as τ⟶ +∞, pick m > p. To handle
the limit as τ⟶ −∞, pick m < p. Thus, (220) holds when
cos ðϕÞ ≥ 0.

The remaining case is −1 < cos ðϕÞ < 0. Here, the possi-
bility that cos ðϕÞ = −1 is excluded, since if cos ðϕÞ were to
equal −1 then θðq ; reiϕÞ = θðq;−rÞ, which has an infinite
number of zeroes (for r = qj with j ∈ℤ). It will be shown
below (see (239) through (241)) that we have the following
two limits:

lim
τ⟶∞

J −τ − 1ð Þ = 1 = lim
τ⟶−∞

J τð Þ: ð230Þ

It will also be shown (see (242) and (259) below) that the
following rate of growth holds:

J τð Þ ≈ q2τ τb c− τb c2+ τb c = q τb c2+ 1+2 τ− τb cð Þf g τb c as τ⟶∞, ð231Þ

where bτc denotes the greatest integer function evaluated at
τ. Hence, from (231), we have the related rate of growth

J −τ − 1ð Þ ≈ q2 −τ−1ð Þ −τ−1b c− −τ−1b c2+ −τ−1b c

= q τj jb c2+ −1+2 τj j− τj jb cð Þf g τj jb c−2 τj j− τj jb c½ � as τ⟶ −∞:

ð232Þ

For the time being, we assume (230)–(232) and use (225)
to show that (220) holds as r⟶∞ (equivalently as τ⟶
∞) via

rp

θ q ; reiϕð Þ
���� ���� = qτp

θ q ; qτeiϕð Þ
���� ���� = qpτ

μq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J τð ÞJ −τ − 1ð Þp

≈
qpτ

q τb c+1+2 τ− τb cð Þf g τb c/2

= qp τ− τb c+ τb cð Þ− τb c+1+2 τ− τb cð Þf g τb c/2

ð233Þ

= q 2p− τb c−1−2 τ− τb cð Þf g τb c/2qp τ− τb cð Þ ⟶ 0 as τ⟶∞,
ð234Þ

where one moves to (233) via (230) and (231). The vanish-
ing in (234) is seen from the fact that when bτc > 2p − 1
the exponent f2p − bτc − 1 − 2ðτ − bτcÞgbτc/2 in (234) is
increasingly negative as τ⟶∞, while pðτ − bτcÞ remains
bounded.

Similarly, we use (225) to show next that (220) holds as
r⟶ 0 (equivalently as τ⟶ −∞). In this setting,

rp

θ q ; reiϕð Þ
���� ���� = qτp

θ q ; qτeiϕð Þ
���� ���� = qpτ

μq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J τð ÞJ −τ − 1ð Þp

≈
q−p −τð Þ

q τj jb c−1+2 τj j− τj jb cð Þf g τj jb c/2− τj j− τj jb c½ �

ð235Þ

= q−p τj j− τj jb c+ τj jb cð Þ− τj jb c−1+2 τj j− τj jb cð Þf g τj jb c/2+ τj j− τj jb c½ � ð236Þ

= q− 2p+ τj jb c−1+2 τj j− τj jb cð Þf g τj jb c/2+ −p+1ð Þ τj j− τj jb c½ � ⟶ 0 as τ⟶ −∞:

ð237Þ
where one moves to (235) and (236) via (230) and (232). The
vanishing in (237) is seen from the fact that when bjτjc > 1
− 2p the exponent −f2p + bjτjc − 1 + 2ðjτj − bjτjcÞgbjτjc/2
in (237) is increasingly negative as τ⟶ −∞, while ð−p +
1Þ½jτj − bjτjc� remains bounded.

All that remains is to show (230)–(232). We first show
limτ⟶∞ Jð−τ − 1Þ = 1, from which it will immediately follow
that limτ⟶−∞ JðτÞ = 1. Note that

J −τ − 1ð Þ =
Y∞
n=0

q−τ−n−1 + cos ϕð Þ� �2 + sin2 ϕð Þ
� �

=
Y∞
n=0

1
q2 τ+n+1ð Þ +

2 cos ϕð Þ
qτ+n+1

+ 1
� �

=
Y∞
n=0

1
q2 τ− τb c+ τb c+n+1ð Þ +

2 cos ϕð Þ
qτ− τb c+ τb c+n+1 + 1

� �
=
Y∞

k= τb c+1

1
q2 τ− τb cð Þ+2k + 2 cos ϕð Þ

q τ− τb cð Þ+k + 1
� �

,

ð238Þ

where the reindexing k = bτc + n + 1 occurs in moving to
(238). For τ satisfying bτc > logqð2Þ and −1 < cos ðϕÞ < 0,
one traps Jð−τ − 1Þ in (238) by

exp 〠
∞

k= τb c+1

−4
qk

 !
<
Y∞

k= τb c+1

−2
qk

+ 1
� �

< J −τ − 1ð Þ

<
Y∞

k= τb c+1

1
q2k

+ 1
� �

< exp 〠
∞

k= τb c+1

1
q2k

 !
,

ð239Þ

where we have further assumed that τ is sufficiently large so
that ln ð1 − 2/qbτc+1Þ > −4/qbτc+1, (that is 1 − 2/qbτc+1 falls in
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the interval fx ∈ℝ ∣ ln ðxÞ > 2ðx − 1Þg ⊃ ð2/3, 1Þ ≠∅). Since

lim
τ⟶∞

exp 〠
∞

k= τb c+1

−4
qk

 !
= lim

τ⟶∞
exp −4

q τb c+1
q

q − 1ð Þ
� �

= 1,

ð240Þ

lim
τ⟶∞

exp 〠
∞

k= τb c+1

1
q2k

 !
= lim

τ⟶∞
exp 1

q2 τb c+1ð Þ
q2

q2 − 1ð Þ
� �

= 1

ð241Þ

hold, the trapping in (239) gives that limτ⟶∞ Jð−τ − 1Þ
= 1. An immediate consequence is that limτ⟶−∞ JðτÞ = 1,
giving (230). We conclude that there is an N1 so that for τ
>N1 one has

1
2 ≤ J −τ − 1ð Þ ≤ 3

2 : ð242Þ

We next show (231). From (226), observe that for τ ≥ 1
one has

J τð Þ =
Y∞
n=0

qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ
� �

=
Yτb c−1

n=0
qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ

� �
⋅
Y∞
n= τb c

qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ
� �

=
Yτb c−1

n=0
qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ

� �
⋅
Y∞
n= τb c

qτ− τb c− n− τb cð Þ + cos ϕð Þ
h i2

+ sin2 ϕð Þ
� �

ð243Þ

=
Yτb c−1

n=0
qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ

� �
⋅
Y∞
k=0

qτ− τb c−k + cos ϕð Þ
h i2

+ sin2 ϕð Þ
� � ð244Þ

=
Yτb c−1

n=0
qτ−n + cos ϕð Þ½ �2 + sin2 ϕð Þ

� �
J τ − τb cð Þ

=
Yτb c−1

n=0
q2 τ−nð Þ Yτb c−1

n=0
1 + cos ϕð Þ

qτ−n

� �2
+ sin ϕð Þ

qτ−n

� �2 !
J τ − τb cð Þ

= q2τ τb c q−2
	 
 τb c τb c−1ð Þ/2 Yτb c−1

n=0
1 + cos ϕð Þ

qτ−n

� �2
+ sin ϕð Þ

qτ−n

� �2 !
� J τ − τb cð Þ

ð245Þ

= q2τ τb c− τb c2+ τb c Yτb c−1

n=0
1 + cos ϕð Þ

qτ−n

� �2
+ sin ϕð Þ

qτ−n

� �2 !
� J τ − τb cð Þ,

ð246Þ

where a reindexing by k = n − bτc moves one from (243) to
(244); one obtains (245) from (244) by (226); and one factors
out a q2ðτ−nÞ from each product in the left most product
expression in (245) to proceed forward.

Now, JðτÞ is nonvanishing for all τ, as jθðq ; reiϕÞj2 =
jθðq ; qτeiϕÞj2 has vanishing points if and only if ϕ = ±π, up
to full revolutions, and τ ∈ℤ (by (10)). Thus, the compact
interval ½0, 1� under J maps to a compact interval ½M1,M2�
(with 0 <M1 ≤M2 <∞). Since τ − bτc ∈ ½0, 1Þ, one has

0 <M1 ≤ J τ − τb cð Þ ≤M2 <∞, ð247Þ

and Jðτ − bτcÞ is bounded for all τ.

It remains to show that
Qbτc−1

n=0 ð½1 + cos ðϕÞ/qτ−n�2 +
½sin ðϕÞ/qτ−n�2Þ in (246) is bounded as τ approaches infinity
(again, in the setting that −1 < cos ðϕÞ < 0). An upper bound
C2 independent of τ follows via

Yτb c−1

n=0
1 + cos ϕð Þ

qτ−n

� �2
+ sin ϕð Þ

qτ−n

� �2 !

=
Yτb c−1

n=0
1 + cos ϕð Þ

qτ− τb c+ τb c−nð Þ

� �2
+ sin ϕð Þ

qτ− τb c+ τb c−nð Þ

� �2 ! ð248Þ

=
Yτb c

k=1
1 + cos ϕð Þ

qτ− τb c+k

� �2
+ sin ϕð Þ

qτ− τb c+k

� �2 !
ð249Þ

=
Yτb c

k=1
1 + 2 cos ϕð Þ

qτ− τb c+k + 1
q2 τ− τb cð Þ+2k

� �

<
Yτb c

k=1
1 + 1

q2k

� �
≤ exp 〠

τb c

k=1

1
q2k

 ! ð250Þ

≤exp 〠
∞

k=1

1
q2k

 !
= exp 1

q2 − 1

� �
≡ C2, ð251Þ

where the reindexing k = bτc − n is used to obtain (249).
Starting with (248)–(249) to obtain (252), a lower bound

C1 independent of τ for τ ≥N (with N determined below)
follows via

Yτb c−1

n=0
1 + cos ϕð Þ

qτ−n

� �2
+ sin ϕð Þ

qτ−n

� �2 !

=
Yτb c

k=1
1 + cos ϕð Þ

qτ− τb c+k

� �2
+ sin ϕð Þ

qτ− τb c+k

� �2 ! ð252Þ
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>
Yτb c

k=1
1 + cos ϕð Þ

qk

� �2
+ sin ϕð Þ

q1+k

� �2 !

=
Yτb c

k=1
1 + 2 cos ϕð Þ

qk
+ cos2 ϕð Þ

q2k
+ sin2 ϕð Þ

q2 k+1ð Þ

� � ð253Þ

=
YN−1

k=1
1 + 2 cos ϕð Þ

qk
+ cos2 ϕð Þ

q2k
+ sin2 ϕð Þ

q2 k+1ð Þ

� �

⋅
Yτb c

k=N
1 + 2 cos ϕð Þ

qk
+ cos2 ϕð Þ

q2k
+ sin2 ϕð Þ

q2 k+1ð Þ

� � ð254Þ

>
YN−1

k=1
1 + 2 cos ϕð Þ

qk
+ cos2 ϕð Þ

q2k

� �Yτb c

k=N
1 + 2 cos ϕð Þ

qk

� �
ð255Þ

>
YN−1

k=1
1 + cos ϕð Þ

qk

� �2
exp 〠

τb c

k=N

4 cos ϕð Þ
qk

 !
ð256Þ

> 1 + cos ϕð Þ
q

� �2 N−1ð Þ
exp 4 cos ϕð Þ

qN
q

q − 1ð Þ
� �

≡ C1, ð257Þ

where N appearing in (254) is chosen sufficiently large so
that ln ð1 + 2 cos ðϕÞ/qNÞ > 4 cos ðϕÞ/qN (that is, 1 + 2 cos
ðϕÞ/qN falls in the interval fx ∈ℝ ∣ ln ðxÞ > 2ðx − 1Þg ⊃ ð2/
3, 1Þ ≠∅). This justifies movement from (255) to (256).

Hence, we have from (251) and (257) that

0 < C1 <
Yτb c−1

n=0
1 + cos ϕð Þ

qτ−n

� �2
+ sin ϕð Þ

qτ−n

� �2 !
< C2: ð258Þ

From (242), (247), and (258) applied to (225) and (246),
one obtains

0 < μq

� �2
q2τ τb c− τb c2+ τb cC1M1

1
2

< μq

� �2
J τð ÞJ −τ − 1ð Þ = θ q ; qτeiϕ

	 
�� ��2
≤ μq

� �2
q2τ τb c− τb c2+ τb cC2M2

3
2 <∞,

ð259Þ

for τ >max fN1,Ng, where q > 1 is fixed. Thus, (231) is
demonstrated. As a consequence, we also have that (232)
now holds. The proposition is proven.

4. Connection to the Theory of Wavelet Frames

We have seen in the previous section that expressing the
Fourier transform of W μ,λðtÞ in terms of Jacobi theta func-
tions, as in Theorem 23, provides a strong connection to
the theory of special functions. However, more can be con-
cluded. Namely, from the relation of the W μ,λðtÞ to the
Jacobi theta function, we also demonstrate in this section
the connection to the theory of wavelets and wavelet frames.
In particular, for low values of γ, we establish that each
W μ,λðtÞ as in Theorem 23 is a Schwartz mother wavelet

for a wavelet frame generating all of L2ðℝÞ.

Recall that f ðtÞ is a wavelet if it belongs to L1ðℝÞ ∩
L2ðℝÞ ∩L∞ðℝÞ, has first moment

Ð∞
−∞ f ðtÞ dt = 0, and sat-

isfies the admissibility condition that
Ð∞
−∞jF½ f ðtÞ�ðxÞj2/jxj

dx <∞. Furthermore, such a wavelet f ðtÞ is a mother wave-
let for a frame of form

S f ; a0, b0ð Þ = an/20 f an0 t +mb0ð Þ/ fk k��n,m ∈ℤ
� �

, ð260Þ

if Sð f ; a0, b0Þ generates L2ðℝÞ, where a0 > 1 is the scale
factor, b0 > 0 is the translation parameter, and k f k = k f k2 is
the norm of f in L2ðℝÞ. One defines the diagonal term G0
½ f �ðxÞ by

G0 f½ � xð Þ = 1
fk k2

〠
∞

n=−∞
F f tð Þ½ � an0xð Þj j2 ð261Þ

and the off-diagonal term G1½ f �ðxÞ by

G1 f½ � xð Þ = 1
fk k2

〠
j∈ℤ

〠
k∈ℤ\ 0f g

F f tð Þ½ � aj0x
� ����

⋅F f tð Þ½ � aj0x + 2πk/b0
� ����, ð262Þ

which together give the frame condition

0 < inf
1≤ xj j≤a0

G0 f½ � xð Þ −G1 f½ � xð Þf g
≤ sup

1≤ xj j≤a0
G0 f½ � xð Þ −G1 f½ � xð Þ½ � <∞, ð263Þ

sufficient for Sð f ; a0, b0Þ in (260) to be a frame. As is shown
in [36] and [37], for b0 > 0 sufficiently small, (263) is in turn
implied by the conditions (264) immediately below:

0 < inf
1≤ xj j≤a0

G0 f½ � xð Þf g and ∃ C > 0

 with  F f tð Þ½ � xð Þj j ≤ C xj j
1 + x2ð Þ3/2

:
ð264Þ

In Proposition 36 below, we see that there are natural
scale factors a0 that allow us to compute G0½ f �ðxÞ for the
wavelet f ðtÞ =W μ,λðtÞ for low values of γ, where knowledge
of properties of Jacobi theta functions lets us compute G0½
W μ,λ�ðxÞ exactly, which in turn will establish the nonvanish-
ing of G0½W μ,λ�ðxÞ in the left hand criteria of (264).

But first, we need to obtain an even stronger nonvanish-
ing analogue of Proposition 22 in the setting of Theorem 23
(in particular, with δ = 0 mod β) under the additional
assumption that γ = 1, 2.
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Proposition 33. Under the notation and assumptions of The-
orem 23 (in particular δ = 0 mod β and M = δ), along with
the additional assumption that γ = 1, 2, one has that (172)
becomes

〠
γ−1

κ=0

~ωκz½ �Bα

θ Q ; ~ωκz½ �δ
� �

24 35, ð265Þ

which never vanishes for z ∈ℂ∗ if γ = 1 and for γ = 2 and z ∈
ℂ∗ (265) vanishes precisely when

z2δ = −Q4p+1+2j, for some p ∈ℤwith j = 0 if Bα is even,
z2δ = −Q4p+1+2j, for some p ∈ℤwith j = 1 if Bα is odd:

(
ð266Þ

Equivalently, (265) vanishes precisely when z = eπi/½2δ�

e2πiℓ/½2δ�Q½4p+1+2j�/½2δ� for some p, ℓ ∈ℤ, where j = 0 if Bα is even,
and j = 1 if Bα is odd.

Proof. If γ = 1, then ~ω = e2πi/γ = e2πi/1 = 1 and (265) becomes
½z�Bα/θðQ ; ½z�δÞ, which never vanishes for z ∈ℂ∗. If γ = 2,
then ~ω = e2πi/γ = e2πi/2 = −1 and (265) becomes

〠
γ−1

κ=0

~ωκz½ �Bα

θ Q ; ~ωκz½ �δ
� �

24 35 = z½ �Bα
θ Q ; z½ �δ
� � + −z½ �Bα

θ Q ; −z½ �δ
� �

= zBα
1½ �Bαθ Q;−zδ

	 

+ −1½ �Bαθ Q ; zδ

	 

θ Q ; zδ
	 


θ Q;−zδ
	 
" #

,

ð267Þ

where equality in (267) follows from the fact that δ must be
odd, as γ/δ is in reduced form and γ = 2. Now from (10) the
numerator in the bracketed expression in (267) becomes

1½ �Bαθ Q;−zδ
� �

+ −1½ �Bαθ Q ; zδ
� �

ð268Þ

= 〠
∞

n=−∞

−zδ
	 
n
Qn n−1ð Þ/2 + −1½ �Bα zδ

	 
n
Qn n−1ð Þ/2

" #
ð269Þ

= 〠
∞

n=−∞

−zδ
	 
n + −1½ �Bα zδ

	 
n
Qn n−1ð Þ/2 ð270Þ

=
〠
∞

k=−∞

2 zδ
	 
2k

Q2k 2k−1ð Þ/2 , if Bα is even,

〠
∞

k=−∞
−

2 zδ
	 
2k+1

Q 2k+1ð Þ 2kð Þ/2 , if Bα is odd,

8>>>>><>>>>>:
ð271Þ

where

(1) if Bα is even in (270) the n = odd cases cancel, leav-
ing the n = 2k in the Bα even case of (271)

(2) if Bα is odd in (270) the n = even cases cancel, leav-
ing the n = 2k + 1 in the Bα odd case of (271)

Now, in the Bα even case,

〠
∞

k=−∞

2 zδ
	 
2k

Q2k 2k−1ð Þ/2 = 〠
∞

k=−∞

2 z2δ
	 
k

Q−k

Q 4k2−2kð Þ/2Q−2k/2

= 2 〠
∞

k=−∞

z2δ/Q
	 
k
Q4� �k k−1ð Þ/2 = 2θ Q4 ; z

2δ

Q

� �
,

ð272Þ

where the last equality in (272) follows from (10). And in the
Bα odd case,

〠
∞

k=−∞

−2 zδ
	 
2k+1

Q 2k+1ð Þ 2kð Þ/2 = 〠
∞

k=−∞

−2zδ z2δ
	 
k

Q−3k

Q 4k2+2kð Þ/2Q−6k/2

= −2zδ 〠
∞

k=−∞

z2δ/Q3	 
k
Q4� �k k−1ð Þ/2 = −2zδθ Q4 ; z

2δ

Q3

� �
,

ð273Þ

where the last equality in (273) again follows from (10).
Thus, (268)–(271) reduces to

1½ �Bαθ Q;−zδ
� �

+ −1½ �Bαθ Q ; zδ
� �

=
2θ Q4 ; z

2δ

Q

� �
, if Bα is even,

−2zδθ Q4 ; z
2δ

Q3

� �
, if Bα is odd:

8>>>><>>>>:
ð274Þ

Thus, (267) reduces to

〠
γ−1

κ=0

~ωκz½ �Bα

θ Q ; ~ωκz½ �δ
� �

24 35
= z½ �Bα
θ Q ; z½ �δ
� � + −z½ �Bα

θ Q ; −z½ �δ
� �

=

2zBα θ Q4 ; z2δ/Q
	 


θ Q ; zδ
	 


θ Q;−zδ
	 
" #

, if Bα is even

−2zBα+δ θ Q4 ; z2δ/Q3	 
	 

θ Q ; zδ
	 


θ Q;−zδ
	 
" #

, if Bα is odd

8>>>>>><>>>>>>:

ð275Þ

= −1ð Þj 2 zBα+jδ θ Q4 ; z2δ/Q1+2j	 
	 

θ Q ; zδ
	 


θ Q;−zδ
	 
" #

,

 where
j = 0, if Bα is even,

j = 1, if Bα is odd:

( ð276Þ

Then, (276) vanishes for z ∈ℂ∗ precisely when θðQ4 ;
z2δ/Q1+2 jÞ = 0, which by (10) occurs precisely when z2δ/
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Q1+2j = −Q4p for some p ∈ℤ. This last statement is equiva-
lent to (266). Equivalently, we have such vanishing when

z = ð−1Þ1/½2δ�Q½4p+1+2 j�/½2δ� = eπi/½2δ�e2πiℓ/½2δ�Q½4p+1+2 j�/½2δ� for
some p, ℓ ∈ℤ. This gives the proposition.

Corollary 34. In the setting of, and under the assumptions of,
Theorem 23, with δ = 0 mod β and δ ≠ 0 mod 4, with γ = 1
or γ = 2, one has that

〠
γ−1

κ=0

~ωκz3½ �Bα

θ Q ; ~ωκz3½ �δ
� �

24 35 ≠ 0, for all x ∈ℝ∗ =ℝ\ 0f g, ð277Þ

where z3 = eπi/γe−πi/δz2 and z2 is any fixed γth root of ix.

Proof. By Proposition 33, when γ = 1, the nonvanishing of
(277) holds automatically for x ≠ 0. Also by Proposition 33,
equation (266), when γ = 2, the vanishing of (277) holds if
and only if for

z3 = eπi/γe−πi/δeπi/ 2γð Þeiν/γ xj j1/γ ð278Þ

= eπi/2e−πi/δeπi/4eiν/2 xj j1/2, ð279Þ

one has z2δ3 = −Q4p+1+2j for some p ∈ℤ and for j = 0 if Bα
is even or for j = 1 if Bα is odd, where in (278)–(279) one has
ν = 0 if x > 0 and ν = π if x < 0. From (279) and the fact that
δ is odd (since γ = 2 is even), one sees that

z2δ3 = ei3πδ/2eiνδ xj jδ = ±ið Þ ±1ð Þ xj jδ = ±i xj jδ ≠ −Q4p+1+2j,
ð280Þ

for any values of p and j, because ±ijxjδ is imaginary
while −Q4p+1+2j is real. Thus, (277) never vanishes for x ∈
ℝ∗ when γ = 2, and the corollary is proven.

Remark 35. Although, for γ = 1, 2 by Corollary 34 one has
(277) never vanishes for x ∈ℝ∗, one has that (277) vanishes
to infinite order at x = 0 by Corollary 32.

Proposition 36. Let q > 1. Under the assumptions and nota-
tion of Theorem 23, with W μ,λðtÞ as in Definition 16, for γ

= 1 and a0 = q > 1 with Q = q2/λ = qδ/γ = qδ whereby q =
Q1/δ = a0, one has that

G0 W μ,λ
� �

xð Þ = 1

W μ,λ
�� ��2 θ Q2 ; Q2Bα/δ

Q2+2/δ z2δ3 xð Þ�� ��2δ
 !

� δ μ3Q eiπα/βffiffiffiffiffiffi
2π

p 1
−ixð Þ

z3 xð Þj jBα
θ Q ; zδ3 xð Þ	 
�����

�����
2

ð281Þ

= 1

W μ,λ
�� ��2 θ Q2 ; Q2Bα/δ

Q2+2/δ z2δ3 xð Þ�� ��2δ
 !

F W μ,λ tð Þ� �
xð Þ�� ��2,
ð282Þ

which is C∞ and never vanishes for x ∈ℝ∗, in particular for
jxj ∈ ½1, q� = ½1, a0�.

And for γ = 2 and a0 = q2 > 1 with Q = q2/λ = qδ/γ = qδ/2

whereby q2 =Q4/δ = a0, one has that

G0 W μ,λ
� �

xð Þ

= 1

W μ,λ
�� ��2 θ Q8 ; Q4Bα/δ

Q6+8/δ z3 xð Þj j4δ
 !

⋅
δ μ3Q e

iπα/β

2
ffiffiffiffiffiffi
2π

p −1ð Þj
−ixð Þ

2 z3 xð Þ½ �Bα+jδθ Q4 ; z2δ3 xð Þ/Q1+2j	 

θ Q ; zδ3 xð Þ	 


θ Q;−zδ3 xð Þ	 
�����
�����
2

ð283Þ

= 1

W μ,λ
�� ��2 θ Q8 ; Q4Bα/δ

Q6+8/δ z3 xð Þj j4δ
 !

F W μ,λ tð Þ� �
xð Þ�� ��2,

ð284Þ

where in (283) j = 0 if Bα is even and j = 1 if Bα is odd.
Expressions (283)–(284) are C∞ and never vanish for x ∈
ℝ∗, in particular for jxj ∈ ½1, q2� = ½1, a0�.

Proof. First, we handle the γ = 1 case with a0 = q =Q1/δ.
Under this assumption, along with the assumptions of The-
orem 23, one has that (180)–(182) become

F W μ,λ tð Þ� �
xð Þ = Ĉ

1
−ixð Þ

z3 xð Þ½ �Bα
θ Q ; zδ3 xð Þ	 
 , 

where Ĉ = δ μ3Q eiπα/βffiffiffiffiffiffi
2π

p :

ð285Þ

From (184), one has z3ðQpxÞ =Qp/γz3ðxÞ =Qpz3ðxÞ for
p ∈ℝ, whence zδ3ðQn/δxÞ =Qnzδ3ðxÞ for n ∈ℤ in the theta
function expression in (285). One concludes that

F W μ,λ tð Þ� �
Qn/δx
� �

= Ĉ
1

−iQn/δx
	 
 z3 Qn/δx

	 
� �Bα
θ Q ; zδ3 Qn/δx

	 
	 

= Ĉ

1
−iQn/δx
	 
QnBα/δ z3 xð Þ½ �Bα

θ Q ;Qnzδ3 xð Þ	 

= Ĉ

1
−iQn/δx
	 
 QnBα/δ z3 xð Þ½ �Bα

Qn n+1ð Þ/2 zδ3 xð Þ� �n
θ Q ; zδ3 xð Þ	 
 ,

ð286Þ

where equality in (286) follows from (12). From (286) and
the fact that a0 = q =Q1/δ, we have (288) below:

G0 W μ,λ tð Þ� �
xð Þ = 1

W μ,λ
�� ��2 〠

∞

n=−∞
F W μ,λ tð Þ� �

Qn/δx
� ���� ���2 ð287Þ
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= Ĉ
�� ��2
W μ,λ
�� ��2 〠

∞

n=−∞

Q2nBα/δ

Q2n/δ Q2	 
n n+1ð Þ/2 zδ3 xð Þ�� ��2n 1
−ixð Þ

z3 xð Þ½ �Bα
θ Q ; zδ3 xð Þ	 
�����

�����
2" #

= 1
W μ,λ
�� ��2 Ĉ

−ixð Þ
z3 xð Þ½ �Bα

θ Q ; zδ3 xð Þ	 
�����
�����
2

⋅ 〠
∞

n=−∞

Q2Bα/δQ−2/δ z3 xð Þj j−2δ
h in

Q2	 
n n+1ð Þ/2
Q2	 
−2n/2
Q2	 
−2n/2

" #24 35
ð288Þ

= 1
W μ,λ
�� ��2 Ĉ

−ixð Þ
z3 xð Þ½ �Bα

θ Q ; zδ3 xð Þ	 
�����
�����
2

〠
∞

n=−∞

Q2Bα/δQ−2/δ z3 xð Þj j−2δQ−2
h in

Q2	 
n n−1ð Þ/2

ð289Þ

= 1
W μ,λ
�� ��2 Ĉ

−ixð Þ
z3 xð Þ½ �Bα

θ Q ; zδ3 xð Þ	 
�����
�����
2

θ Q2 ;Q2Bα/δQ−2/δ z3 xð Þj j−2δQ−2
� �

,

ð290Þ
where the move from (289) to (290) is justified by (10). Now
(290) is equal to (281), which by (285), is equal to (282).
From its definition in (287), G0½W μ,λðtÞ�ðxÞ is invariant

under multiplication of the argument x by Q1/δ = ðqδ/γÞ1/δ
= q1/γ = q. This q-invariance can also be checked via proper-
ties of the theta functions in expression (281). From (277) in
Corollary 34 coupled with (285), one has nonvanishing of
F½W μ,λðtÞ�ðxÞ for x ∈ℝ∗. Since θðQ2 ; zÞ only vanishes for

z = −Q2k for k ∈ℤ by (10), we have that θðQ2 ;Q2Bα/δQ−2/δ

jz3ðxÞj−2δQ−2Þ never vanishes for any x ∈ℝ∗ as its argument
is positive. From these two nonvanishing results applied to
(282) one has that G0½W μ,λðtÞ�ðxÞ is C∞ and never vanishes
for x ∈ℝ∗. The γ = 1 case is now shown.

We turn next to the γ = 2 case, with a0 = q2 =Q4/δ. In
this setting, from Theorem 23 one has that (180)–(182)
becomes

F W μ,λ tð Þ� �
xð Þ = Ĉ

2
1
−ixð Þ

z3 xð Þ½ �Bα
θ Q ; zδ3 xð Þ	 
 + −z3 xð Þ½ �Bα

θ Q;−zδ3 xð Þ	 
 !
ð291Þ

= Ĉ
2

1
−ixð Þ −1ð Þj 2 zBα+jδ3 xð Þ θ Q4 ; z2δ3 xð Þ/Q1+2j	 
	 


θ Q ; zδ xð Þ	 

θ Q;−zδ3 xð Þ	 
" #

,

ð292Þ

where
j = 0, if Bα is even,
j = 1, if Bα is odd,

(
ð293Þ

where Ĉ = δ μ3Q eiπα/βffiffiffiffiffiffi
2π

p , ð294Þ

and where (292) and (293) follow from (275) and (276).
From (184), one has z3ðQpxÞ=Qp/γz3ðxÞ =Qp/2z3ðxÞ for p
∈ℝ, whence zδ3ðQ4n/δxÞ =Q2nzδ3ðxÞ and z2δ3 ðQ4n/δxÞ =Q4n

z2δ3 ðxÞ for n ∈ℤ in the theta function expressions in (292).
From (292), along with the fact that with a0 = q2 =Q4/δ,
one then has that

F W μ,λ tð Þ� �
Q4n/δx
� �

= Ĉ
2

1
−iQ4n/δx
	 
 −1ð Þj2zBα+jδ3 Q4n/δx

� �
� θ Q4 ; z2δ3 Q4n/δx

	 

/Q1+2j	 


θ Q ; zδ Q4n/δx
	 
	 


θ Q;−zδ3 Q4n/δx
	 
	 
" #

= Ĉ
2

−1ð Þj 2 Q2n/δz3 xð Þ� �Bα+jδ
−iQ4n/δx
	 
 θ Q4 ;Q4nz2δ3 xð Þ/Q1+2 j	 


θ Q ;Q2nzδ xð Þ	 

θ Q;−Q2nzδ3 xð Þ	 
" #

= Ĉ
2

−1ð Þj 2 Q2n/δz3 xð Þ� �Bα+jδ
−iQ4n/δx
	 


⋅
Q4	 
n n+1ð Þ/2 z2δ3 xð Þ/Q1+2 j� �n

θ Q4 ; z2δ3 xð Þ/Q1+2 j	 

Q2n 2n+1ð Þ/2z2nδ xð Þθ Q ; zδ xð Þ	 


Q2n 2n+1ð Þ/2 −1ð Þnz2nδ xð Þθ Q;−zδ3 xð Þ	 
" #

= Q−4/δQ2 Bα+jδð Þ/δQ−1−2j −1ð Þz−2δ3 xð Þ� �n
Q2n2

ð295Þ

⋅
Ĉ
2

1
−ixð Þ −1ð Þ j 2 zBα+jδ3 xð Þ θ Q4 ; z2δ3 xð Þ/Q1+2 j	 


θ Q ; zδ xð Þ	 

θ Q;−zδ3 xð Þ	 
" #

ð296Þ

= Q−4/δQ2 Bα+jδð Þ/δQ−1−2j −1ð Þz−2δ3 xð ÞQ−2� �n
Q4	 
n n−1ð Þ/2 F W μ,λ tð Þ� �

xð Þ� �
, ð297Þ

where j is as in (293); (12) was used to move from (295) to
the subsequent line; all terms involving a power of n have
been factored out in (296); and in moving to (297), the
expressions involving powers of n have been multiplied by
Q−2n/Q−2n while the bracketed expression in (296) was rec-
ognized as the Fourier transform of W μ,λðtÞ via (292). One
then uses (297) to compute the diagonal term G0½W μ,λðtÞ�
ðxÞ as follows:

G0 W μ,λ tð Þ� �
xð Þ = 1

W μ,λ
�� ��2 〠

∞

n=−∞
F W μ,λ tð Þ� �

Q4n/δx
� ���� ���2

= 1
W μ,λ
�� ��2 F W μ,λ tð Þ� �

xð Þ�� ��2
ð298Þ

⋅ 〠
∞

n=−∞

Q−8/δQ4 Bα+jδð Þ/δQ−2−4j z3 xð Þj j−4δQ−4
h in

Q8	 
n n−1ð Þ/2

24 35 ð299Þ

= 1
W μ,λ
�� ��2 F W μ,λ tð Þ� �

xð Þ�� ��2θ Q8 ; Q4Bα/δ

Q6+8/δ z3 xð Þj j4δ
 !

,

ð300Þ
where (297) is used to move from (298) to (299) (after tak-
ing absolute value and squaring) and (10) is used to move
from (299) to (300). Finally, (300) is seen to be equivalent
to (284), which is in turn equivalent to (283). From its
definition in (298), G0½W μ,λðtÞ�ðxÞ is invariant under
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multiplication of the argument x by Q4/δ = ðq4δ/γÞ1/δ = q4/γ

= q4/2 = q2. This q2-invariance can also be checked via
properties of the theta functions in expression (300). From
(277) in Corollary 34 coupled with (291), one has non-
vanishing of F ½W μ,λðtÞ�ðxÞ for x ∈ℝ∗. Since θðQ8 ; zÞ only
vanishes for z = −Q8k for k ∈ℤ by (10), we have that θðQ8

;Q4Bα/δQ−6−ð8/δÞjz3ðxÞj−4δÞ never vanishes for any x ∈ℝ∗

as its argument is positive. From these two nonvanishing
results applied to (300), one has that G0½W μ,λðtÞ�ðxÞ is
C∞ and never vanishes for x ∈ℝ∗. The γ = 2 case is now
shown, and the proposition is proven.

At this point, at least for low values of γ = 1, 2, we are
prepared to explicitly make the connection to wavelet frame
theory that follows from knowledge of the Fourier transform
of W μ,λðtÞ in terms of the theta function.

Theorem 37. Let q > 1. Under the assumptions and notation
of Theorem 23, in particular δ = 0 mod β, and with W μ,λðtÞ
as in Definition 16, one has, for γ = 1 with a0 = q, and also for
γ = 2 with a0 = q2, that for b0 > 0 sufficiently small

W μ,λ tð Þ is amother wavelet f or a f rame S W μ,λ ; a0, b0
	 


generatingL2 ℝð Þ:
ð301Þ

Proof. The theorem will follow by establishing (264) above.
Now, G0½W μ,λ�ðxÞ ≠ 0 for 1 ≤ jxj ≤ a0 by Proposition 36.
Next, from Theorem 23, we have that W μ,λðtÞ is a Schwartz
wavelet with all moments vanishing. Since all moments van-
ish, F½W μ,λðtÞ�ðxÞ is flat at x = 0. Since W μ,λðtÞ is Schwartz,
F½W μ,λðtÞ�ðxÞ is also Schwartz and therefore decays faster

than 1/jxjp for any p ∈ℕ for x near ±∞. Hence, for choice
of C sufficiently large, one has F½W μ,λðtÞ�ðxÞ ≤ Cjxj/
ð1 + x2Þ3/2. Thus, (264) is satisfied, and the theorem is dem-
onstrated.

5. Canonical Extensions

FromTheorem 3.2 in [2], a given f μ,λðtÞ on ½0,∞Þ has, in gen-
eral, infinitely many Schwartz wavelet extensions Fμ,λðtÞ to all
ofℝ with Fμ,λðtÞ satisfying the same MADE as f μ,λðtÞ. In this
section, we shall demonstrate, in the setting of Theorem 23 for
low values of M = δ = 1, 2, 3, that there is a natural uniquely
determined extension Fμ,λðtÞ of f μ,λðtÞ to ℝ, namely, the
canonical extension W μ,λðtÞ of f μ,λðtÞ given as follows. We
remark that for these values 1, 2, 3 one has δ ≠ 0 mod 4 as in
Theorem 23 automatically.

Definition 38. Under the assumptions and notation of Theo-
rem 23 (in particular δ = 0 mod β), with M = δ = 1, 2, 3
(and δ = 0 mod β), the canonical extension of f μ,λðtÞ from
½0,∞Þ to all of ℝ is defined to be W μ,λðtÞ, where W μ,λðtÞ
is the function naturally generated by f μ,λðtÞ as given by
Definition 16, with W μ,λðtÞj½0,∞Þ = f μ,λðtÞ.

We clarify the above definition by emphasizing that
canonical extensions of f μ,λðtÞ as the μ, λ vary (as given in
Definition 38) form a strict subset of the set of functions nat-
urally generated by f μ,λðtÞ (as in Definition 16) . This follows
from the fact that, for δ > 3, in a large number of cases one
has that W μ,λðtÞ ≠ f μ,λðtÞ for t ≥ 0 and is therefore not an
extension (see Propositions 42 and 43 below). We next show
that for δ = 1, 2, 3,W μ,λðtÞ is indeed an extension of f μ,λðtÞ.

Proposition 39. Under the assumptions and notation of The-
orem 23, for δ = 1, 2, 3, with δ = 0 mod β one has that
W μ,λðtÞj½0,∞Þ = f μ,λðtÞ for t ≥ 0, where f μ,λðtÞ is given by (1).

Proof. We handle each value of δ separately. First, let δ = 1.
In this setting, one has ω = e2πi/M = e2πi/δ = e2πi/1 = 1. From
(131) and (132), one has that

W μ,λ tð Þ = 〠
δ−1

ℓ=0
ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ

t
� �

= 〠
0

ℓ=0
1½ �Bα~f μ,λ 1½ �Dγt	 


= ~f μ,λ tð Þ,
ð302Þ

and hence, W μ,λðtÞj½0,∞Þ = f μ,λðtÞ on ½0,∞Þ holds for δ
= 1 because ~f μ,λðtÞ = f μ,λðtÞ for t ≥ 0. This last equality fol-
lows from (125) in conjunction with (1) after noting that

Q = qδ/γ and so ½Qk/M�Dγ = ½ðqδ/γÞk/d�1γ = qk. We remark that,
from CaseM = 1 in Section 6.1 below, the δ = 1 Case under
consideration here consists of precisely the f μ,λðtÞ that are
flat at the origin and the canonical extension is f μ,λðtÞ
extended to be 0 on the negative real axis, equivalently the
canonical extension is ~f μ,λðtÞ =W μ,λðtÞ.

Next, let δ = 2. Since γ/δ = γ/2 is in reduced form, one
concludes that γ = 2k + 1 is odd. Now, ω = e2πi/M = e2πi/δ =
e2πi/2 = −1. From (131)-(132), one has that

W μ,λ tð Þ = 〠
δ−1

ℓ=0
ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ

t
� �

= 〠
2−1

ℓ=0
−1ð Þℓ+1

h iBα
~f μ,λ −1ð Þℓ+1

h i1 2k+1ð Þ
t

� �
= −1½ �Bα~f μ,λ −1ð Þtð Þ + 1½ �Bα~f μ,λ 1tð Þ

ð303Þ

=
1½ �Bα f μ,λ tð Þ, for t ≥ 0,

1½ �Bα −1ð Þf μ,λ −1ð Þtð Þ, for t < 0,

8<: ð304Þ

where one moves from (303) to (304) via (125) and (128).
From (304), one sees that W μ,λðtÞj½0,∞Þ = f μ,λðtÞ when δ = 2.
Also note from (304) that the canonical extension W μ,λðtÞ is
an even function if Bα is odd, and it is an odd function if Bα
is even when δ = 2.
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Finally, let δ = 3. Since γ/δ = γ/3 is in reduced form, one
concludes that γ = 3p + j for p ∈ℕ0 with j = 1, 2. In this set-
ting, ω = e2πi/M = e2πi/δ = e2πi/3 which gives that

ωℓ+1� �Dγ = ωℓ+1� �1 3p+jð Þ = e2πi/3
	 
 3p+jð Þh iℓ+1 ð305Þ

= e2πij/3
� �ℓ+1 = e2πij/3, if ℓ = 0,

e4πij/3, if ℓ = 1:
1, if ℓ = 2:

8>><>>: ð306Þ

For each case that j = 1, 2 one has that Rðe2πij/3Þ < 0 and
Rðe4πij/3Þ < 0. From (306), ½ωℓ+1�Dγ has negative real part for
ℓ = 0, 1 and ½ωℓ+1�Dγ = 1 for ℓ = 2. Then for t ≥ 0 and for ℓ
= 0, 1, (128) gives that ~f μ,λð½ωℓ+1�DγtÞ = 0. Combining these
results with (131) and (132) and (125) gives for t ≥ 0 that

W μ,λ tð Þ = 〠
δ−1

ℓ=0
ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ

t
� �

= 〠
2

ℓ=0
ωℓ+1� �Bα~f μ,λ ωℓ+1� �Dγ

t
� � ð307Þ

= 0 + 0 + ω2+1� �Bα~f μ,λ ω2+1� �Dγ
t

� �
= ~f μ,λ tð Þ = f μ,λ tð Þ:

ð308Þ
Hence, in each of the cases δ = 1, 2, 3 one has

W μ,λðtÞj½0,∞Þ = f μ,λðtÞ, and the proposition is proven.

In the next theorem, we assume all of the hypotheses of
both Theorems 13 and 23 to determine a family of f μ,λðtÞ
with canonical extensions having optimal properties.

Theorem 40. Let q > 1. Assume that all the hypotheses and
the notation of Theorems 13 and 23 hold. Then for

γ, δð Þ satisfying γ ∈ 1, 2f g and δ ∈ 1, 2, 3f g, ð309Þ

equivalently, for

μ, λð Þ ∈ ℤ, 1ð Þ or 2ℤ + 1, 2ð Þ or 2ℤ + 1, 4ð Þ or
� 2ℤ + 1 + 2j/3, 2/3ð Þ or 2ℤ + 1 + 2j/3, 4/3ð Þ for j

= 0, 1, 2,
ð310Þ

the associated f μ,λðtÞ have canonical extensions W μ,λðtÞ
which

(1) are Schwartz wavelets on ℝ

(2) are mother wavelets for a frame SðW μ,λ ; a0, b0Þ gen-
erating L2ðℝÞ, as in (301), where b0 is sufficiently
small, and a0 = q > 1 when γ = 1 and a0 = q2 > 1 when
γ = 2

(3) have all moments vanishing

(4) have Fourier transforms given by (180)-(182) which
relate the canonical extension of f μ,λðtÞ to the Jacobi
theta function

(5) satisfy the MADE (185)

(6) have nonvanishing diagonal frame terms G0½W μ,λ�ðxÞ
on ½1, a0�: given by (281)-(282) for γ = 1 and a0 = q,
and given by (283)-(284) for γ = 2 and a0 = q2, each
expressible in terms of the Jacobi theta function

Proof. Since δ ∈ f1, 2, 3g one has W μ,λðtÞ is a canonical
extension of f μ,λðtÞ to ℝ by Proposition 39 and Definition
38. Properties (1), (3), (4), and (5) follow from Theorem
23. Property (2) follows from Theorem 37. Since γ ∈ f1, 2g,
Property (6) follows from Proposition 36. It remains to show
the equivalence of (297) with (310).

We first show (297) ⇒ (310). Assuming (297), one has
λ/2 = γ/δ ∈ f1/1, 2/1, 1/2, 1/3, 2/3g where the case that γ/δ
= 2/2 is ruled out for not being in reduced form. From this,
one concludes λ ∈ f1, 2, 4, 2/3, 4/3g. Since δ = 0 mod β, one
concludes that β = 1 when δ = 1; β = 1, 2 when δ = 2; and β
= 1, 3 when δ = 3.

When β = 1, which happens for each value of λ, one has

μ + 1
2 = α

β
= α

1 fromwhich μ = 2α − 1 is odd: ð311Þ

Thus, the β = 1 case gives that ðμ, λÞ falls in one of ð2ℤ
+ 1, 1Þ, ð2ℤ + 1, 2Þ, ð2ℤ + 1, 4Þ, ð2ℤ + 1, 2/3Þ, or ð2ℤ + 1, 4
/3Þ.

When β = 2, which happens only when δ = 2 (for δ ∈
f1, 2, 3g), equivalently, when λ/2 = γ/δ = 1/2, equivalently,
when λ = 1, one has

μ + 1
2 = α

β
= 2k + 1

2 ,

 where αmust be odd, as α2 is in a reduced form:

ð312Þ

Hence, μ = 2k is even when β = 2, and in this case,
ðμ, λÞ falls in ð2ℤ, 1Þ.

When β = 3, which happens only when δ = 3 (for δ ∈
f1, 2, 3g), equivalently, when λ/2 = γ/δ = γ/3, equivalently,
when λ = 2/3, 4/3, one has

μ + 1
2 = α

β
= 3k + j

3 ,

 with j = 1, 2 since  α

3 is in a reduced form:

ð313Þ

Hence, μ = 2k − 1 + 2j/3 for j = 1, 2 when β = 3, and in
this case, ðμ, λÞ falls in ð2ℤ + 1 + 2j/3, 2/3Þ or ð2ℤ + 1 + 2
j/3, 4/3Þ.

All of the above cases β = 1, 2, 3 combine to require that
ðμ, λÞ satisfies (310).
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Conversely, we show (310) ⇒ (309). So assume (310).
Within this setting, examine the case that μ = 2k − 1 is odd,
with λ ∈ f1, 2, 4, 2/3, 4/3g. Then,

μ + 1
2 = 2k − 1 + 1

2 = k = k
1 = α

β
 in a reduced form, ð314Þ

from which we deduce that β = 1 and γ/δ = λ/2 ∈ f1/2,
1, 2, 1/3, 2/3g. This implies δ = 1, 2, or 3, none of which is
ruled out as each such δ is divisible by β = 1. Furthermore,
from the possible λ/2, one sees that γ ∈ f1, 2g.

Next, examine the case that μ = 2k is even with λ = 1.
Then, μ + 1 = 2k + 1. Hence,

μ + 1
2 = 2k + 1

2 = α

β
 which is in reduced form: ð315Þ

One concludes that β = 2 and λ/2 = γ/δ ∈ f1/2g, in a
reduced form. Thus, δ = 2 (which is divisible by β = 2), and
γ = 1.

Finally, examine the case that μ = 2k − 1 + 2j/3 with j =
1, 2 and λ ∈ f2/3, 4/3g. Then,

μ + 1
2 = 3k + j

3 = α

β
 which is in reduced form as j = 1, 2:

ð316Þ

One concludes that β = 3 which does divide δ for λ/2
= γ/δ ∈ f1/3, 2/3g, all in a reduced form. Thus, δ = 3 and
γ = 1, 2.

All cases combine to give γ ∈ f1, 2g and δ ∈ f1, 2, 3g,
which is (309). Thus, (309) ⟺ (310), and the theorem is
now proven.

Selected examples of canonical extensions are now
provided.

[Example μ = −1 odd and λ = 2] In this case,

f −1,2 tð Þ = 〠
∞

k=−∞

−1ð Þk exp −qkt
	 


qk k+1ð Þ/2 ,  for t ≥ 0: ð317Þ

One sees that ðμ + 1Þ/2 = 0/2 = 0/1 = α/β and λ/2 = 2/2
= 1/1 = γ/δ. Thus, α = 0 and γ = 1, while β = δ = 1, consis-
tent with Examples [M = 1] in Section 6.1 and [M = δ = 1,
μ = 2N + 1, and λ = 2n] in Section 6.2 below, where the cur-
rent case that μ = −1 and λ = 2 is seen to be flat at the origin.
One extends f −1,2ðtÞ to be identically 0 for t < 0. This yields
~f −1,2ðtÞ, which equals the canonical extension W −1,2ðtÞ by
(302) as δ = 1. This particular canonical extension was first
introduced in [3] as the function KðtÞ. From Theorem 40,
one has that KðtÞ satisfies properties (1) through (6),
including that KðtÞ is a Schwartz wavelet with all moments
vanishing, satisfying the MADE K ′ðtÞ = KðqtÞ, generating a

frame for L2ðℝÞ, and having Fourier transform iμ3q/½
ffiffiffiffiffiffi
2π

p

xθðq ; ixÞ�, as was previously proven in [3] but is now seen
as a special case of Theorem 40.

[Example μ = 0 even and λ = 1] In this case,

f0,1 tð Þ = 〠
∞

k=−∞

−1ð Þk exp −qkt
	 


qk
2 , for t ≥ 0: ð318Þ

One sees that ðμ + 1Þ/2 = 1/2 = α/β and λ/2 = 1/2 = γ/δ.
Thus, α = γ = 1, while β = δ = 2, consistent with Examples
[M = δ = p,β = p] (with the prime p taken to be 2) in Section
6.1 and [M = δ = 2, β = 2] in Section 6.2 below. Also, we
record that B =M/β = δ/β = 2/2 = 1. Since δ = 2, f0,1ðtÞ has
canonical extension W 0,1 given by (304). That is,

W 0,1 tð Þ =
1½ �Bα f0,1 tð Þ, for t ≥ 0

−1½ �Bα −1ð Þf0,1 −1ð Þtð Þ, for t < 0

8<:
=

1½ �1⋅1 f0,1 tð Þ, for t ≥ 0

−1½ �1⋅1 −1ð Þf0,1 −1ð Þtð Þ, for t < 0

8<:
= f0,1 tj jð Þ = 〠

∞

k=−∞

−1ð Þk exp −qk tj j	 

qk

2 ,

ð319Þ

which is the extension of f0,1 to be an even function. This
canonical extension W 0,1ðtÞ was first introduced in [4] and
denoted there by f0ðtÞ. From Theorem 40, one has that f0ð
tÞ satisfies properties (1) through (6), including that f0ðtÞ
is a Schwartz wavelet with all moments vanishing, satisfying
the MADE f 0″ðtÞ = −qf0ðqtÞ, generating a frame for L2ðℝÞ,
and having Fourier transform 2ðμq2Þ3/½

ffiffiffiffiffiffi
2π

p
θðq2 ; x2Þ�, as

was previously proven in [4] but is now seen as a special case
of Theorem 40. If one normalizes f0ðtÞ by f0ð0Þ, one obtains
qCosðtÞ ≡ f0ðtÞ/f0ð0Þ, which converges uniformly [4] to cos
ðtÞ on compact subsets of ℝ as q⟶ 1+, as is illustrated in
Figure 2(a). Furthermore, qCosðtÞ satisfies properties (1)
through (6), including satisfying the same MADE above
(by linearity) and having Fourier transform 2ðμq2Þ3/½

ffiffiffiffiffiffi
2π

p
f0

ð0Þθðq2 ; x2Þ�. See [4] and [6] for further details.
[Example μ = 1 odd and λ = 1] In this case,

f1,1 tð Þ = 〠
∞

k=−∞

−1ð Þk exp −qkt
	 


qk k−1ð Þ , for t ≥ 0: ð320Þ

One sees that ðμ + 1Þ/2 = ð1 + 1Þ/2 = 1/1 = α/β and λ/2
= 1/2 = γ/δ. Thus, α = β = γ = 1, while δ = 2, consistent with
Examples [M = δ = p,β = 1] in Section 6.1 (with the prime p
taken to be 2) and [M = δ = 2, β = 1] in Section 6.2 below.
Also, we record that B =M/β = δ/β = 2/1 = 2. Since δ = 2,
f1,1ðtÞ has canonical extension W 1,1 given by (290). That is,

31Abstract and Applied Analysis



W 1,1 tð Þ =
1½ �Bα f1,1 tð Þ, for t ≥ 0

−1½ �Bα −1ð Þf1,1 −1ð Þtð Þ, for t < 0

8<:
=

1½ �2⋅1 f1,1 tð Þ, for t ≥ 0

−1½ �2⋅1 −1ð Þf1,1 −1ð Þtð Þ, for t < 0

8<:

=
〠
∞

k=−∞

−1ð Þk exp −qkt
	 


qk k−1ð Þ , for t ≥ 0,

−1ð Þ 〠
∞

k=−∞

−1ð Þk exp −qk tj j	 

qk k−1ð Þ , for t < 0,

8>>>>><>>>>>:

ð321Þ

which is the extension of f1,1 to be an odd function. This
canonical extension W 1,1ðtÞ was first introduced in [4] and
denoted there by f1ðtÞ. From Theorem 40, one has that f1ð
tÞ satisfies properties (1) through (6), including that f1ðtÞ
is a Schwartz wavelet with all moments vanishing, satisfying
the MADE f 1′′ðtÞ = −q2 f1ðqtÞ, generating a frame forL2ðℝÞ,
and having Fourier transform 2ðμq2Þ3ð−ixÞ/½

ffiffiffiffiffiffi
2π

p
θðq2 ; x2Þ�,

as was previously proven in [4] but is now seen as a special
case of Theorem 40. If one normalizes f1ðtÞ by f0ð0Þ, one
obtains qSinðtÞ ≡ f1ðtÞ/f0ð0Þ, which converges uniformly to
sin ðtÞ [4] on compact subsets ofℝ as q⟶ 1+, as is illustrated
in Figure 2(b). Furthermore, qSinðtÞ satisfies properties (1)
through (6), including satisfying the same MADE above (by
linearity) and having Fourier transform 2ðμq2Þ3ð−ixÞ/½

ffiffiffiffiffiffi
2π

p
f0

ð0Þθðq2 ; x2Þ�. Also, qSin′ðtÞ = q ⋅ qCosðqtÞ while qCos′ðtÞ =
− qSinðtÞ. See [4] and [6] for further details.

While the above examples are consistent with earlier
examples in our previous work, the examples for

μ, λð Þ ∈ 2ℤ + 1, 4ð Þ or 2ℤ + 1+,ð Þ or 2ℤ + 1 + 2j
3 ,

� �
,

  for j = 0, 1, 2
ð322Þ

are all not previously seen. To illustrate an example from
(322), we choose ðμ, λÞ ∈ ð2ℤ + 1 + 2j/3, 2/3Þ for j = 0 and
develop it here.

[Example μ = 1 odd and λ = 2/3] In this case,

f1,2/3 tð Þ = 〠
∞

k=−∞

−1ð Þk exp −qkt
	 


qk k−1ð Þ/ 2/3½ � for t ≥ 0: ð323Þ

One sees that ðμ + 1Þ/2 = ð1 + 1Þ/2 = 1/1 = α/β and λ/2
= 1/3 = γ/δ. Thus, α = β = γ = 1, while δ = 3, and ω = e2πi/δ
= e2πi/3, consistent with Examples [M = δ = p,β = 1] (with
the prime p taken to be 3) in Section 6.1 and [M = δ = 3, β
= 1] in Section 6.2 below. Also, we record that B =M/β =
δ/β = 3/1 = 3. Since δ = 3, f1,2/3ðtÞ has canonical extension
W 1,2/3 given by (307). That is,

where (324) follows from Definition 15 and (325) follows
from (323) and (9). From Theorem 40, one has that W 1,2/3
ðtÞ satisfies properties (1) through (6), including that
W 1,2/3ðtÞ is a Schwartz wavelet with all moments vanishing,

satisfying the MADE W
ð3Þ
1,2/3ðtÞ = q3W 1,2/3ðqtÞ, generating a

frame for L2ðℝÞ, and having Fourier transform −3ðμq3Þ3
x2/½ ffiffiffiffiffiffi2π

p
θðq3;−ix3Þ�.

One computes

W 1,2/3 0ð Þ = f1,2/3 0ð Þ = 〠
∞

k=−∞
−1ð Þk 1

qk k−1ð Þ/ 2/3½ �

= 〠
∞

k=−∞

−1ð Þk
q3ð Þk k−1ð Þ/2 = θ q3;−1

	 

= 0,

ð326Þ

W 1,2/3 tð Þ = 〠
δ−1

ℓ=0
ωℓ+1� �B⋅α~f 1,2/3 ωℓ+1� �Dγ

t
� �

= 〠
2

ℓ=0
e2πi ℓ+1ð Þ/3
h i3⋅1

~f 1,2/3 e2πi ℓ+1ð Þ/3
h i1⋅1

t
� �

= 〠
2

ℓ=0

~f 1,2/3 e2πi ℓ+1ð Þ/3
h i

t
� �

= ~f 1,2/3 e2πi/3
� �

t
	 


+ ~f 1,2/3 e4πi/3
� �

t
	 


+ ~f 1,2/3 tð Þ

=
0 + 0 + f1,2/3 tð Þ, for t ≥ 0

−1ð Þf1,2/3 e2πi/3
� �

t
	 


+ −1ð Þf1,2/3 e4πi/3
� �

t
	 


+ 0, for t < 0

8<:
ð324Þ

=
〠
∞

k=−∞
−1ð Þk exp −qkt

	 

qk k−1ð Þ/ 2/3½ � , for t ≥ 0,

−1ð Þ 〠
∞

k=−∞
−1ð Þk exp −qk e2πi/3

� �
t

	 

qk k−1ð Þ/ 2/3½ � + −1ð Þ 〠

∞

k=−∞
−1ð Þk exp −qk e4πi/3

� �
t

	 

qk k−1ð Þ/ 2/3½ � , for t < 0,

8>>>><>>>>:
ð325Þ
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while the first derivative at the origin is

W 1,2/3′ 0ð Þ = f 1,2/3′ 0ð Þ = −f5/3,2/3 0ð Þ

= − 〠
∞

k=−∞
−1ð Þk 1

qk k−1−2/3ð Þ/ 2/3½ �
ð327Þ

= − 〠
∞

k=−∞

−qð Þk
q3ð Þk k−1ð Þ/2 = −θ q3;−q

	 

≠ 0, ð328Þ

where the penultimate equality in each of (326) and (328)
follows from (10), the second equality in (327) follows from
the fact that f μ,λ′ðtÞ = −f μ+λ,λðtÞ (as is proven in equation
(11) of [2]), and the inequality giving nonvanishing in
(328) follows from (13). While we are here, we also compute
the second derivative at the origin by

W 1,2/3′ ′ 0ð Þ = f 1,2/3′ ′ 0ð Þ = f7/3,2/3 0ð Þ

= 〠
∞

k=−∞
−1ð Þk 1

qk k−1−4/3ð Þ/ 2/3½ �

= 〠
∞

k=−∞

−q2
	 
k
q3ð Þk k−1ð Þ/2 = θ q3;−q2

	 

≠ 0,

ð329Þ

Normalize W 1,2/3ðtÞ by W 1,2/3′ ð0Þ = −θðq3;−qÞ to obtain

gðq ; tÞ ≡W 1,2/3ðtÞ/W 1,2/3′ ð0Þ, where gðq ; tÞ satisfies (1)
through (6) of Theorem 40, while having Fourier transform
3ðμq3Þ3x2/½

ffiffiffiffiffiffi
2π

p
θðq3;−qÞθðq3;−ix3Þ� and satisfying the same

MADE as W 1,2/3ðtÞ, namely,

g 3ð Þ q ; tð Þ = q3g q ; qtð Þ, ð330Þ

with initial conditions

g q ; 0ð Þ = 0, g′ q ; 0ð Þ = −θ q3;−q
	 


/ −θ q3;−q
	 
� �

= 1
and g″ q ; 0ð Þ = θ q3;−q2

	 

/ −θ q3;−q

	 
� �
= −q:

ð331Þ

This second derivative reducing to −q in (331) follows
from Lemma 41 below. For small q > 1, as q⟶ 1+, (330)
and (331) can be considered to be a perturbation of the
ODE initial value problem (332) and (333), where

f 3ð Þ tð Þ = f tð Þ, ð332Þ

with initial conditions

f 0ð Þ = 0, f ′ 0ð Þ = 1, f ″ 0ð Þ = −1, ð333Þ

which is solved by f ðtÞ = 2 exp ð−t/2Þ sin ð ffiffiffi
3

p
t/2Þ/ ffiffiffi

3
p

.
Figure 3 provides graphical evidence that W 1,2/3ðtÞ/W 1,2/3

′ ð0Þ converges to f ðtÞ = 2 exp ð−t/2Þ sin ð ffiffiffi
3

p
t/2Þ/ ffiffiffi

3
p

near t
= 0. We have scaled Figure 3(b) by exp ðt/2Þ to better visual-
ize the graph on the negative t axis.

Lemma 41. For q > 1 the Jacobi theta function (10) satisfies

θ q3 ; q2
	 

θ q3 ; qð Þ = q = θ q3;−q2

	 

θ q3;−qð Þ : ð334Þ

Proof. We show both equalities in (334) together by requir-
ing that each ± below be always simultaneously + or always
simultaneously −. One has

0.6
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1

5 10

(b)

Figure 3: (a) y = 2 exp ð−t/2Þ sin ð ffiffiffi
3

p
t/2Þ/ ffiffiffi

3
p

(dashed) approximated by f1,2/3ðtÞ/f 1,2/3′ ð0Þ for q = 1:3 (solid red). (b) Scaled y = 2 sin ð ffiffiffi
3

p
t

/2Þ/ ffiffiffi
3

p
(dashed) approximated by the scaled canonical extension exp ðt/2ÞW 1,2/3ðtÞ/W 1,2/3′ ð0Þ (solid blue/red) for q = 1:3 and t near 0.

Each is scaled by exp ðt/2Þ.
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θ q3;±q2
	 


= θ q3 ; q3 ±1
q

� �� �
= q3

±1
q

� �
θ q3 ; ±1

q

� �
ð335Þ

= q ±qð Þθ q3 ; ±1
q

� �� �
= q θ q3;±q

	 
� �
, ð336Þ

where the second equality in (335) is given by the left hand
equation in (12) and the last equality in (336) is given by
the right hand equation in (12). Dividing (335) and (336)
through by θðq3;±qÞ gives (334), and the lemma is shown.

In the next two propositions, we see for δ > 3 that there
are numerous cases for which W μ,λðtÞ is not an extension
of a given f μ,λðtÞ.

Proposition 42. Let the notation of Theorem 23 hold. Let δ
> 3 with δ ≠ 0 mod 4 and δ = 0 mod β be as in (337).
Recall that for given f μ,λðtÞ one has an integer α and natural
numbers β, γ, δ with

μ + 1
2

= α

β
 in reduced form, and  λ

2
= γ

δ
 in reduced form,

ð337Þ

while B =M/β = δ/β, D =M/δ = δ/δ = 1, and ω = e2πi/δ. We
observe that there are an infinite number of n ∈ℕ such that

α

β
+ n

γ

δ
∉ℤ: ð338Þ

Furthermore, recall that

+f g = ℓ ∣R ωγ½ �ℓ+1
� �

> 0
n o

⊂ 0, 1, 2⋯ δ − 1ð Þf g: ð339Þ

If for any such n as in (338), one has that

〠
+f g

ωℓ+1� �Bα+nγ ≠ 1, ð340Þ

then

W μ,λ tð Þ��
0,∞½ Þ ≠ f μ,λ tð Þ: ð341Þ

That is, the function W μ,λðtÞ naturally generated by f μ,λ
ðtÞ does not restrict to f μ,λðtÞ and is not a canonical extension
of f μ,λðtÞ.

Proof. Note first that there are no two consecutive integers n
and n + 1 with

α

β
+ n

γ

δ
∈ℤ, and  α

β
+ n + 1ð Þ γ

δ
∈ℤ, ð342Þ

for if there were two such consecutive integers, by sub-
tracting one equation from the other in (342), one would
conclude that γ/δ ∈ℤ also. However, this is impossible as γ
/δ is in a reduced form with δ > 3, while γ/δ being both an
integer and in a reduced form would require δ = 1. We con-
clude that there is an infinite number of n ∈ℕ with (338)
holding.

Fix any n satisfying (338). For this n, from (138) and
from the discussion between (138) through (144), one con-
cludes

W
nð Þ
μ,λ 0ð Þ = 〠

+f g
ωℓ+1� �Bα+nDγ −1ð Þn f μ+nλ,λ 0ð Þ

= 〠
+f g

ωℓ+1� �Bα+nDγ −1ð Þnθ Q;−Q μ+nλ−1ð Þ/2
� �

= 〠
+f g

ωℓ+1� �Bα+nDγ −1ð Þnθ Q;−Qα/β+nγ/δ−1
� �

:

ð343Þ

Furthermore, for our same fixed n, from the fact that
f μ,λ′ðtÞ = −f μ+λ,λðtÞ, [2], one has

f nð Þ
μ,λ 0ð Þ = −1ð Þn f μ+nλ,λ 0ð Þ = −1ð Þnθ Q;−Q α/βð Þ+n γ/δð Þ−1

� �
:

ð344Þ

Since (338) holds θðQ;−Qðα/βÞ+nðγ/δÞ−1Þ ≠ 0 by (10). If
(343) were to equal (344), then dividing through by θðQ;−
Qðα/βÞ+nðγ/δÞ−1Þ and recalling that D = 1 in our setting would
require that

〠
+f g

ωℓ+1� �Bα+nDγ = 〠
+f g

ωℓ+1� �Bα+nγ = 1, ð345Þ

which is disallowed by the hypothesis (340). Thus, if n sat-
isfies (338) and (340), one cannot have equality of (343)
and (344), whence W μ,λðtÞ does not restrict to f μ,λðtÞ on ½
0,∞Þ. The proposition is proven.

We next harness Proposition 42 to show that for λ with
δ = 5, 6, 7, none of the functions W μ,λðtÞ restricts to f μ,λðtÞ
on ½0,∞Þ.

Proposition 43. Under the same setting, notation, and
assumptions as Proposition 42, for f μ,λðtÞ with α, β, γ as in
(337) but with the restriction that δ = 5, 6, or 7, one has W μ,λ
ðtÞ does not restrict to f μ,λðtÞ on ½0,∞Þ. Thus, f μ,λðtÞ on ½0,
∞Þ does not have a canonical extension for these values of δ.

Proof. Let δ = 5, 6 or 7. For given γ, define bγ to be the unique
value with γ = bγ mod δ and 0 < bγ < δ − 1. Observe that in

(339) for fixed δ one has ωγ = e2πiγ/δ = e2πibγ /δ = ωbγ . Thus,
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the set f+g associated to γ, δ is identical to the set f+g asso-
ciated to bγ , δ.

In Table 1, for the given value of δ and associated possi-
ble bγ one has, by inspection, the unique values 1 ≤ ℓ + 1 ≤ δ

with RðωγÞℓ+1 > 0 that determine the set f+g. We denote
the values ℓ + 1 by σ, τ, δ. This last δ is the same value giving
λ/2 = γ/δ, where δ = 5, 6, 7.

For instance, to obtain the second row of the above
Table 1, when δ = 5 and γ has associated value bγ = 2, one has

R ωγð Þℓ+1 =R e2πiγ/δ
� �ℓ+1

=R e2πibγ /5� �ℓ+1
=R e2πi2/5

	 
ℓ+1 > 0
ð346Þ

precisely when the ℓ + 1 in (346) assume the values ℓ +
1 = 2, 3, or 5, that is, when

R e2πi2/5
	 
2 = cos 2π4/5ð Þ > 0, R e2πi2/5

	 
3
= cos 2π6/5ð Þ > 0, and R e2πi2/5

	 
5
= 1 > 0:

ð347Þ

In this case, one has fℓ + 1g = fσ = 2, τ = 3, δ = 5g and
then f+g = fℓg = f2 − 1, 3 − 1, 5 − 1g = f1, 2, 4g; the remain-
ing values of ℓ form f−g = f0, 3g.

Now note that, in all cases in Table 1,

σ + τ = δ, whence ∀ j ∈ℤ one has e2πiσj/δ

and e2πiτj/δ are conjugates,
ð348Þ

which follows from the fact that e2πiσj/δ ⋅ e2πiτj/δ = e2πiðσ+τÞj/δ
= e2πiðδÞj/δ = 1. We conclude that for all δ = 5, 6, 7 and γ with

γ/δ in a reduced form, and for all integers j one has

〠
+f g

ωj	 
ℓ+1 = e2πij/δ
� �σ

+ e2πij/δ
� �τ

+ e2πij/δ
� �δ

= 2 cos 2πσj/δð Þ + 1 ≠ 1:
ð349Þ

The inequality in (349) follows from the fact that no
integer multiple of 2π/δ for δ = 5, 6, 7 is an odd multiple
of π/2.

Now, we have seen in Proposition 42 that for each of δ
= 5, 6, 7 there are infinitely many n with (338) holding. Fix
such an n, and set j = Bα + nγ in (349) to obtain

〠
+f g

ω Bα+nγ½ �
� �ℓ+1

= 〠
+f g

ωℓ+1	 
 Bα+nγ½ � ≠ 1, ð350Þ

from which we see that both (338) and now (340) hold. We
conclude from Proposition 42 that W μ,λðtÞ does not restrict
to f μ,λðtÞ on ½0,∞Þ for any λ with δ = 5, 6, 7. Therfore, such
f μ,λðtÞ do not have canonical extensions. This completes the
proof of the proposition.

We remark that for δ > 8 and not divisible by 4, results
similar to Proposition 43, with more tables analogous to
Table 1 (but having many more cases), and with inequalities
analogous to (349) (but with multiple cosine terms), should
give that canonical extensions are at least rare, if not
nonexistent.

6. Examples

The goals of this section are twofold:

(1) To classify those μ and λ for low values of M = δ
such that f μ,λðtÞ and W μ,λðtÞ meet the assump-
tions of Theorem 23 ðincluding δ = 0 mod βÞ and
satisfy (180)-(182);

(2) To fill out selections from the examples in goal 1 in
detail

Throughout the discussion, the notation given in (96)
holds, and M = lcm fβ, δg = δ.

6.1. Classifying μ and λ in Theorem 23 with Low M = δ
Values. Recall that the fractions α/β and γ/δ in (96) are in
reduced form.

[M = δ = 1]: since M = δ = lcm fβ, δg = 1, we conclude
β = 1 = δ. This is equivalent to

μ + 1
2 = α

β
= α

1  
λ

2 = γ

δ
= γ

1  M = 1: ð351Þ

Now (351) holds if and only if μ = 2α − 1 is an odd inte-
ger and λ = 2γ is an even positive integer. To match notation

Table 1: Notation and cases as used in Proposition 44.

δ bγ ℓ + 1f g ≡ σ, τ, δf g +f g −f g

5

1 1,4,5 0,3,4 1,2

2 2,3,5 1,2,4 0,3

3 2,3,5 1,2,4 0,3

4 1,4,5 0,3,4 1,2

6
1 1,5,6 0,4,5 1,2,3

5 1,5,6 0,4,5 1,2,3

7

1 1,6,7 0,5,6 1,2,3,4

2 3,4,7 2,3,6 0,1,4,5

3 2,5,7 1,4,6 0,2,3,5

4 2,5,7 1,4,6 0,2,3,5

5 3,4,7 2,3,6 0,1,4,5

6 1,6,7 0,5,6 1,2,3,4
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in previous work [2], we relabeled μ = 2N + 1 and λ = 2n.
Such f2N+1,2nðtÞ are precisely the f μ,λðtÞ that are flat at t = 0
(as is shown in Proposition 2.2 of [2]). We further analyze
this case in detail below and record now that

M = δ = 1⇔ μ ∈ℤwith μ = 1 mod 2, and λ½
∈ℕwith λ = 0 mod 2�: ð352Þ

½M= δ = p is prime�: since M = δ = lcm fβ, δg = p, we
conclude β ∈ f1, pg and δ = p. Thus, there are two subcases.

[M = δ = p, β = p]:

μ + 1
2 = α

β
= α

p
⇔ μ = 2α − p

p
with α ≠ 0 mod p,

λ

2 = γ

δ
= γ

p
⇔ λ = 2γ

p
> 0with γ ≠ 0 mod p:

ð353Þ

[M = δ = p, β = 1]:

μ + 1
2 = α

β
= α

1 ⇔ μ = 2α − 1⇔ μ ∈ℤwith μ = 1 mod 2,

λ

2 = γ

δ
= γ

p
⇔ λ = 2γ

p
> 0with γ ≠ 0 mod p:

ð354Þ

Thus, we have

M = δ = p is prime⇔ the rightmost pairs½
of conditions on μ and λ in 353ð Þ or 354ð Þhold�: ð355Þ

[M = 4]: this case is disallowed.
[M = δ = 6]: since M = lcm fβ, δg = 6, we conclude β ∈

f1, 2, 3, 6g and δ = 6. There are now four subcases.
[M = δ = 6, β = 6]:

μ + 1
2 = α

β
= α

6 ⇔ μ = α − 3
3

with α ≠ 0 mod 2 and α ≠ 0 mod 3,
λ

2 =
γ

δ
= γ

6 ⇔ λ = γ

3 > 0

with γ ≠ 0 mod 2 and γ ≠ 0 mod 3:

ð356Þ

Please see Section 7 for a detailed convergence study
involving the current example (356) with α = −1, β = 6, γ =
1, and δ = 6.

[M = δ = 6, β = 3]:

μ + 1
2 = α

β
= α

3 ⇔ μ = 2α − 3
3 with α ≠ 0 mod 3,

λ

2 = γ

δ
= γ

6 ⇔ λ = γ

3 > 0with γ ≠ 0 mod 2 and γ ≠ 0 mod 3:

ð357Þ

[M = δ = 6, β = 2]:

μ + 1
2 = α

β
= α

2 ⇔ μ = α − 1with α ≠ 0 mod 2,

λ

2 = γ

δ
= γ

6 ⇔ λ = γ

3 > 0with γ ≠ 0 mod 2 and γ ≠ 0 mod 3:

ð358Þ

[M = δ = 6, β = 1]:

μ + 1
2 = α

β
= α

1 ⇔ μ = 2α − 1⇔ μ ∈ℤwith μ = 1 mod 2,

λ

2 = γ

δ
= γ

6 ⇔ λ = γ

3 > 0with γ ≠ 0 mod 2 and γ ≠ 0 mod 3:

ð359Þ

Thus, we have

M = 6 = δ⇔
any of the rightmost pairs of conditions on

μ and λ in 356ð Þ through 359ð Þ hold

" #
:

ð360Þ

Other μ and λ with f μ,λ meeting the criteria of Theorem
23 and M not among the above cases can be determined
similarly via the following proposition.

Proposition 44. Let M =QJ
j=1p

nj

j be the prime factorization

of M > 1 and M ≠ 0 mod 4. The μ and λ with f μ,λ meeting
the criteria of Theorem 23 are

μ = 2α − β

β
, ð361Þ

λ = 2γ
δ

ð362Þ

that satisfy the conditions

M = δ =
YJ
j=1

p
nj

j , ð363Þ

β =
YJ
j=1

p
kj
j with 0 ≤ kj ≤ nj ∀ j, ð364Þ

α ≠ 0 mod pj when kj > 0, ð365Þ
γ ≠ 0 mod pj ∀ pj: ð366Þ

Proof. From Proposition 21, one sees that the hypothesis that
δ = 0 mod β in Theorem 23 is required in order to have a
non-identically vanishing of (180)–(182). From this, we
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conclude M = lcm fβ, δg = δ, giving (363). Since β is a divi-
sor of δ =M, one obtains (364). Equations (365) and (366)
follow from the fact that α/β and γ/δ are in a reduced form.
(361) and (362) follow from (96). The proposition is shown.

6.2. Selected Examples from Section 6.1 in Further Depth:
Canonical Extensions. [M = δ = 1, μ = 2N + 1, λ = 2n]: we
expand on [Example M = 1] in Section 6.1, where it was
shown that μ = 2N + 1, λ = 2n, and β = δ = 1, which specifies
(96) as

Inserting these values in (131) gives (368), while inser-
tion in (180)–(182) gives (369) and (370) below. That is,

W 2N+1,2n tð Þ = 〠
1−1

ℓ=0
1½ �N~f 2N+1,2n 1ntð Þ = ~f 2N+1,2n tð Þ: ð368Þ

Furthermore,

1
1F W 2N+1,2n tð Þ½ � xð Þ =F ~f 2N+1,2n tð Þ

h i
xð Þ ð369Þ

= μ3Qeiπ N+1ð Þffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
n

〠
n−1

κ=0

~ωκz3½ �N+1

θ Q ; ~ωκz3½ �ð Þ

" # !
ð370Þ

= μ3Q −1ð ÞN+1ffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
n

〠
n−1

κ=0

1
~ωκz3½ �−N−1θ Q ; ~ωκz3½ �ð Þ

" # !
ð371Þ

= μ3Q −1ð ÞN+1ffiffiffiffiffiffi
2π

p 1
−ixð Þ

⋅
1
n

〠
n−1

κ=0

QN N+1ð Þ/2

Q −N−1ð Þ −Nð Þ/2 ~ωκz3½ �−N−1θ Q ; ~ωκz3½ �ð Þ

" # !
ð372Þ

= μ3Q −1ð ÞN+1ffiffiffiffiffiffi
2π

p QN N+1ð Þ/2

−ixð Þ
1
n

〠
n−1

κ=0

1
θ Q ; ~ωκz3½ �Q −N−1ð Þ	 
" # !

,

ð373Þ
where (371) follows from moving ½~ωℓz3�N+1

from the numer-
ator to the denominator; (372) is obtained by multiplying
numerator and denominator by QNðN+1Þ/2; and (373) follows
from (12). Also, from (184), z3 in (373) is any fixed nth root
of zn3 = −e−πinix. This example recovers Theorem 6.3 in [2].
Also, if one sets N = −1 and n = 1, one has W 2N+1,2nðtÞ =

W −1,2ðtÞ = ~f −1,2ðtÞ which is discussed earlier in [Example μ
= −1 odd and λ = 2] in Section 5, and which was denoted
KðtÞ in [3]. This recovers the inaugural wavelet in the first
paper that inspired the current direction of study.

Finally, W 2N+1,2nðtÞ = ~f 2N+1,2nðtÞ satisfies the same mul-
tiplied advanced differential equation on ℝ as does f2N+1,2n
ðtÞ on ½0,∞Þ. That is, (185) becomes

W
1ð Þ
2N+1,2n tð Þ = −1ð Þn+1q n+2N+1ð Þ/2W 2N+1,2n qntð Þ: ð374Þ

[M = δ = 2]: we expand on [ExampleM = p] in the previ-
ous section for the case p = 2. There are two subcases, when
β = 2 or β = 1.

[M = δ = 2, β = 2]:

μ + 1
2 = α

β
= α

2
λ

2 = γ

δ
= γ

2 M = 2

Q = q2/λ = q2/γ B = M
β

= 2
2 = 1 D = M

δ
= 2
2 = 1

  Bα = 1α = α Dγ = 1γ = γ

ω = e2πi/2 = eπi = −1   ~ω = e2πi/ Dγ½ � = e2πi/γ

:

ð375Þ

Note that in this case, since α and γ must be odd, μ = α
− 1 is even, and λ = γ is odd, so we set μ = 2N and λ = 2n
+ 1 = γ. Then, Bα = 2N + 1 and Dγ = 2n + 1. Inserting these
values in (131) gives (376)–(378), namely,

W 2N ,2n+1 tð Þ = −1½ �2N+1~f 2N ,2n+1 −1½ �2n+1t	 

+ −1½ �2� �2N+1~f 2N ,2n+1 −1ð Þ2� �2n+1

t
� �

ð376Þ

= −1½ �~f 2N ,2n+1 −1½ �tð Þ + 1½ �~f 2N ,2n+1 1½ �tð Þ ð377Þ

μ + 1
2 = 2N + 1ð Þ + 1

2 = N + 1
1 = α

β
 

λ

2 = 2n
2 = n

1 = γ

δ
 M = 1

Q = q2/λ = q1/n  B = M
β

= 1
1 = 1  D = M

δ
= 1

   Bα = 1α =N + 1  Dγ = 1n = n

ω = e2πi/M = e2πi = 1    ~ω = e2πi/n

: ð367Þ
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= −1½ � −1ð Þf2N ,2n+1 −tð Þ� �
χ −∞,0ð Þ + f2N ,2n+1 tð Þ� �

χ 0,∞½ Þ
ð378Þ

= 〠
∞

k=−∞
−1ð Þk e−q

k tj j

qk k−2Nð Þ/ 2n+1½ � : ð379Þ

Note that (378) and (379) show that W 2N ,2n+1ðtÞ is an
even function. Also, from (180)-(182) along with (184),
one has

F W 2N ,2n+1 tð Þ½ � xð Þ

= 2μ3Qeiπ 2N+1ð Þ/2ffiffiffiffiffiffi
2π

p 1
−ixð Þ

� 1
2n + 1 〠

2n

κ=0

e2πiκ/ 2n+1ð Þz3
� �2N+1

θ Q ; e2πiκ/ 2n+1ð Þz3
� �2� �

24 350@ 1A,

ð380Þ

with

z2n+13 = −e−πi 2n+1ð Þ/2ix, ð381Þ

where Q = q2/ð2n+1Þ. Finally, the MADE (185) becomes

W
2ð Þ
2N ,2n+1 tð Þ = −1ð Þ2n+1+2q 2n+1ð Þ 2n+1+2Nð Þ/ 2n+1ð ÞW 2N ,2n+1 q2n+1t

	 

= −q2n+1+2NW 2N ,2n+1 q2n+1t

	 

:

ð382Þ

When n = 0, the above results recover the even case of
Theorem 6.5 of [2].

When n = 0 and N = 0, the above results give

W 0,1 tð Þ = 〠
∞

k=−∞
−1ð Þk e−q

k tj j

qk kð Þ/ 1½ � , ð383Þ

with

W 0,1 0ð Þ = 〠
∞

k=−∞
−1ð Þk 1

qk
2 = 〠

∞

k=−∞
−1ð Þk q−k

q2ð Þk k−1ð Þ/2 ð384Þ

= θ q2;− 1
q

� �
= μq2

Y∞
n=0

1 − 1
q2n+1

� �2
> 0: ð385Þ

In this setting (383)–(385) we recover [Example μ = 0
even and λ = 1] from Section 5, with normalization W 0,1ðt
Þ/W 0,1ð0Þ = qCosðtÞ.

[M = δ = 2, β = 1]:

μ + 1
2 = α

β
= α

1  
λ

2 = γ

δ
= γ

2  M = 2

Q = q2/λ = q2/γ  B = M
β

= 2
1 = 2  D = M

δ
= 2
2 = 1

   Bα = 2α  Dγ = 1γ = γ

ω = e2πi/2 = eπi    ~ω = e2πi/ Dγ½ � = e2πi/γ

:

ð386Þ

Note that in this case μ = 2α − 1 is odd, and λ = γ is odd,
so we set μ = 2N + 1 and λ = 2n + 1 = γ. Then, Bα = 2ðN + 1Þ
and Dγ = 2n + 1. Inserting these values in (131) gives
(387)–(390), namely,

W 2N+1,2n+1 tð Þ = −1½ �2 N+1ð Þ~f 2N+1,2n+1 −1½ �2n+1t	 
 ð387Þ

+ −1½ �2� �2 N+1ð Þ~f 2N+1,2n+1 −1ð Þ2� �2n+1
t

� �
ð388Þ

= 1½ �~f 2N+1,2n+1 −1½ �tð Þ + 1½ �~f 2N+1,2n+1 1½ �tð Þ ð389Þ

= 1½ � −1ð Þf2N+1,2n+1 −tð Þ� �
χ −∞,0ð Þ + f2N+1,2n+1 tð Þ� �

χ 0,∞½ Þ
ð390Þ

= sign tð Þ 〠
∞

k=−∞
−1ð Þk e−qk tj j

qk k−2N−1ð Þ/ 2n+1½ � : ð391Þ

Note that (390) and (391) show that W 2N+1,2n+1ðtÞ is an
odd function. Also, from (180)–(182) along with (184), one
has

F W 2N+1,2n+1 tð Þ½ � xð Þ

= 2μ3Qeiπ N+1ð Þffiffiffiffiffiffi
2π

p 1
−ixð Þ

1
2n + 1 〠

2n

κ=0

e2πiκ/ 2n+1ð Þz3
� �2 N+1ð Þ

θ Q ; e2πiκ/ 2n+1ð Þz3
� �2� �

24 350@ 1A,

ð392Þ

with

z2n+13 = −e−πi 2n+1ð Þ/2ix, ð393Þ

where Q = q2/ð2n+1Þ. Finally, the MADE (185) becomes

W
2ð Þ
2N+1,2n+1 tð Þ
= −1ð Þ2n+1+2q 2n+1ð Þ 2n+1+2N+1ð Þ/ 2n+1ð ÞW 2N+1,2n+1 q2n+1t

	 

= −q2n+2+2NW 2N+1,2n+1 q2n+1t

	 

:

ð394Þ
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When n = 0, the above results recover the odd case of
Theorem 6.5 of [2].

When n = 0 and N = 0, the above results give

W 1,1 tð Þ = sign tð Þ 〠
∞

k=−∞
−1ð Þk e−q

k tj j

qk k−1ð Þ/ 1½ � : ð395Þ

In this setting, (395) recovers [Example μ = 1 odd and
λ = 1] from Section 5, with normalization W 1,1ðtÞ/W 0,1ð0Þ
= qSinðtÞ.

[M = δ = 3]: we expand on [ExampleM = p] in the previ-
ous section for the case p = 3. There are two subcases.

[M = δ = 3, β = 3]:

μ + 1
2 = α

β
= α

3  
λ

2 = γ

δ
= γ

3  M = 3

Q = q2/λ = q3/γ  B = M
β

= 3
3 = 1  D = M

δ
= 3
3 = 1

   Bα = 1α = α  Dγ = 1γ = γ

ω = e2πi/3    ~ω = e2πi/ Dγ½ � = e2πi/ γ½ �

:

ð396Þ

Note that μ = 2α/3 − 1 with α ≠ 0 mod 3 and λ = 2γ/3
with γ ≠ 0 mod 3. Thus, we set α = 3N + J and γ = 3n + j
where J , j ∈ f1, 2g. Hence, μ = 2N − 1 + 2J/3 and λ = 2ð3n +
jÞ/3. Then, Bα = 3N + J and Dγ = 3n + j where J , j ∈ f1, 2g.
Inserting these values in (131) gives (397)–(400), namely,

Also, from (180)–(182) along with (184), one has:

F W 2N−1+ 2J/3½ �,2 3n+jð Þ/3 tð Þ
h i

xð Þ

= 3μ3Qeiπ N+ J/3½ �ð Þffiffiffiffiffiffi
2π

p 1
−ixð Þ

� 1
3n + j

〠
3n+j−1

κ=0

e2πiκ/ 3n+jð Þz3
� �3N+J

θ Q ; e2πiκ/ 3n+jð Þz3
� �3� �

24 350@ 1A,

ð401Þ

with

z3n+j3 = −e−πi 3n+jð Þ/3ix, ð402Þ

where Q = q3/ð3n+jÞ. Finally, the MADE (185) becomes

W
3ð Þ
2N−1+ 2J/3½ �,2 3n+jð Þ/3 tð Þ
= −1ð Þ3n+j+3q 3n+j+2N−1+ 2J/3½ �ð Þ/ 2/3½ �

⋅W 2N−1+ 2J/3½ �, 2 3n+jð Þ/3½ � q
3n+jt

	 

:

ð403Þ

[M = δ = 3, β = 1]:

μ + 1
2 = α

β
= α

1  
λ

2 = γ

δ
= γ

3  M = 3

Q = q2/λ = q3/γ  B = M
β

= 3
1 = 3  D = M

δ
= 3
3 = 1

   Bα = 3α  Dγ = 1γ = γ

ω = e2πi/3    ~ω = e2πi/ Dγ½ � = e2πi/ γ½ �

:

ð404Þ

W 2N−1+ 2J/3½ �,2 3n+jð Þ/3 tð Þ = e2πi/3
� �3N+J~f 2N−1+ 2J/3½ �,2 3n+jð Þ/3 e2πi/3

� �3n+j
t

� �
+ e4πi/3
� �3N+J~f 2N−1+ 2J/3½ �,2 3n+jð Þ/3 e4πi/3

� �3n+j
t

� �
+ 1½ �3N+J~f 2N−1+ 2J/3½ �,2 3n+jð Þ/3 1½ �3n+jt	 


= e2πJi/3
� �~f 2N−1+ 2J/3½ �,2 3n+jð Þ/3 e2πji/3

� �
t

	 
 ð397Þ

+ e4πJi/3
� �~f 2N−1+ 2J/3½ �,2 3n+jð Þ/3 e4πji/3

	� �
t

	 

+ 1½ �~f 2N−1+ 2J/3½ �,2 3n+jð Þ/3 ð398Þ

tð Þ =
f2N−1+ 2J/3½ �,2 3n+jð Þ/3 tð Þ, for t ≥ 0

e2πJi/3 −1ð Þf2N−1+ 2J/3½ �,2 3n+jð Þ/3 e2πji/3
� �

t
	 


+ e4πJi/3 −1ð Þf2N−1+ 2J/3½ �,2 3n+jð Þ/3 e4πji/3
� �

t
	 
o

, for t < 0

8><>: ð399Þ

=
〠
∞

k=−∞

−1ð Þk exp −qkt
	 


qk k−2N+1− 2J/3½ �ð Þ/ 2 3n+jð Þ/3½ � , for t ≥ 0,

e2πJi/3 〠
∞

k=−∞

−1ð Þk+1 exp −qk e2πji/3
� �

t
	 


qk k−2N+1− 2J/3½ �ð Þ/ 2 3n+jð Þ/3½ � + e4πJi/3 〠
∞

k=−∞

−1ð Þk+1 exp −qk e4πji/3
� �

t
	 


qk k−2N+1− 2J/3½ �ð Þ/ 2 3n+jð Þ/3½ � , for t < 0:

8>>>>><>>>>>:
ð400Þ
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Note that μ = 2α − 1 is odd and λ = 2γ/3with γ ≠ 0 mod 3.
Thus, we set μ = 2N + 1 with γ = 3n + j where j = 1, 2 and λ
= 2ð3n + jÞ/3. Then, Bα = 3ðN + 1Þ and Dγ = 3n + j where j

= 1, 2. Inserting these values in (131) gives (405)–(408),
namely,

where each of the three summations in (408) vanishes at t
= 0 as one can compute that

〠
∞

k=−∞

−1ð Þk
qk k−2N−1ð Þ/ 2 3n+jð Þ/3½ � = θ Q;−QN	 


= 0, ð409Þ

with Q as in (404), where the vanishing follows from (13).
Also, from (180)–(182) along with (184) one has

F W 2N+1,2 3n+jð Þ/3 tð Þ
h i

xð Þ

= 3μ3Qeiπ N+1ð Þffiffiffiffiffiffi
2π

p 1
−ixð Þ

� 1
3n + j

〠
3n+j−1

κ=0

e2πiκ/ 3n+jð Þz3
� �3 N+1ð Þ

θ Q ; e2πiκ/ 3n+jð Þz3
� �3� �

24 350@ 1A,

ð410Þ

with

z3n+j3 = −e−πi 3n+jð Þ/3ix, ð411Þ

where Q = q3/ð3n+jÞ. Finally, the MADE (185) becomes

W
3ð Þ
2N+1, 2 3n+jð Þ/3½ � tð Þ
= −1ð Þ3n+j+3q 3n+j+2N+1ð Þ/ 2/3½ �W 2N+1, 2 3n+jð Þ/3½ � q

3n+jt
	 


:

ð412Þ

When N = 0, n = 0, and j = 1, equations (410) and (412)
recover, respectively, the Fourier transform and the MADE
satisfied by W 1,2/3ðtÞ as seen in [Example μ = 1 odd and λ
= 2/3] in Section 5.

7. Convergence of MADEs to Classical
Solutions, an Example

The purpose of this section is to provide an overview of an
example of a W μ,λðtÞ satisfying a MADE where the normal-
ization W μ,λðtÞ/W μ,λð0Þ converges to the corresponding
solution of its classical analogue (the ODE obtained when
the parameter q in the original MADE is set to 1). Our
example is W −4/3,1/3ðtÞ, which is not a canonical extensions
as will be seen below. As such, it represents a new phenom-
enon with corresponding new challenges. First, W −4/3,1/3ðtÞ
can be obtained as the output of a reproducing kernel com-
putation for an input waveletW −1,2/3ðtÞ, in the same manner
of computation as in [4]. Second, since it satisfies a MADE
of order 6, there are 6 derivatives to determine and use to
compute initial conditions at the origin. Third, determining
the initial conditions for the analogous ODE will be accom-
plished with the aide of a significant new result, namely the
generalized q-Wallis formulas in Theorem 46. This theorem
is also crucial in our proof of convergence of the normalized
solution of the MADE to the solution of the analogous ODE.
The normalizationW −4/3,1/3ðtÞ/W −4/3,1/3ð0Þ will be our main
object of study as the parameter q⟶ 1+. From (425), the
parameters μ = −4/3 and λ = 1/3 show our example
W −4/3,1/3ðtÞ to be from [M = δ = 6, β = 6] in Section 6.

W 2N+1,2 3n+jð Þ/3 tð Þ = e2πi/3
� �3 N+1ð Þ~f 2N+1,2 3n+jð Þ/3 e2πi/3

� �3n+j
t

� �
+ e4πi/3
� �3 N+1ð Þ~f 2N+1,2 3n+jð Þ/3 e4πi/3

� �3n+j
t

� �
+ 1½ �3 N+1ð Þ~f 2N+1,2 3n+jð Þ/3 1½ �3n+jt	 
 ð405Þ

= 1½ �~f 2N+1,2 3n+jð Þ/3 e2πji/3
� �

t
	 


+ 1½ �~f 2N+1,2 3n+jð Þ/3 e4πji/3
	� �

t
	 


+ 1½ �~f 2N+1,2 3n+jð Þ/3 tð Þ ð406Þ

=
f2N+1,2 3n+jð Þ/3 tð Þ, for t ≥ 0

−1ð Þf2N+1,2 3n+jð Þ/3 e2πji/3
� �

t
	 


+ −1ð Þf2N+1,2 3n+jð Þ/3 e4πji/3
� �

t
	 
o

, for t < 0

8<: ð407Þ

=
〠
∞

k=−∞
−1ð Þk exp −qkt

	 

qk k−2N−1ð Þ/ 2 3n+jð Þ/3½ � for t ≥ 0,

−1ð Þ 〠
∞

k=−∞
−1ð Þk exp −qk e2πi/3

� �
t

	 

qk k−2N−1ð Þ/ 2 3n+jð Þ/3½ � + −1ð Þ 〠

∞

k=−∞
−1ð Þk exp −qk e4πi/3

� �
t

	 

qk k−2N−1ð Þ/ 2 3n+jð Þ/3½ � , for t < 0,

8>>>><>>>>:
ð408Þ
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7.1. Preliminaries. For b ≥ 0, the reproducing kernel compu-
tation relevant to our setting is

ð∞
−∞

W −1,2/3 tð ÞW −1,2/3 t − bð Þ dt ð413Þ

=
−3i μq3
� �4

2 μq6
� �2 ⋅ 〠

2

ℓ=0
exp 2πiℓ + πi

6

� �� �−1
f −4/3,1/3

(

� −i exp 2πiℓ + iπ
6

� �
b

� �
 ð414Þ

=
−3i μq3
� �4

2 μq6
� �2 −ið Þ ⋅ e2πi/6 f −4/3,1/3 e−2πi/6b

	 

+ f −4/3,1/3 bð Þ�

+ e−2πi/6 f −4/3,1/3 e2πi/6b
	 
� ð415Þ

=
−3i μq3
� �4

2 μq6
� �2 −ið ÞW −4/3,1/3 bð Þ: ð416Þ

Moving from (413) to (414) is accomplished via Plan-
cherel’s theorem where the expressions for the Fourier trans-
form of W −1,2/3 are given by Theorem 23. The resulting
integral of Fourier transforms is evaluated with a residue
computation in the upper half-plane (for b ≥ 0) similar in
nature to the computation of reproducing kernels for b ≥ 0
in [4]. This computation is lengthy, and the details are left
as part of a more general set of reproducing kernel compu-
tations in an upcoming work. A direct computation moves
one from line (414) to (415), while equation (132) of Defini-
tion 16 gives for b ≥ 0 that

W −4/3,1/3 bð Þ = e2πi/6 f −4/3,1/3 e−2πi/6b
	 


+ f −4/3,1/3 bð Þ�
+ e−2πi/6 f −4/3,1/3 e2πi/6b

	 
�
,

ð417Þ

which justifies movement from (415) to (416).
Setting b = 0 in (413)–(416) yields

ð∞
−∞

W −1,2/3 tð ÞW −1,2/3 tð Þ dt

= W −1,2/3 tð Þ�� ��2
2 =

−3i μq3
� �4

2 μq6
� �2 −ið ÞW −4/3,1/3 0ð Þ,

ð418Þ

which in turn gives the functional identity

1
W −4/3,1/3 0ð Þ =

−3 μq3
� �4

2 μq6
� �2

W −1,2/3 tð Þ�� ��2
2

: ð419Þ

Normalizing (413)–(416) by the squared L2 norm and
applying the functional identity in (419), one observes that

1
W −1,2/3 tð Þ�� ��2

2

ð∞
−∞

W −1,2/3 tð ÞW −1,2/3 t − bð Þ dt

=
−3 μq3
� �4

2 μq6
� �2

W −1,2/3 tð Þ�� ��2
2

W −4/3,1/3 bð Þ = W −4/3,1/3 bð Þ
W −4/3,1/3 0ð Þ :

ð420Þ

Recalling that W −4/3,1/3ðtÞ is real valued, and applying
Cauchy-Schwartz to (420) yields

1 = W −1,2/3 tð Þ
W −1,2/3 tð Þ�� ��

2

�����
�����
2

W −1,2/3 t − bð Þ
W −1,2/3 tð Þ�� ��

2

�����
�����
2

≥
1

W −1,2/3 tð Þ�� ��2
2

ð∞
−∞

W −1,2/3 tð ÞW −1,2/3 t − bð Þdt
�����

�����
= W −4/3,1/3 bð Þ

W −4/3,1/3 0ð Þ
���� ����,

ð421Þ

which gives a unit global bound on the normalization
jW −4/3,1/3ðbÞ/W −4/3,1/3ð0Þj independent of q for all b ≥ 0.
Now, equation (132) of Definition 16 also gives for b
< 0 that

W −4/3,1/3 bð Þ = �e−4πi/6 −1ð Þf −4/3,1/3 e4πi/6b
	 


+ e−6πi/6 −1ð Þ
� f −4/3,1/3 e6πi/6b

	 

+ e−8πi/6 −1ð Þf −4/3,1/3 e8πi/6b

	 
�
=
�
e2πi/6 f −4/3,1/3 e−2πi/6 −1ð Þb	 


+ f −4/3,1/3 −1ð Þbð Þ
+ e−2πi/6 f −4/3,1/3 e2πi/6 −1ð Þb	 
�

=
�
e2πi/6 f −4/3,1/3 e−2πi/6 bj j	 


+ f −4/3,1/3 bj jð Þ
+ e−2πi/6 f −4/3,1/3 e2πi/6 bj j	 
�

ð422Þ

=W −4/3,1/3 bj jð Þ, ð423Þ

where comparison of (422) with (417) allows movement
to (423). So W −4/3,1/3ðbÞ is an even Schwartz function
and consequently the bound in (421) extends to a global
bound: for all b ∈ℝ and for each q > 1, one has

1 ≥ W −4/3,1/3 bð Þ
W −4/3,1/3 0ð Þ
���� ����: ð424Þ
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From (415) and (416), one sees that W −4/3,1/3ðtÞ sat-
isfies the same MADE as does f −4/3,1/3ðtÞ, where μ = −4/3
and λ = 1/3. From these values, we deduce that

μ + 1
2 = −4/3 + 1

2 = −1/3
2 = −1

6
= α

β
, λ

2 = 1/3
2 = 1

6 = γ

δ
,

ð425Þ

by which one sees that α = −1, β = 6, γ = 1, δ = 6.
From these parameter values, one sees that W −4/3,1/3ðtÞ
falls in the example class [M = δ = 6, β = 6] with (356)
holding. Since δ = 6, we conclude from Proposition 43
that W −4/3,1/3ðtÞ is not a canonical extension of f −4/3,1/3
ðtÞ. See also Table 1 where W −4/3,1/3ðtÞ fall in the cate-
gory of row δ = 6, bγ = 1, fℓ + 1g = f1, 5, 6g, f+g = f0, 4, 5g,
and f−g = f1, 2, 3g. From (2), one determines the MADE
for f −4/3,1/3ðtÞ to be

f 6ð Þ
−4/3,1/3 tð Þ = −1ð Þ1+6q1 1+ −4/3ð Þð Þ/ 1/3ð Þ f −4/3,1/3 q1t

	 

= −q−1 f −4/3,1/3 qtð Þ:

ð426Þ

And hence,

W
6ð Þ
−4/3,1/3 tð Þ = −q−1W −4/3,1/3 qtð Þ, ð427Þ

while

W −4/3,1/3 tð Þ
W −4/3,1/3 0ð Þ
� � 6ð Þ

= −q−1
W −4/3,1/3 qtð Þ
W −4/3,1/3 0ð Þ
� �

: ð428Þ

Each of (426)–(428) we take to be our MADE under
study for this example. We take the classical analogue of
our MADE to be the ODE obtained by setting q = 1 in
the original MADE. In our case, the classical analogue
of (426)–(428) in this example is

g 6ð Þ tð Þ = −g tð Þ: ð429Þ

Next, we turn to the computation of our derivatives,
which will in turn lead to the initial conditions for our
MADE and (by taking the limit as q⟶ 1+) the initial
conditions of our analogous ODE (429). Relying on
(417) and the fact that

f μ,λ′ tð Þ = −f μ+λ,λ tð Þ, ð430Þ

(which can be directly computed from (1)), one sees
that

W
mð Þ
−4/3,1/3 tð Þ =

h
e2πi/6 f mð Þ

−4/3,1/3 e−2πi/6t
	 


e−2πi/6
� �m + f mð Þ

−4/3,1/3 tð Þ

+ e−2πi/6 f mð Þ
−4/3,1/3 e2πi/6t

	 

e2πi/6
� �mi

= −1ð Þm
h
f −4/3+m/3,1/3 e−2πi/6t

	 

e− m−1ð Þ2πi/6

+ f −4/3+m/3,1/3 tð Þ + f −4/3+m/3,1/3 e2πi/6t
	 


e m−1ð Þ2πi/6
i
:

ð431Þ

When m = 6, we have a direct check that the MADE
given in (427) holds, after noting that f −4/3+2,1/3ðtÞ = −
q−1 f −4/3,1/3ðqtÞ which follows from (441) below with ℓ
= 1. Evaluating (431) at t = 0 yields

W
mð Þ
−4/3,1/3 0ð Þ
= −1ð Þm e− m−1ð Þ2πi/6 + 1 + e m−1ð Þ2πi/6

h i
f −4/3+m/3,1/3 0ð Þ

= −1ð Þm 1 + 2 cos m − 1ð Þ2π/6ð Þ½ �f −4/3+m/3,1/3 0ð Þ
= −1ð Þm 1 + 2 cos m − 1ð Þ2π/6ð Þ½ �θ q6;−1 q3

	 
−7/3+m/3� �
,

ð432Þ

where we have used the fact that

f μ,λ 0ð Þ = 〠
∞

k=−∞

−1ð Þk
qk k−μð Þ/λ = 〠

∞

k=−∞

−1ð Þkqkμ/λq−k/λ
qk kð Þ/λq−k/λ

= 〠
∞

k=−∞

−q μ−1ð Þ/λ� �k
q2/λ
	 
k k−1ð Þ/2 = θ q2/λ;−q μ−1ð Þ/λ

� �
,

ð433Þ

to move to (432). Note that the last equality in (433)
follows from (10).

Setting m = 6ℓ + j with j ∈ f0, 1, 2,⋯, 5g in (432) and
relying on (12), it follows that

W
6ℓ+jð Þ
−4/3,1/3 0ð Þ = −1ð Þ6ℓ+j 1 + 2 cos 6ℓ + j − 1ð Þ2π/6ð Þ½ �θ

� q6;−1 q3
	 
−7/3+ 6ℓ+jð Þ/3� �

= −1ð Þj 1 + 2 cos j − 1ð Þ2π/6ð Þ½ �θ
� q6;−1q6 ℓ−1ð Þ+j−1
� �

= −1ð Þj 1 + 2 cos j − 1ð Þ2π/6ð Þ½ �q6 ℓ−1ð Þℓ/2

� −qj−1
	 
ℓ−1

θ q6;−qj−1
	 


:

ð434Þ

From (434), we see that for j = 1 the theta factor θðq6;−
qj−1Þ = θðq6;−1Þ = 0 by (13). Also from (414), for j = 3, 5 one

has ½1 + 2 cos ððj − 1Þ2π/6Þ� = 0. We conclude that W ð6ℓ+jÞ
−4/3,1/3

ð0Þ = 0 for j = 1, 3, 5 odd. Setting ℓ = 0, j = 0 in (434) gives
that W −4/3,1/3ð0Þ = ½1 + 2 cos ðð−1Þ2π/6Þ�ð−q−1Þ−1θðq6;−q−1Þ
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= −2qθðq6;−q−1Þ. Thus, the derivatives of all orders of the
normalized function at t = 0 are expressed via

where moving to the j = 2 case in (437) is facilitated by the
fact that −qθðq6;−q−1Þ = θðq6;−q1Þ which is obtained from
the right hand equation in (12) when q is replaced by q6

and u is replaced by −q. We remark that, from (430) and
(433), the derivatives of all orders of all normalized f μ,λðtÞ
(and functions constructed from the f μ,λðtÞ such as W μ,λðt
Þ) at t = 0 are expressible in terms of ratios of theta func-
tions, as is seen overtly in (436) above for the normalized
W μ,λðtÞ/W μ,λð0Þ.

We next determine the derivatives of all orders for the
ODE in (429) analogous to our MADE in (428) by taking
the limits as q⟶ 1+ of the derivatives obtained in (437).
That is

g 6ℓ+jð Þ 0ð Þ ≡ lim
q⟶1+

W
6ℓ+jð Þ
−4/3,1/3 0ð Þ

W −4/3,1/3 0ð Þ

=

0, j = 1, 3, 5

lim
q⟶1+

−1ð Þℓq3 ℓ−1ð Þℓq −1ð Þ ℓ−1ð Þ−1, j = 0

lim
q⟶1+

−1ð Þℓq3 ℓ−1ð Þℓq 1ð Þ ℓ−1ð Þ−1 −qð Þ, j = 2

lim
q⟶1+

−1ð Þℓ
2 −1½ �q3 ℓ−1ð Þℓq3 ℓ−1ð Þ−1 θ q6;−q3

	 

θ q6;−q−1ð Þ , j = 4

8>>>>>>>>>>><>>>>>>>>>>>:
ð438Þ

=

0, j = 1, 3, 5
−1ð Þℓ, j = 0
−1ð Þℓ −1ð Þ, j = 2

−1ð Þℓ
2 −1½ � lim

q⟶1+
θ q6;−q3
	 


θ q6;−q−1ð Þ = −1ð Þℓ
2 −1½ � −2½ � = −1ð Þℓ, j = 4

8>>>>>>><>>>>>>>:
ð439Þ

where we have relied on the power of the generalized q-Wal-
lis formulas for ratios of theta functions obtained in Section
7.3 and given by (470), (482), and (485) below to evaluate
the limit in the case j = 4 of (438) above. More precisely,
by (482) in the case at hand, we have

lim
q⟶1+

θ q6;−q3
	 


θ q6;−q−1ð Þ
� 


= lim
q⟶1+

θ q6;−q6 0ð Þ+3	 

θ q6;−q6 −1ð Þ+5	 
( )

= −1ð Þ0−1 sin 3π/6ð Þ
sin 5π/6ð Þ = −

1
1/2ð Þ = −2½ �:

ð440Þ

One final observation regarding higher order derivatives
of order 0 mod 6 follows. From (430), one has

W
6ℓ+jð Þ
−4/3,1/3 0ð Þ

W −4/3,1/3 0ð Þ =
0, j = 1, 3, 5
−1ð Þℓ 1 + 2 cos j − 1ð Þ2π/6ð Þ½ �

2 q3 ℓ−1ð Þℓq j−1ð Þ ℓ−1ð Þ−1 θ q6;−qj−1
	 

θ q6;−q−1ð Þ , j = 0, 2, 4

8><>: ð435Þ

=

0, j = 1, 3, 5
−1ð Þℓq3 ℓ−1ð Þℓq −1ð Þ ℓ−1ð Þ−1θ q6;−q−1

	 

θ q6;−q−1ð Þ , j = 0

−1ð Þℓq3 ℓ−1ð Þℓq 1ð Þ ℓ−1ð Þ−1θ q6;−q1
	 


θ q6;−q−1ð Þ , j = 2

−1ð Þℓ/2 −1½ �q3 ℓ−1ð Þℓq3 ℓ−1ð Þ−1θ q6;−q3
	 


θ q6;−q−1ð Þ , j = 4

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð436Þ

=

0, j = 1, 3, 5
−1ð Þℓq3 ℓ−1ð Þℓq −1ð Þ ℓ−1ð Þ−1, j = 0

−1ð Þℓq3 ℓ−1ð Þℓq 1ð Þ ℓ−1ð Þ−1 −qð Þ, j = 2

−1ð Þℓ/2 −1½ �q3 ℓ−1ð Þℓq3 ℓ−1ð Þ−1θ q6;−q3
	 


θ q6;−q−1ð Þ , j = 4

8>>>>>>><>>>>>>>:
ð437Þ
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f 6ℓð Þ
−4/3,1/3 tð Þ = −1ð Þ6ℓ f −4/3+6ℓ/3,1/3 tð Þ = f −4/3+2ℓ,1/3 tð Þ

= 〠
∞

k=−∞

−1ð Þke−qkt
qk k+4/3−2ℓð Þ/1/3 = 〠

∞

k=−∞

−1ð Þk−ℓ+ℓe−qk−ℓ qℓtð Þ
q k−ℓ+ℓð Þ k−ℓ−ℓ+4/3ð Þ/1/3

= 〠
∞

m=−∞

−1ð Þm+ℓe−qm qℓtð Þ
q m+ℓð Þ m−ℓ+4/3ð Þ/1/3

= −1ð Þℓ 〠
∞

m=−∞

−1ð Þme−qm qℓtð Þ
q m2−ℓ2+ 4/3ð Þm+ 4/3ð Þℓð Þ/1/3

= −1ð Þℓq ℓ2−4ℓ/3ð Þ/ 1/3ð Þ 〠
∞

m=−∞

−1ð Þme−qm qℓtð Þ
q m m+4/3ð Þð Þ/1/3

= −1ð Þℓqℓ ℓ−4/3ð Þ/ 1/3ð Þ f −4/3,1/3 qℓt
	 


:

ð441Þ

7.2. Convergence. We now are prepared to prove that f ðtÞ
=W −4/3,1/3ðtÞ/W −4/3,1/3ð0Þ satisfying the MADE f ð6ÞðtÞ = −
q−1 f ðqtÞ converges as q⟶ 1+ to the solution gðtÞ of the
analogous ODE gð6ÞðtÞ = −gðtÞ having initial conditions
given by (439) with ℓ = 0. That is, the initial conditions are
given by

g 0ð Þ = 1, g 1ð Þ 0ð Þ = 0, g 2ð Þ 0ð Þ = −1, 
g 3ð Þ 0ð Þ = 0, g 4ð Þ 0ð Þ = 1, g 5ð Þ 0ð Þ = 0:

ð442Þ

The unique ODE solution satisfying (442) is given by g
ðtÞ = cos ðtÞ, by inspection. Convergence of f ðtÞ to gðtÞ =
cos ðtÞ will be in the sense of uniform convergence on all
compact subsets S of ℝ. The proof will hinge on three factors
(for K sufficiently large): (1) proximity of f ðtÞ to the Taylor
polynomial PK ½ f �ðtÞ on S; (2) proximity of gðtÞ to the Taylor
polynomial PK ½g�ðtÞ on S; and (3) proximity of PK ½ f �ðtÞ to
PK ½g�ðtÞ on S. These in turn then force proximity of f ðtÞ
to gðtÞ.

Proposition 45. For any compact set S in ℝ, f ðtÞ =
W −4/3,1/3ðtÞ/W −4/3,1/3ð0Þ converges uniformly to gðtÞ = cos ðt
Þ on S as q⟶ 1+.

Proof. First, the 6N + 5-degree Taylor polynomials P6N+5½g�
ðtÞ, P6N+5½ f �ðtÞ of g and f , respectively, expanded about t
= 0 are given by

P6N+5 g½ � tð Þ = 〠
6N+5

n=0

g nð Þ 0ð Þ
n!

tn = 〠
N

k=0

g 6kð Þ 0ð Þ
6kð Þ! t6k

+ 〠
N

k=0

g 6k+2ð Þ 0ð Þ
6k + 2ð Þ! t

6k+2 + 〠
N

k=0

g 6k+4ð Þ 0ð Þ
6k + 4ð Þ! t

6k+4

= 〠
N

k=0

−1ð Þk
6kð Þ! t

6k + 〠
N

k=0

−1ð Þk+1
6k + 2ð Þ! t

6k+2

+ 〠
N

k=0

−1ð Þk
6k + 4ð Þ! t

6k+4

ð443Þ

P6N+5 f½ � tð Þ = 〠
6N+5

n=0

f nð Þ 0ð Þ
n!

tn = 〠
N

k=0

f 6kð Þ 0ð Þ
6kð Þ! t6k

+ 〠
N

k=0

f 6k+2ð Þ 0ð Þ
6k + 2ð Þ! t

6k+2 + 〠
N

k=0

f 6k+4ð Þ 0ð Þ
6k + 4ð Þ! t

6k+4

= 〠
N

k=0

−1ð Þkq3k k−1ð Þq −1ð Þ k−1ð Þ−1

6kð Þ! t6k

ð444Þ

+〠
N

k=0

−1ð Þkq3k k−1ð Þq k−1ð Þ−1 −qð Þ
6k + 2ð Þ! t6k+2 ð445Þ

+〠
N

k=0

−1ð Þkq3k k−1ð Þq3 k−1ð Þ−1 θ q6;−q3
	 


/ −2θ q6;−q−1
	 
� �	 


6k + 4ð Þ! t6k+4,

ð446Þ
where (443) follows from (439), and (444)–(446) follow
from (437). These have respective remainder terms

R6N+5 g½ � tð Þ = g 6N+6ð Þ ξð Þ
6N + 6ð Þ! t

6N+6 = −1ð ÞN+1g ξð Þ
6N + 6ð Þ! t6N+6, ð447Þ

for some ξ between 0 and t, and

R6N+5 f½ � tð Þ = f 6N+6ð Þ ζð Þ
6N + 6ð Þ! t

6N+6

= −1ð ÞN+1q N+1ð Þ N+1−4/3ð Þ/ 1/3ð Þ f qN+1ζ
	 


6N + 6ð Þ! t6N+6,

ð448Þ

for some ζ between 0 and t, where (448) follows from
(441). Given a compact set S in ℝ there is a ρ > 0 such that
S ⊆ ½−ρ, ρ�, and thus it is sufficient to prove uniform conver-
gence on ½−ρ, ρ�. For t ∈ ½−ρ, ρ�, from the triangle inequality
one has

f tð Þ − g tð Þj j ≤ f tð Þ − P6N+5 f½ � tð Þj j + P6N+5 f½ � tð Þj
− P6N+5 g½ � tð Þj + P6N+5 g½ � tð Þ − g tð Þj j

= R6N+5 f½ � tð Þj j + P6N+5 f½ � tð Þj
− P6N+5 g½ � tð Þj + R6N+5 g½ � tð Þj j:

ð449Þ

Now for t ∈ ½−ρ, ρ� and relying on (448), one sees

R6N+5 f½ � tð Þj j = −1ð ÞN+1q N+1ð Þ N+1−4/3ð Þ/ 1/3ð Þ f qN+1ζ
	 


6N + 6ð Þ! t6N+6
�����

�����
≤
q N+1ð Þ N+1−4/3ð Þ/ 1/3ð Þρ6N+6

6N + 6ð Þ! f qN+1ζ
	 
�� ��

ð450Þ
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≤
q N+1ð Þ N+1−4/3ð Þ/ 1/3ð Þρ6N+6

6N + 6ð Þ! 1½ �, ð451Þ

where moving from (450) to (451) is obtained from the
global bound (424). Similarly, from (447), one has

R6N+5 g½ � tð Þj j = −1ð ÞN+1g ξð Þ
6N + 6ð Þ! t6N+6

�����
����� ≤ ρ6N+6

6N + 6ð Þ! , ð452Þ

as jgðξÞj = jcos ðξÞj ≤ 1. Also, from (443) and (444)–(446)
and for N ≥ 2, we have

which, after rearranging and factoring, equals

〠
N

k=0

q3k k−1ð Þq −1ð Þ k−1ð Þ−1 − 1
�� ��

6kð Þ! ρ6k + 〠
N

k=0

q3k k−1ð Þq k−1ð Þ − 1
�� ��

6k + 2ð Þ! ρ6k+2

+ 〠
N

k=0

q3k k−1ð Þq3 k−1ð Þ−1 − 1
�� ��

6k + 4ð Þ! ρ6k+4 + θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � − 1
���� ����

� 〠
N

k=0

q3k k−1ð Þq3 k−1ð Þ−1

6k + 4ð Þ! ρ6k+4 ≤ q3N N−1ð Þq3 N−1ð Þ−1 − 1
h i

� 〠
N

k=0

ρ6k

6kð Þ! + 〠
N

k=0

ρ6k+2

6k + 2ð Þ! + 〠
N

k=0

ρ6k+4

6k + 4ð Þ!

" #

+ θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � − 1
���� ����q3N N−1ð Þq3 N−1ð Þ−1 〠

N

k=0

ρ6k+4

6k + 4ð Þ!

≤ q3N N−1ð Þq3 N−1ð Þ−1 − 1
h i

eρ½ � + θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � − 1
���� ����

� q3N N−1ð Þq3 N−1ð Þ−1eρ:

ð454Þ

Applying (451), (454), and (452), respectively, to the
terms in (449), one has that for each N ≥ 2

f tð Þ − g tð Þj j ≤ q N+1ð Þ N+1−4/3ð Þ/ 1/3ð Þ ρ6N+6

6N + 6ð Þ! 1½ �

+ q3N N−1ð Þq3 N−1ð Þ−1 − 1
h i

eρ½ �
ð455Þ

+ θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � − 1
���� ����q3N N−1ð Þq3 N−1ð Þ−1eρ + ρ6N+6

6N + 6ð Þ! :

ð456Þ
Given ε > 0, choose N0 ≥ 2 sufficiently large such that

one has ρ6N0+6/½ð6N0 + 6Þ!� < ε/4 to begin bounding the sec-
ond term in (456). To handle the terms in (455), note that

1 < ε/4ð Þ 6N0 + 6ð Þ!½ �/ ρ6N0+6
� �

and,
automatically, 1 < 1 + ε/ 4eρ½ �,

ð457Þ

and pick q0 > 1 so that

q N0+1ð Þ N0+1−4/3ð Þ/ 1/3ð Þ
0 < ε/4ð Þ 6N0 + 6ð Þ!½ �

ρ6N0+6½ � , ð458Þ

q3N0 N0−1ð Þ
0 q3 N0−1ð Þ−1

0 < 1 + ε

4eρ½ � ð459Þ

P6N+5 f½ � tð Þ − P6N+5 g½ � tð Þj j = 〠
N

k=0

−1ð Þk q3k k−1ð Þq −1ð Þ k−1ð Þ−1 − 1
� �

6kð Þ! t6k
����� + 〠

N

k=0

−1ð Þk+1 q3k k−1ð Þq k−1ð Þ − 1
� �
6k + 2ð Þ! t6k+2

+〠
N

k=0

−1ð Þk q3k k−1ð Þq3 k−1ð Þ−1θ q6;−q3
	 


/ −2θ q6;−q−1
	 
� �

− 1
� �

6k + 4ð Þ! t6k+4
�����

≤ 〠
N

k=0

q3k k−1ð Þq −1ð Þ k−1ð Þ−1 − 1
�� ��

6kð Þ! ρ6k + 〠
N

k=0

q3k k−1ð Þq k−1ð Þ − 1
�� ��

6k + 2ð Þ! ρ6k+2

+ 〠
N

k=0

q3k k−1ð Þq3 k−1ð Þ−1θ q6;−q3
	 


/ −2θ q6;−q−1
	 
� �

− 1
�� ��

6k + 4ð Þ! ρ6k+4

≤ 〠
N

k=0

q3k k−1ð Þq −1ð Þ k−1ð Þ−1 − 1
�� ��

6kð Þ! ρ6k + 〠
N

k=0

q3k k−1ð Þq k−1ð Þ − 1
�� ��

6k + 2ð Þ! ρ6k+2

+ 〠
N

k=0

q3k k−1ð Þq3 k−1ð Þ−1 θ q6;−q3
	 


/ −2θ q6;−q−1
	 
� �	 


− q3k k−1ð Þq3 k−1ð Þ−1�� ��
6k + 4ð Þ! ρ6k+4

+ 〠
N

k=0

q3k k−1ð Þq3 k−1ð Þ−1 − 1
�� ��

6k + 4ð Þ! ρ6k+4,

ð453Þ
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Then, for 1 < q < q0, one has

q N0+1ð Þ N0+1−4/3ð Þ/ 1/3ð Þ < ε/4ð Þ 6N0 + 6ð Þ!½ �
ρ6N0+6½ � , ð460Þ

q3N0 N0−1ð Þq3 N0−1ð Þ−1 < 1 + ε

4eρ½ � : ð461Þ

Hence, for 1 < q < q0

ρ6N0+6

6N0 + 6ð Þ! < q N0+1ð Þ N0+1−4/3ð Þ/ 1/3ð Þ ρ6N0+6

6N0 + 6ð Þ! < ε/4, ð462Þ

and

q3N0 N0−1ð Þq3 N0−1ð Þ−1 − 1
h i

eρ < ε/4, ð463Þ

where (462)–(463) control the terms in (455) as well as the
last term in (456). To handle the remaining term in (456),
pick q1 with 1 < q1 < q0 such that for all 1 < q < q1 one has

θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � − 1
���� ���� < ε/ 4q3N0 N0−1ð Þ

0 q3 N0−1ð Þ−1
0 eρ

h i
, ð464Þ

which follows from the fact that

lim
q⟶1+

θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � = 1, ð465Þ

via (440) above and/or the generalized q-Wallis formula
(482) below (in the case that m = 6, K = −1, and J = 3).
Then for 1 < q < q1, it follows that

θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � − 1
���� ����q3N0 N0−1ð Þq3 N0−1ð Þ−1eρ

< θ q6;−q3
	 


−2θ q6;−q−1ð Þ½ � − 1
���� ����q3N0 N0−1ð Þ

0 q3 N0−1ð Þ−1
0 eρ < ε

4 :
ð466Þ

Applying (462) and (463) along with (466) to (455)
and (456) with N taken to be N0 one has that for 1 < q
< q1

f tð Þ − g tð Þj j < ε

4 + ε

4 + ε

4 + ε

4 = ε, ð467Þ

for t ∈ ½−ρ, ρ�. So f ðtÞ =W −4/3,1/3ðtÞ/W −4/3,1/3ð0Þ
approaches gðtÞ = cos ðtÞ uniformly on ½−ρ, ρ� as q⟶ 1+
, and the proposition is proven.

7.3. Generalized q-Wallis Formulas. In [6], we have proven a
q-Wallis formula given by the first equality in (468)

lim
q⟶1+

ln qð Þ μq2
� �3

θ q2,−1/qð Þ = π

2 =
Y∞
n=1

2nð Þ2
2n − 1ð Þ 2n + 1ð Þ

" #

= 2
1
2
3

� �
⋅
4
3
4
5

� �
⋅
6
5
6
7

� �
⋯,

ð468Þ

where the last two equalities of (468) are Wallis’ formula for
π/2. We now finish the paper by generalizing the above
result in order to provide a number of related generalized
q-Wallis formulas.

Theorem 46. Let m ∈ℕ with m ≥ 2, and let j ∈ f0, 1,⋯,m
− 1g with k ∈ f1, 2,⋯,m − 1g. Then the following families
of generalized q-Wallis formulas hold:

lim
q⟶1+

ln qð Þ μqm
� �3

θ qm,−qk
	 
 = −π/m

sin kπ/mð Þ ,
ð469Þ

lim
q⟶1+

θ qm,−qj
	 


θ qm,−qk
	 
 = sin jπ/mð Þ

sin kπ/mð Þ : ð470Þ

Proof. The proof relies on the following factorization of sin
ðxÞ/x:

sin xð Þ
x

=
Y∞
n=1

1 − x2

π2n2

� �
: ð471Þ

From (10) and (11), one has

ln qð Þ μqm
� �3

θ qm,−qk
	 

=

ln qð Þμqm
Q

n≥1 1 − 1/qmnð Þ 1 − 1/qmnð Þ½ �
μqm
Q

n≥0 1 − qk/qmn
	 


1 − 1/ qkqm n+1ð Þ� �	 
� �
= ln qð ÞQn≥1 1 − 1/qmnð Þ 1 − 1/qmnð Þ½ �

1 − qk
	 
Q

n≥0 1 − qk/qm n+1ð Þ	 

1 − 1/ qkqm n+1ð Þ� �	 
� �

= ln qð ÞQn≥1 1 − 1/qmnð Þ 1 − 1/qmnð Þ½ �
−1ð Þ q − 1ð Þ ∑k−1

ℓ=0q
ℓ

� �Q
n≥1 1 − 1/qmn−k

	 

1 − 1/qmn+k	 
� �

= −ln qð Þ
q − 1ð Þ ∑k−1

ℓ=0q
ℓ

� �Y
n≥1

1/q2mn
	 


qmn − 1ð Þ qmn − 1ð Þ
1/q2mnð Þ qmn−k − 1

	 

qmn+k − 1
	 
" #

= −ln qð Þ
q − 1ð Þ ∑k−1

ℓ=0q
ℓ

� �Y
n≥1

q − 1ð Þ2 ∑mn−1
ℓ=0 qℓ

� �
∑mn−1

ℓ=0 qℓ
� �

q − 1ð Þ2 ∑mn−k−1
ℓ=0 qℓ

� �
∑mn+k−1

ℓ=0 qℓ
� �

24 35
= −ln qð Þ

q − 1ð Þ ∑k−1
ℓ=0q

ℓ
� �Y

n≥1

∑mn−1
ℓ=0 qℓ

� �
∑mn−1

ℓ=0 qℓ
� �

∑mn−k−1
ℓ=0 qℓ

� �
∑mn+k−1

ℓ=0 qℓ
� �

24 35,
ð472Þ
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where we have reindexed replacing n + 1 by n in the
denominator to obtain (472). Relying on the facts that
½limq⟶1+ ln ðqÞ/ðq − 1Þ� = 1 and ½limq⟶1+∑

p
ℓ=0q

ℓ� =∑p
ℓ=01

= p + 1, one sees (since k ∈ f1, 2,⋯,m − 1g) that

lim
q⟶1+

ln qð Þ μqm
� �3

θ qm,−qk
	 


= lim
q⟶1+

−ln qð Þ
q − 1ð Þ ∑k−1

ℓ=0q
ℓ

� �Y
n≥1

∑mn−1
ℓ=0 qℓ

� �
∑mn−1

ℓ=0 qℓ
� �

∑mn−k−1
ℓ=0 qℓ

� �
∑mn+k−1

ℓ=0 qℓ
� �

24 35
ð473Þ

= −1
k

Y
n≥1

mnð Þ2
mn − kð Þ mn + kð Þ = −1

k

Y
n≥1

mnð Þ2
mnð Þ2 − k2

ð474Þ

= −1
k

Y
n≥1

1
1 − k/mð Þ2/n2

= −1
k

1Q
n≥1 1 − kπ/mð Þ2/π2n2
� �

ð475Þ

= −1
k

kπ/m
sin kπ/mð Þ = −π/m

sin kπ/mð Þ , ð476Þ

giving (469), where (471) was used to obtain the first
equality in (476). Now when j = 0 (470) holds since θðqm
;−1Þ = 0 (which in turn follows from (13)). For j ∈ f1, 2,
⋯,m − 1g, one now has from (469) that

lim
q⟶1+

θ qm,−qj
	 


θ qm,−qk
	 
 = lim

q⟶1+
θ qm,−qj
	 


ln qð Þ μqm
� �3 ln qð Þ μqm

� �3
θ qm,−qk
	 


= sin jπ/mð Þ
−π/mð Þ

−π/mð Þ
sin kπ/mð Þ =

sin jπ/mð Þ
sin kπ/mð Þ ,

ð477Þ

giving (470). This finishes the proof of the theorem.

Remark 47. We call the above results generalized q-Wallis
formulas via the following reasoning. First, note that the
left-most infinite product

Y
n≥1

mnð Þ2
mn − kð Þ mn + kð Þ ð478Þ

in (474) generalizes the infinite product

Y∞
n=1

2nð Þ2
2n − 1ð Þ 2n + 1ð Þ

" #
, ð479Þ

in the Wallis formula for π/2 in (468). In particular note
that when m = 2 and k = 1 the infinite product in (478)
becomes the infinite product in (479), and the Wallis prod-

uct for π/2 is then duplicated in (474)–(476). Second, note
that the product

Y
n≥1

∑mn−1
ℓ=0 qℓ

� �
∑mn−1

ℓ=0 qℓ
� �

∑mn−k−1
ℓ=0 qℓ

� �
∑mn+k−1

ℓ=0 qℓ
� �

24 35 ð480Þ

in (473) is the q-analogue of the product (478). Hence,
we are introducing generalized q-Wallis formulas.

Corollary 48. Let m ∈ℕ satisfy m ≥ 2. Let J =mL + j ∈ℤ
with j ∈ f0, 1,⋯,m − 1g and K =mℓ + k ∈ℤ with k ∈ f1,⋯
,m − 1g then

lim
q⟶1+

ln qð Þ μqm
� �3

θ qm,−qKð Þ = −1ð Þℓ+1π/m
sin kπ/mð Þ ,

ð481Þ

lim
q⟶1+

θ qm,−qJ
	 


θ qm,−qKð Þ = −1ð ÞL+ℓ sin jπ/mð Þ
sin kπ/mð Þ : ð482Þ

Proof. Relying on (12), one has

lim
q⟶1+

ln qð Þ μqm
� �3

θ qm,−qKð Þ = lim
q⟶1+

ln qð Þ μqm
� �3

θ qm,−qmℓ+k	 

= lim

q⟶1+

ln qð Þ μqm
� �3

qmð Þℓ ℓ+1ð Þ/2 −qk
	 
ℓθ qm,−qk

	 

= −1ð Þℓ −π/mð Þ

sin kπ/m ,

ð483Þ

giving (481), where the last equality follows from (469).
If j = 0 then (482) holds since then θðqm;−qmLÞ = 0 by (13).
If on the other hand j ∈ f1, 2,⋯,m − 1g then from (481)

lim
q⟶1+

θ qm,−qJ
	 


θ qm,−qKð Þ = lim
q⟶1+

θ qm,−qJ
	 


ln qð Þ μmq

� �3 ln qð Þ μmq

� �3
θ qm,−qKð Þ

= sin jπ/mð Þ
−1ð ÞL+1π/m

−1ð Þℓ+1π/m
sin kπ/mð Þ

= −1ð ÞL+ℓ sin jπ/mð Þ
sin kπ/mð Þ ,

ð484Þ

giving (482). Observe that when m = 2 and K = −1 = 2ð
−1Þ + 1 =mℓ + j, then setting m = 2, K = −1, ℓ = −1, and k
= 1 in (481) recovers the q-Wallis limit in (468). This proves
the corollary.

We point out that in the case of rational exponents
limq⟶1+θðqm/n;−qa/bÞ/θðqm/n;−qc/dÞ can be evaluated by
obtaining a common denominator N for the fractions in
the exponents and reexpressing them as m/n =M/N ,
a/b = A/N , and c/d = C/N to obtain:
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Corollary 49. In the case of rational exponents

lim
q⟶1+

θ qm/n;−qa/b
	 

θ qm/n;−qc/d
	 
 = lim

q⟶1+

θ qM/N ;−qA/N
	 

θ qM/N ;−qC/Nð Þ

= lim
Q⟶1+

θ QM ;−QA	 

θ QM ;−QC	 


= −1ð ÞL+ℓ sin jπ/Mð Þ
sin kπ/Mð Þ ,

ð485Þ

where Q = q1/N and A =ML + j and C =Mℓ + k with j, k ∈
f0, 1,⋯,M − 1g and k ≠ 0.

Proof. One applies Corollary 48 with A =ML + j and C =
Mℓ + k with j, k ∈ f0, 1,⋯,M − 1g and k ≠ 0 to obtain the
last equation in (485). This proves the corollary.

We point out that, in our setting, important and useful
applications of these generalized q-Wallis formulas (espe-
cially those of type (470), (482), and (485)) occur in proving

(1) initial conditions for a classical ODE analogous to a
given MADE as seen earlier in (439) and (440)

(2) convergence of MADE solutions to their classical
analogous ODE as seen in (464) and (465) in
Proposition 45
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