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Abstract

We show that the matrix exponential Diophantine equation (Xn − Iq×n)(Y n − Iq×n) = Z2, admits at least
4 × n2 different construction structures of matrix solutions. We also prove that the matrix exponential
Diophantine equation (Xn − In×m)(Y m − In×m) = Z2, admits at least 4 × n × m different construction
structures of matrix solutions in Mn×m(N) for every pair (n,m) of positive integers such that n 6= m. We show
the connection between the construction structures of matrix solutions of an exponential Diophantine equation
and Integer factorization. We show that the matrix Diophantine equation Xn+Y m = Zq, n,m, q ∈ N, admits
at least 8× n×m× q different construction structures of matrix solutions in Mn×m×q(N).
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1 Introduction and Main Result

Let a and b be two different fixed positive integers. The exponential Diophantine equation

(an − 1)(bn − 1) = x2, x, n ∈ N, a > 1, b > 1, x 6= 0, n 6= 0, (1.1)

has been studied by many authors [1, 2, 3, 4, 5, 6, 7]. In 2020, Noubissie, Togbe and Zhang showed that the
equation (1.1) with b ≡ 3(mod 8), b prime and a even has no solution in positive integers n, x [8]. Recent
Mouanda’s work on matrix solutions of Diophantine equations (Fermat’s Diophantine equation) shows that
these Diophantine equations always admit, in each case, an infinite number of matrix solutions [9]-[11].

In this paper, we show that matrix exponential Diophantine equations always have a finite number of construction
structures of matrix solutions.
Theorem 1.1. Let n be a positive integer. The matrix exponential Diophantine equation

(Xn − Iq×n)(Y n − Iq×n) = Z2, X 6= Y, q ∈ N,

admits at least 4× n2 different construction structures of matrix solutions.

We show that the matrix exponential Diophantine equation

(Xn − In×m)(Y m − In×m) = Z2,

admits at least 4×n×m different construction structures of matrix solutions in Mn×m(N) for every pair (n,m)
of positive integers such that n 6= m. We establish the connection between the construction structures of matrix
solutions of an exponential Diophantine equation and Integer factorization. We introduce an algorithm which
allows us to show that the matrix Diophantine equation Xn+Y m = Zq, n,m, q ∈ N, admits at least 8×n×m×q
different construction structures of matrix solutions in Mn×m×q(N).

2 Proof of the Main Result

In this section, we show that the matrix solutions of Diophantine equations rely on the construction structures of
matrices and it is possible to compute the number of construction structures of matrix solutions of Diophantine
equations.

Definition 2.1. A positive integer which is the product of two prime numbers is called a semiprime.

Definition 2.2. [9]. The n× n-matrices of the form

c



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1
a 0 0 0 . . . 0 0 0 0


, c



0 0 0 0 . . . 0 0 0 b
1 0 0 0 . . . 0 0 0 0
0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 1 0 0 0
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0


,a 6= 0, c 6= 0, b 6= 0, a, b, c ∈ C, are called Rare matrices of order n and index 1.

The index defines the number of non-zero complex coefficients of the matrix different to 1. It well known that
Rare matrices have interesting properties.
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Remark 2.3. [9]. Let

Aα =



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1
α 0 0 0 . . . 0 0 0 0


∈Mn(C), α 6= 0,

be a Rare matrix of order n and index 1. Then

Anα =



α 0 0 0 . . . 0 0 0 0
0 α 0 0 . . . 0 0 0 0
0 0 α 0 . . . 0 0 0 0
0 0 0 α . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . α 0 0 0
0 0 0 0 . . . 0 α 0 0
0 0 0 0 . . . 0 0 α 0
0 0 0 0 . . . 0 0 0 α


, A−1

α =



0 0 0 0 . . . 0 0 0 1
α

1 0 0 0 . . . 0 0 0 0
0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 1 0 0 0
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0


,

A−1
α = AT1

α
, Anα = αIn, (βAα)−1 =

1

β
A−1
α , β 6= 0.

These observations imply that

Ank+qα = Ankα Aqα = (Anα)kAqα = (αIn)kAqα = αkAqα, q < n,Aα ×
1

α
An−1
α = In.

It is well known that the set
{
Akα : k ∈ Z

}
is a commutative group [9].

Definition 2.4. A matrix B ∈Mn(N) is a construction structure of matrix solutions of Diophantine equations
if there exist two positive integers m,β such that Bm − β × In = 0.

This definition is equivalent to say that there exists a positive integer m such that Bm is a Rare matrix of order
n and index 0. Denote by

Dn(N) = {B ∈Mn(N) : Bm − β × In = 0,m, β ∈ N}

the set of all construction structures of matrix solutions of Diophantine equations from Mn(N). A matrix
Diophantine equation can admit several construction structures. For example, let x be a positive integer.
Consider the matrix

Ax = Ax,1 =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
x 0 0 0 0 0 0 0 0 0 0 0
0 x 0 0 0 0 0 0 0 0 0 0



.
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A simple calculation shows that A6
x = x× I12. Therefore, Ax ∈ D12(N). The structure of the matrix Ax allows

us to construct the matrix solutions of the exponential Diophantine equation (X6−I12)(Y 6−I12) = Z2. Indeed,

(A6
x2+1 − I12)(A6

y2+1 − I12) = x2y2 × I12 = B2
x,y

where Bx,y is the matrix of the form

Bx,y =



0 0 0 0 0 0 0 0 0 0 0 xy
0 xy 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 xy 0 0
0 0 0 0 0 0 0 0 xy 0 0 0
0 0 0 0 0 0 0 xy 0 0 0 0
0 0 0 0 0 0 xy 0 0 0 0 0
0 0 0 0 0 xy 0 0 0 0 0 0
0 0 0 0 xy 0 0 0 0 0 0 0
0 0 0 xy 0 0 0 0 0 0 0 0
0 0 xy 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 xy 0
xy 0 0 0 0 0 0 0 0 0 0 0



∈ D12(N).

The choice of Bx,y is not unique. The matrix Bx,y can generate other matrices which can be used. This can
be achieved by just simple permutations of the entries xy inside the matrix Bx,y. We can claim that the triples
(Ax2+1, Ay2+1, Bx,y), x, y ∈ N, are matrix solutions of the matrix equation

(X6 − I2×6)(Y 6 − I2×6) = Z2.

The matrix exponential Diophantine equation (X6 − I2×6)(Y 6 − I2×6) = Z2 admits at least 144 construction
structures of matrix solutions. Indeed, the matrices

Ax,2 =



0 0 x 0 0 0 0 0 0 0 0 0
0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0



,

Ax,3 =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 x 0 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0



,
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Ax,4 =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 x 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0



,

Ax,5 =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 x 0 0 0
0 0 0 0 0 0 0 0 0 x 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0



,

Ax,6 =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 x 0
0 0 0 0 0 0 0 0 0 0 0 x
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0


are construction structures of matrix solutions of the exponential Diophantine equation

(X6 − I2×6)(Y 6 − I2×6) = Z2.

We can choose the construction structure of X and Y inside the set{
Ax,i, A

T
x,i : i ∈ {1, 2, 3, 4, 5, 6}

}
.

Therefore, there are at least 12×12 = 144 construction structures of matrix solutions of this equation for a fixed
choice of Z. The permutations of the coefficients of Bx,y give us different choices of Z. In order to compute the
exact number of choices of Z, we need to find out the number of permutations of the coefficients of Bx,y which
make Z2a Rare matrix of order n and index 0.
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Notation: Let

Aα = Aα,1 =



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1
α 0 0 0 . . . 0 0 0 0


∈Mn(C), α 6= 0,

be a Rare matrix of order n and index 1. Denote by

Aα,2 =



0 α 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1
1 0 0 0 . . . 0 0 0 0


, Aα,3 =



0 1 0 0 . . . 0 0 0 0
0 0 α 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1
1 0 0 0 . . . 0 0 0 0



Aα,4 =



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 α . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1
1 0 0 0 . . . 0 0 0 0


, ..., Aα,n−2 =



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 α 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1
1 0 0 0 . . . 0 0 0 0


,

Aα,n−1 =



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 α 0
0 0 0 0 . . . 0 0 0 1
1 0 0 0 . . . 0 0 0 0


, Aα,n =



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 α
1 0 0 0 . . . 0 0 0 0


.

Let us notice that every Aα,j ∈ Dn(N), 1 ≤ j ≤ n and Aα,j is invertible. In fact, the set
{
Akα,j : k ∈ Z

}
is a

commutative group of matrices for all 1 ≤ j ≤ n. The elements of the set Dn(N) play an important role on
solving the matrix exponential Diophantine equation

(Xn − Iq×n)(Y n − Iq×n) = Z2, X 6= Y.

The difficulty of knowing which one can be selected for solving this equation can be challenging for n sufficiently
large with q and n are prime numbers. In other words, when q×n is a sufficiently large semiprime, it is difficult
to find the matrix solutions of this Diophantine equation. This difficulty could lead to serious cryptography
problems. This equation admits at least 4n2 different construction structures of matrix solutions.
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Proof of Theorem 1.1

Let α be a positive integer and let

Aα+1 =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1

α+ 1 0 0 0 0 . . . 0 0 0 0 0
0 α+ 1 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 α+ 1︸ ︷︷ ︸

qthdiagonal

0 . . . 0 0 0 0 0



∈Mq×n(N)

be a Rare matrix of order q × n and index q. A simple calculation shows that

Anα+1 = (α+ 1)× Iq×n.

Therefore,

Anα+1 − Iq×n = α× Iq×n.

This implies that

(Anx2+1 − Iq×n)(Any2+1 − Iq×n) = x2y2 × Iq×n = B2
x,y, ∀x, y ∈ N

with

Bx,y =



0 0 0 0 0 . . . 0 0 0 0 xy
0 xy 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 xy 0 0
0 0 0 xy 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . xy 0 0 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 xy . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 xy 0 0 0
0 0 xy 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 xy 0
xy 0 0 0 0 . . . 0 0 0 0 0



∈Mq×n(N).

The construction structure of the matrix Aα+1 allows the construction of the matrix solutions of the
exponential Diophantine equation

(Xn − Iq×n)(Y n − Iq×n) = Z2, X 6= Y.

This matrix satisfies Anα+1 = (α+ 1)× Iq×n. The construction structure of any matrix B ∈Mq×n(N) which
satisfies Bn = β × Iq×n, β ∈ N, allows the construction of the matrix solutions of this exponential Diophantine

7
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equation as well. Therefore, the construction structures of the matrices

Aα+1,2 =



0 0 0 0 1 + α . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 + α 0 0 0 0
0 0 0 0 0 . . . 0 α+ 1︸ ︷︷ ︸

qthelement

0 0 0

0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1
1 0 0 0 0 . . . 0 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 1︸︷︷︸

qthdiagonal

0 . . . 0 0 0 0 0



,

Aα+1,3 =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1︸︷︷︸

qthelement

0 0 0

0 0 0 0 0 . . . 0 0 1 + α 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1
1 0 0 0 0 . . . 0 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 1︸︷︷︸

qthdiagonal

0 . . . 0 0 0 0 0



, ...,

Aα+1,n =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1︸︷︷︸

qthelement

0 0 0

0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 α+ 1︸ ︷︷ ︸

qthelement

1 0 0 0 0 . . . 0 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 1︸︷︷︸

qthdiagonal

0 . . . 0 0 0 0 0


allows the construction of the matrix solutions of the exponential Diophantine equation

(Xn − Iq×n)(Y n − Iq×n) = Z2, X 6= Y.

8
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We can choose the construction structure of X and Y inside the set{
Aα+1,i, A

T
α+1,i : i ∈ {1, 2, ..., n}

}
.

Therefore, there are 4× n2 construction structures of matrix solutions of this exponential Diophantine
equation. �

3 Connections between Matrix Exponential Diophantine
Equations and Integer Factorization

In 1977, Rivest-Shamir-Adleman introduced a public key encryptosystem for secure data transmission called RSA
[12]. Integer factorization is the decomposition, when possible, of a positive integer into a product of smaller
integers and prime factorization is the decomposition, when possible, of a positive integer into a product of
smaller prime numbers [13]- [16]. Integer factorization of sufficiently large semiprimes is very complex. It is well
known that when the numbers are sufficiently large no integer factorization algorithm is known. The difficulty
of this problem is very important for the algorithms used in cryptography such as RSA public key encryption
and RSA digital signature [17]. Many branches of mathematics (elliptic curves, algebraic number theory and
quantum computing) are interested in the difficulty of integer factorization of sufficiently large numbers. In 2019,
Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thome and Paul Zimmermann
factored a 240-digit number (RSA-240) [18]. Integer factorization of sufficiently large semiprimes, the product
of two prime numbers, is very hard [19]. Many cryptographic protocols (RSA) are based on integer factorization
difficulty of sufficiently large numbers [20, 21]. It is still unknown that the exponential Diophantine equation

(an − 1)(bm − 1) = x2, x, n,m ∈ N, n 6= m,a > 1, b > 1, x 6= 0, n 6= 0, (3.1)

admits at all any positive integer solutions. However, in this section, we show that the matrix exponential
Diophantine equation

(Xn − In×m)(Y m − In×m) = Z2

has an infinite number of matrix solutions in Mn×m(N) for every pair (n,m) of positive integers such that n 6= m.

Theorem 3.1. Let n,m be two positive integers such that n 6= m. The matrix exponential Diophantine equation

(Xn − In×m)(Y m − In×m) = Z2,

admits at least 4× n×m construction structures of matrix solutions.

Proof. Let α, β be two positive integers. Let

Aα+1 =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1

α+ 1 0 0 0 0 . . . 0 0 0 0 0
0 α+ 1 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 α+ 1︸ ︷︷ ︸

mthdiagonal

0 . . . 0 0 0 0 0



∈Mn×m(N)

9
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be a Rare matrix of order n×m and index m. Let

Bβ+1 =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1

β + 1 0 0 0 0 . . . 0 0 0 0 0
0 β + 1 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 β + 1︸ ︷︷ ︸

nthdiagonal

0 . . . 0 0 0 0 0



∈Mn×m(N)

be a Rare matrix of order n×m and index n. A simple calculation shows that

Anα+1 = (α+ 1)× In×m, Bmβ+1 = (β + 1)× In×m.

Therefore,

Anα+1 − In×m = α× In×m, Bmβ+1 − In×m = β × In×m.

This implies that

(Anα+1 − In×m)(Bmβ+1 − In×m) = αβ × In×m.

Assume that α = x2 and β = y2. One has

(Anx2+1 − In×m)(Bmy2+1 − In×m) = x2y2 × In×m = H2
x,y

with

Hx,y =



0 0 0 0 0 . . . 0 0 0 0 xy
0 xy 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 xy 0 0
0 0 0 xy 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . xy 0 0 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 xy . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 xy 0 0 0
0 0 xy 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 xy 0
xy 0 0 0 0 . . . 0 0 0 0 0



∈Mn×m(N), x, y ∈ N.

Therefore, the triples (Ax2 , By2 , Hx,y), x, y ∈ N, are matrix solutions of the exponential Diophantine equation

(Xn − In×m)(Y m − In×m) = Z2.

The matrix Aα generates at least 2n different construction structures of matrix solutions and the matrix Bβ
generates at least 2m different construction structures of matrix solutions. Finally, the matrices Aα and Bβ
generate together at least 4× n×m different construction structures of matrix solutions of the matrix
exponential Diophantine equation

(Xn − In×m)(Y m − In×m) = Z2.

�
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There are several connections between the construction structures of matrix solutions of the exponential Diophantine
equations and Integer factorization.

Example: Find the smallest number of construction structures of matrix solutions of the exponential
Diophantine equation

(Xn − I30,068,443)(Y n − I30,068,443) = Z2.

The difficulty of solving this exponential Diophantine equation is linked to the difficulty of factorizing the number
30,068,443.

The number 30, 068, 443 = 7, 919× 3, 797 is a semiprime, since the numbers 7,919 and 3,797 are prime numbers.
For example, if we can choose n = 3, 797, in this case, we have to solve the matrix Diophantine equation

(X3,797 − I30,068,443)(Y 3,797 − I30,068,443) = Z2.

Let

Ax2+1 =



0 1 0 0 . . . 0 0 0 0
0 0 1 0 . . . 0 0 0 0
0 0 0 1 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . 0 1 0 0
0 0 0 0 . . . 0 0 1 0
0 0 0 0 . . . 0 0 0 1

x2 + 1 0 0 0 . . . 0 0 0 0


∈M30,068,443(C), x 6= 0, x ∈ N,

be a Rare matrix of order 30,068,443 and index 1. The matrix A7,919

x2+1
has a construction structure of matrix

solutions. This matrix generates 3,797 construction structures of matrix solutions of Diophantine equations.
Theorem 3.1 allows us to claim that the exponential Diophantine equation

(Xn − I30,068,443)(Y n − I30,068,443) = Z2

admits at least 4× 3, 797× 3, 797 = 57, 668, 836 construction structures of matrix solutions.

4 Construction Structures of Matrix Solutions of the Diophantine
Equations Xn + Y m = Zq

Let α be a positive integer and let

Qα =

 0 1 0
0 0 α
1 0 0


be a matrix. This matrix has a construction structure of matrix solutions of Diophantine equations, since
Q3
α = α× I3. We can notice that 0 1 0

0 0 α
1 0 0

6

+

 0 1 0
0 0 2α+ 1
1 0 0

3

=

 0 1 0
0 0 α+ 1
1 0 0

6

.

The triples (Qα, Q2α+1, Qα+1) are matrix solutions of the Diophantine equation X6 + Y 3 = Z6. In general,
these matrix solutions do not have a common matrix factor. We can deduce that 0 α 0

0 0 1
1 0 0

6

+

 0 1 0
0 0 1

2α+ 1 0 0

3

=

 0 α+ 1 0
0 0 1
1 0 0

6

.

The Diophantine equation X6 + Y 3 = Z6 admits several construction structures.

11
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Remark 4.1. Let α be a positive integer. Then, 0 1 0
0 0 αn

1 0 0

3

=

 0 1 0
0 0 α
1 0 0

3n

, n ∈ N, n ≥ 1.

Recall that

(a+ b)n = an +

n∑
k=1

n!

k!(n− k)!
an−kbk, a, b, n ∈ N.

Then,  0 1 0
0 0 a
1 0 0

3n

+

 0 1 0

0 0 (
∑n
k=1

n!
k!(n−k)!a

n−kbk)

1 0 0

3

=

 0 1 0
0 0 a+ b
1 0 0

3n

, n ≥ 2.

Finally, the the Diophantine equation X3n + Y 3 = Z3n admits an infinite number of matrix solutions for every
positive integer n.

Theorem 4.2. Let n,m, q be three positive integers. The matrix Diophantine equation

Xn + Y m = Zq

admits at least 8× n×m× q different construction structures of matrix solutions.

Proof. Let α, β, δ be three positive integers. Let

Aα =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1
α 0 0 0 0 . . . 0 0 0 0 0
0 α 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 α︸︷︷︸

(m×q)thdiagonal

0 . . . 0 0 0 0 0



∈Mn×m×q(N)

be a Rare matrix of order n×m× q and index m× q. Let

Bβ =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1
β 0 0 0 0 . . . 0 0 0 0 0
0 β 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 β︸︷︷︸

(n×q)thdiagonal

0 . . . 0 0 0 0 0



∈Mn×m×q(N)
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be a Rare matrix of order n×m× q and index n× q. Let

Cδ =



0 0 0 0 1 . . . 0 0 0 0 0
0 0 0 0 0 . . . 0 0 0 0 0
0 0 0 0 0 . . . 1 0 0 0 0
0 0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 0 . . . 0 0 1 0 0
...

...
...

...
... . . .

...
...

...
...

...
0 0 0 0 0 . . . 0 0 0 0 1
δ 0 0 0 0 . . . 0 0 0 0 0
0 δ 0 0 0 . . . 0 0 0 0 0

. . .
. . .

. . .
. . .

. . . . . .
. . .

. . .
. . .

. . .
. . .

0
. . . 0 δ︸︷︷︸

(n×m)thdiagonal

0 . . . 0 0 0 0 0



∈Mn×m×q(N)

be a Rare matrix of order n×m× q and index n×m. A simple calculation shows that

Anα = α× In×m×q, B
m
β = β × In×m×q, C

q
δ = δ × In×m×q.

Therefore,
Anx +Bmy = Cqx+y, ∀x, y ∈ N.

Finally, the triples (Ax, By, Cx+y), x, y ∈ N, are matrix solutions of the matrix Diophantine equation

Xn + Y m = Zq.

The matrix Aα generates at least 2n different construction structures of matrix solutions, the matrix Bβ
generates at least 2m different construction structures of matrix solutions and the matrix Cδ generates at least
2q different construction structures of matrix solutions. Finally, the matrices Aα, Bβ and Cδ generate at least
together 8× n×m× q different construction structures of matrix solutions of the matrix Diophantine equation

Xn + Y m = Zq.

�

Disclaimer

This paper is an extended version of a preprint document of the same author. The preprint document is available
in this link: https://www.researchgate.net/publication/378846648 On Construction Structures of Matrix Solu-
tions of Linear or Exponential Diophantine Equations [As per journal policy, preprint article can be published
as a journal article, provided it is not published in any other journal]

Competing Interests

Author has declared that no competing interests exist.

References

[1] Cohn JHE. The Diophantine equation (an − 1)(bn − 1) = x2. Period. Math. Hungar. 2002;44(2):169-175.

[2] Hajdu L, Szalay L. On the Diophantine equation (2n − 1)(6n − 1) = x2 and (an − 1)((ak)n − 1) = x2.
Period. Math. Hungar. 2002;40(2):144-145.

13



Mouanda; J. Adv. Math. Com. Sci., vol. 39, no. 5, pp. 1-14, 2024; Article no.JAMCS.114693

[3] Lan L, Szalay L. On the exponential Diophantine equation (an − 1)(bn − 1) = x2. Publ. Math. Debrecen.
2010;77:1-6.

[4] Ishii K. On the exponential Diophantine equation (an−1)(bn−1) = x2. Publ. Math. Debrecen. 2016;89:253-
256.

[5] Szalay L. On the Diophantine equation (2n − 1)(3n − 1) = x2. Publ. Math. Debrecen. 2000;57:1-9.

[6] Xioyan G. A note on the Diophantine equation (an−1)(bn−1) = x2. Period. Math. Hungar. 2013;66:87-93.

[7] Yuan P, Zhang Z. On the Diophantine equation (an− 1)(bn− 1) = x2. Publ. Math. Debrecen. 2012;80:327-
331.

[8] Noubissie A, Togb A, Zhongfeng Zhang. On the exponential Diophantine equation (an − 1)(bn − 1) = x2.
Bulletin of the Belgian Mathematical Society - Simon Stevin. 2020;27(2):161-166.

[9] Moussounda Mouanda J. On Beal’s conjecture for matrix solutions and multiplication commutative groups
of rare matrices. Turkish Journal of Analysis and Number Theory. 2024;12(1):1-7.

[10] Bashmakova IG. Diophantus of Alexandria. Arithmetics and the Book of Polygonal Numbers. Moscow:
Nauka (in Russian). 1974;85-86:215-217.

[11] Bennett MA, Skinner CM. Ternary Diophantine equation via Galois representations and modular forms.
Canad. J. Math. 2004;56:23-54.

[12] Rivest R. Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems.
MIT Memo MIT/LCS/TM-82; 1977.

[13] Carmichael RD. On the numerical factor of the arithmetic form αn ± βn, Ann. Math. 1913;(2)15:30-70.

[14] Luca F. A note on the Pell equation. Indian J. Math. 1997;39:99-105.

[15] Luca F, Walsh PG. The product of like-indexed terms in binary recurrences. J. Number Theory. 2002;96:152-
173.

[16] Robert W. van der Waall. On the Diophantine equation x2 + x + 1 = 3y2, x3 − 1 = 2y2 and x3 + 1 = 2y.
Simon Stevin. 1972;46:39-51.

[17] Rivest R, Shamir A, Adleman L. A method for obtaining digital signatures and public key cryptosystems.
Comm. ACM. 1978;21:120-126.

[18] Boudot F, Gaudry P, Guillevic A, Heninger N, Thome E, Zimmermann P. Comparing the difficulty of
factorization and discrete logarithm: A 240-digit experiment. Advances in Cryptology - CRYPTO 2020,
Santa Barbara CA, United States. 2020;62-91.

[19] Meijer AR. Groups, factoring, and cryptography. Math. Mag. 1996;69:103-109.

[20] Coutinho SC. The mathematics of ciphers: Number theory and RSA cryptography. Wellesley, MA: A K
Peters; 1999.

[21] Dickson LE. History of the theory of numbers. New York: Chelsea. 1966;2:518-519.

————————————————————————————————————————————————————–
© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under
the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address
bar)
http://www.sdiarticle5.com/review-history/114693

14

http://creativecommons.org/licenses/by/4.0

	Mouanda_2024_JAMCS_114693 - Copy.pdf (p.1)
	Mouanda_2024_JAMCS_114693.pdf (p.2-14)
	Introduction and Main Result
	Proof of the Main Result
	Connections  between  Matrix  Exponential  Diophantine  Equations  and  Integer  Factorization
	Construction Structures of Matrix Solutions of the Diophantine Equations Xn + Ym = Zq


