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Abstract: Estimation of actual evapotranspiration (ETa) based on reference evapotranspiration
(ETo) and the crop coefficient (Kc) remains one of the most widely used ETa estimation approaches.
However, its application in non-agricultural and natural environments has been limited, largely
due to the lack of well-established Kc coefficients in these environments. Alternate Kc estimation
approaches have thus been proposed in such instances, with techniques based on the use of leaf area
index (LAI) estimates being quite popular. In this study, we utilised satellite-derived estimates of
LAI acquired through the Google Earth Engine geospatial cloud computing platform and machine
learning to quantify the water use of a commercial forest plantation situated within the eastern region
of South Africa. Various machine learning-based models were trained and evaluated to predict
Kc as a function of LAI, with the Kc estimates derived from the best-performing model then being
used in conjunction with in situ measurements of ETo to estimate ETa. The ET estimates were then
evaluated through comparisons against in situ measurements. An ensemble machine learning model
showed the best performance, yielding RMSE and R2 values of 0.05 and 0.68, respectively, when
compared against measured Kc. Comparisons between estimated and measured ETa yielded RMSE
and R2 values of 0.51 mm d−1 and 0.90, respectively. These results were quite promising and further
demonstrate the potential of geospatial cloud computing and machine learning-based approaches to
provide a robust and efficient means of handling large volumes of data so that they can be optimally
utilised to assist planning and management decisions.

Keywords: leaf area index; crop coefficient; water use; geospatial cloud computing; ensemble
machine learning

1. Introduction

Commercial afforestation activities in South Africa have been shown to have a major
impact on available water resources, specifically stream flow, and are thus highly regulated,
with water use licenses being required for their growth [1–3]. A decision support tool
used to guide and inform the issuing of these licenses utilises outputs from a hydrological
model, which when configured, is only able to represent the vegetation characteristics of
a select few forestry species. However, with the forestry industry presently using a far
larger number of species, clones and hybrids to meet existing timber demands, there is a
pressing need to update this tool so that water use licenses are issued in accordance with
the hydrological impacts of a particular commercial plantation species, clone or hybrid [4].

Evapotranspiration (ET) is a key variable in hydrological models as it plays a promi-
nent role in the hydrological cycle and energy balance. Subsequently, the accurate quantifi-
cation of ET is crucial to effectively utilise hydrological models to guide water resources
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management decisions [5–9]. Several field-based and remote sensing techniques exist that
can potentially provide fairly accurate long-term estimates of ET. However, the Food and
Agricultural Organization method (FAO56), which uses daily reference evapotranspira-
tion values and monthly crop coefficients (Kc), remains one of the most well-established
and extensively utilised approaches for the estimation of ET and thus is used in many
hydrological models [8,10–12]. This is due to its relative ease of application, strong physical
conceptualisation and universal applicability [13].

Reference evapotranspiration represents the ET of a hypothetical reference surface
resembling grass (ETo) or alfalfa (ETr) and is computed from meteorological data. The
Kc encompasses all the biophysical characteristics of a particular crop and is used as a
multiplying factor to relate ETo or ETr to the potential ET rate of the crop [11,14]. Kc values
for agricultural crops are well defined and an extensive list of these has been developed
and provided by Allen et al. [14]. More recently, Pereira et al. [11] reviewed various studies
that provided crop coefficients based on the FAO56 approach to (a) update those originally
published by Allen et al. [14], and (b) provide values for several new crops.

Although the FAO56 method has been widely utilised to estimate the ET of many
agricultural crops [11,15,16], there has been relatively limited application of this approach
for non-agricultural and natural environments [7,17–19]. This can be attributed to the
lack of well-established crop coefficients for these land-use land-cover classes (LULC) due
to limited field-based measurements in these environments [7,15]. Furthermore, these
Kc values may not adequately represent spatio–temporal variations or regional-specific
growing conditions [15,20]. While this does limit the application of the FAO56 method
to estimate ET in non-agricultural and natural environments, Allen et al. [14] outline
procedures that can be implemented to derive Kc as a function of variables that directly
influence it, such as the fraction of ground cover, soil characteristics, plant height and leaf
area index [7,21].

According to Beeri et al. [22], the versatile nature of leaf area index (LAI) has con-
tributed to a growing interest in its use, with several studies demonstrating its potential in
estimating Kc and vegetation water use [7,23–30]. LAI is defined as the one-sided (green)
leaf area per unit ground surface area [31]. Leaf area plays an important role in regulating
the stomatal response to meteorological conditions, as the leaves provide a surface from
which vegetation–atmospheric exchanges take place through processes such as photosyn-
thesis, transpiration and respiration [27,32]. Since leaf area plays a major role in driving
plant water consumption [27,33], the ability to accurately quantify LAI across space and
time can facilitate the improved estimation of water use in non-agricultural and natural
environments using the FAO56 method.

LAI data can be acquired through the use of optical in situ instrumentation, direct
sampling, LiDaR technology and remote sensing [32,34,35]. However, the use of remote
sensing methods is often preferred, as it provides a pragmatic approach to acquiring
spatially and temporally explicit LAI data across large geographic extents [36,37]. Over the
past decade, numerous global satellite-derived LAI data products have been made available,
including the development of several methods to process satellite Earth observation (SEO)
data to estimate LAI at various spatial and temporal resolutions [36–38].

Furthermore, advances in geospatial cloud computing platforms such as Google Earth
Engine (GEE) and the development of user-friendly machine learning programming pack-
ages have facilitated the seamless generation of long-term time-series data by providing
a more powerful and efficient means of collecting, processing and storing SEO data for a
range of applications with those relating to water resources and forestry featuring quite
prominently [27,32,39,40].

Since the FAO56 Kc-ETo approach for ET estimation is still extensively utilised, it is
vital to have well-defined Kc values that adequately represent a particular LULC class, so
that vegetation water consumption can be more accurately estimated using this approach.

Considering the potential of utilising satellite-derived estimates of LAI for the estima-
tion of Kc in non-agricultural and natural environments and the relatively limited research
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on the use of LAI in concert with machine learning-based approaches to derive spatially
and temporally representative Kc estimates in these environments, in this study, we aimed
to exploit the capabilities of GEE and machine learning techniques to derive Kc estimates
for a commercial forest in the eastern region of South Africa (SA). The specific objectives of
this study were to (i) derive Kc as a function of LAI using machine learning, (ii) use these
Kc values to estimate ET and, finally, compare these estimates against in situ measurements
of ET to evaluate their potential in providing accurate water use data, which in turn can
facilitate improved water resources management decisions.

2. Materials and Methods
2.1. Study Area

The study site is situated within the Two Streams Research Catchment, which is located
approximately 70 km northeast of the city of Pietermaritzburg within the KwaZulu-Natal
province (KZN) of SA (Figure 1). This catchment is among the most extensively studied
forested catchments in SA, with more than two decades of detailed hydro-meteorological
observational data [41]. The altitude across the catchment ranges from 1060 to 1110 m a.s.l.
The study area experiences a warm sub-tropical climate with hot, humid summers and
cooler, dry winters. Mean annual precipitation is approximately 778 mm and the majority of
rain occurs during the summer. However, heavy mist is also a significant source of moisture
within the catchment. Furthermore, the study area experiences moderate occurrences of
hail, frost and drought [41,42]. The Two Streams Catchment lies within the Pongola-
uMzimkhulu Water Management Area (WMA), which is a major contributor to KZN’s
water resources. Water resources management within this WMA is fairly complex due to
the high local demand for water resources and international obligations that should be
factored into management decisions to ensure the equitable and sustainable use and supply
of this critical resource [43,44]. With commercial forestry featuring quite prominently in
this region due to favourable growing conditions [41], the ability to accurately estimate
the water use of these forests and to quantify their hydrological impacts on downstream
water availability forms a crucial component of effective water resources management in
this region.
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determine daily ETo using the FAO56 ETo method. 
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and (ii) the ET of Acacia mearnsii stands using the Scintillometry and Eddy Covariance 
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potential ET to derive KCact values that are potentially able to account for localised and 
rainfed conditions, as well as the impact of stress during growth, as shown in Equation 
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Figure 1. Geographic location of the Two Streams Catchment, within the Pongola-uMzimkhulu WMA
and KwaZulu-Natal province of South Africa. An aerial view of the Two Streams Catchment with
the study site delineated in purple is provided in the bottom right insert (imagery in the maps have
been sourced from Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN and the GIS User Community).
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2.2. Data Collection and Processing

Estimating Kc as a function of satellite-derived LAI estimates was dependent on first
deriving Kc from in situ measurements of ET and ETo to account for vegetation character-
istics and weather conditions [13]. Meteorological data such as solar radiation, ambient
air temperature, relative humidity, rainfall, wind speed and direction were acquired from
an automatic weather station located within the study area. This dataset was then used to
determine daily ETo using the FAO56 ETo method.

Additional sensors measured the (i) components of the shortened energy balance,
and (ii) the ET of Acacia mearnsii stands using the Scintillometry and Eddy Covariance
(EC) methods. Further details regarding the instrumentation setup within the study catch-
ment are provided by Clulow et al. [45], Everson et al. [46] and Kaptein et al. [47]. Kc is
traditionally defined and determined as follows:

Kc =
PET
ETo

(1)

where PET represents the potential ET rate under optimal conditions. However, several
studies [15,16,20,48–51] have estimated Kc through the use of actual ET (ETa) instead of
potential ET to derive KCact values that are potentially able to account for localised and
rainfed conditions, as well as the impact of stress during growth, as shown in Equation (2):

Kcact =
ETa

ETo
(2)

Monthly totals of ETa and ETo were generated by summing and aggregating the daily
ETa and ETo, respectively, for each and every month across the entire in situ measurement
period (17 March 2007–24 October 2013). These monthly totals were then used as inputs to
Equation (2) to create a monthly time series of KCact for Acacia mearnsii. Satellite-based LAI
estimates were acquired from the freely available MODIS LAI product since it is one of the
most widely used and extensively validated satellite-based LAI products [31,52,53]. The
GEE platform was used to access and process the MODIS LAI product image collection
(MCD15A3H V6 level 4, 500 m spatial and 4-day temporal resolution). This image collection
was filtered to select images (n = 609) within the region of interest corresponding to the
in situ measurement period. The data collection period was constrained to 2007–2013
due to the in situ measurements required to implement the proposed methodology only
being available during this period. The mean LAI value for the study site within each
selected image was determined and these values were then exported as a time series of
comma-separated values (CSV). The 4-day MODIS LAI estimates were then summarised
by averaging the LAI values (one value per month) in a given month to create a time series
of monthly values that were consistent with the KCact dataset.

The KCact estimation model was developed using regression analyses to derive a
relationship between the monthly KCact and MODIS LAI time series. It should be noted
that for instances where the monthly KCact time-series values exceeded 1.3, it was capped
at 1.3. According to Allen et al. [5], Kc values derived using the grass reference surface
should not exceed 1.2–1.3 in humid and sub-humid environments. The classification and
regression training (Caret) [54] and caretEnsemble [55] packages available as add-ins to
the R statistical software package (version 4.40) were used to develop and test the models.
Several of the most frequently used machine learning algorithms that represent an eclectic
mix of both simple and complex approaches were selected for application. These included
the (i) generalised linear model (GLM), (ii) decision tree (CART), (iii) k nearest neighbour
(kNN), (iv) random forest (RF) and (v) support vector machine (SVM).

Additionally, an ensemble machine learning model (EMLM) was developed by stack-
ing these base algorithms and combining their predictions using a RF approach. Due to
the relatively small size of the monthly time-series datasets (n = 80), the data were not ran-
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domly split into a training and validation subset. Instead, we used a k-fold cross-validation
approach similar to Hirigoyen et al. [56] to train and validate the models.

Although the data collection period spanned several months and years, the temporal
resolution of the datasets differed. MODIS LAI possessed a 4-day temporal resolution and
the in situ data possessed a daily temporal resolution. The training data to be used in the
machine learning algorithms requires the predictor and target variable datasets to be of the
same size. Subsequently, it was decided that each of these datasets should be aggregated
into a monthly time step so that we fulfil the aforementioned criteria. Furthermore, the
aggregation of the data to a monthly time step and producing a monthly time series of
KCact facilitates the estimation of the daily ET, as it was assumed that the predicted KCact
remains constant within a given month and year. Therefore, these values can be used in
conjunction with the daily ETo to estimate daily ETa using Equation (2).

Model performance was then ascertained using the coefficient of determination (R2),
root mean square error (RMSE), percentage bias error (PBE) and mean absolute error (MAE).
The best-performing model was then used to generate a monthly time series of KCact over
the duration of the study period from the monthly LAI time series acquired for the region
of interest. Daily ETo was used in conjunction with the monthly predicted KCact time
series to estimate daily ETa (assuming KCact remains constant within a given month) via
Equation (2). The daily ETa estimates were then compared against the corresponding in
situ measurements. A conceptual representation of the proposed methodology is provided
in Figure 2.
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The uncertainty in the KCact and ETa estimates was then established using the afore-
mentioned performance metrics and the non-parametric Kruskal–Wallis significance test
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(95% confidence interval), which was used to assess whether the differences in the means
on ranks or medians of the observed and modelled values are statistically significant. The
Kruskal–Wallis test is given by the following:

H = (
12

n(n + 1)∑
c
j=1

T2
j

nj
)− 3(n + 1) (3)

where H is the test statistic, n is the sample size for all samples, c is the number of samples,
Tj is the sum of ranks in the jth sample and nj is the size of the jth sample.

3. Results
3.1. Validation of Kc Estimates for Acacia mearnsii

The performance metrics for each of the algorithms used to estimate KCact are provided
in Table 1. The results of these investigations indicate that the EMLM was best able to
estimate KCact-producing RMSE, MAE and R2 values of 0.05, 0.03 and 0.68, respectively,
when compared against the KCact derived from in situ measurements. The monthly crop
coefficients estimated using the EMLM (KCact _est) ranged from 1.07 to 1.27, with an average
value of 1.21 (±0.04).

Table 1. Comparison of the performance metrics for each machine learning algorithm used to estimate
KCact as a function of LAI.

Model MAE RMSE R2

RF 0.07 0.09 0.12
SVM 0.06 0.08 0.13
GLM 0.06 0.08 0.17
CART 0.06 0.08 0.23
kNN 0.06 0.08 0.23
EMLM 0.03 0.05 0.68

While KCact _est was overestimated during certain months and underestimated in
others (at varying degrees), on average KCact _est was overestimated by approximately
1.00%. Furthermore, there were no significant differences found between the KCact derived
from in situ measurements and KCact _est (p-value = 0.30). The monthly averages (over the
entire period of study) shown in Figure 3 indicate that there is a satisfactory agreement
between KCact and KCact _est (r = 0.58). Overall, the comparison between the KCact and
KCact _est showed that crop coefficients can be fairly accurately estimated using satellite-
derived values of LAI.
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3.2. Comparison of Evapotranspiration Estimates for Acacia mearnsii

A comparison of daily simulated and measured ETa of Acacia mearnsii is presented
in Figure 4 and Table 2. The ETa estimates derived using the EMLM-based monthly
KCact time series compared favourably against in situ measurements. Although ETa was
marginally under-simulated (~1.00%) over the course of the investigation period, there
were no significant differences identified between the measured and estimated ETa.
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Table 2. Comparison of daily observed ETa and simulated ETa of Acacia mearnsii derived from
monthly EMLM-based KCact estimates for the entire study period.

Observed EMLM

Total (mm) 7341 7280
Average (mm d−1) 3.08 3.06
RMSE (mm d−1) 0.51
MAE (mm d−1) 0.29
R2 0.90
p-value 0.50
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4. Discussion

The results of our investigations demonstrated that KCact can be estimated relatively ac-
curately using satellite-derived LAI values and machine learning-based approaches. While
several models were trained and tested, the EMLM performed the best, with comparisons
between KCact derived from in situ measurements and KCact _est yielding a RMSE of 0.05,
which lies within the range of published values (0.04–0.30) highlighted in Beeri et al. [22].
The comparatively better performance of this model may be attributed to its ability to har-
ness the strengths of each individual machine learning algorithm and develop an optimal
model that is capable of outperforming any of the individual models used in the ensemble.
In general, the evaluation of the simulated ETa against the measured ETa revealed that the
water use of Acacia mearnsii could be fairly accurately estimated using KCact values derived
from satellite-based LAI estimates.

However, as shown in Figure 3, KCact _est was overestimated during certain months
(e.g., September and October) and underestimated during others. Subsequently, when using
these KCact _est values to estimate daily ETa and then comparing them against observed
daily ETa across the entire study period, the full impact of the aforementioned discrepancies
may be masked. Such occurrences may prove to be problematic, as forest species are likely
to have greater impacts on available water resources during drier periods, i.e., when it is
particularly important to accurately estimate ETa.

For example, during the typically dry winter month of July in KZN, the difference
between the KCact and KCact _est t within the study site was at its highest (~0.07), which
in turn contributes to an underestimation of ETa during this particular month (across all
years) by approximately 18%. This is noticeably greater than the value that was attained
when comparing observed and simulated ETa for the entire study period. Subsequently, the
underestimation of KCact and, in turn, ETa may contribute to an inadequate representation
of the impacts of commercial forestry on water resources [57] in this region during this
particular period.

Although the overall model performance to derive KCact and ETa can be considered
satisfactory to good, the aforementioned observations indicate that there are marginal
but potentially important seasonal variations to take cognisance of. These seasonal vari-
ations in model performance may potentially be ascribed to the combined influence of
multiple factors:

(i) While the use of LAI to predict KCact may adequately account for biophysical proper-
ties that influence plant canopy processes, soil water availability which is a limiting
factor to ET may not be adequately accounted for in the proposed methodology.

(ii) The remotely sensed LAI values were not validated against in situ observations to
evaluate their accuracy. Cloud cover is one of the major factors that contribute to inac-
curacies in the MODIS LAI composites. Since the 4-day MODIS LAI image collection
used in this study was not screened and filtered for cloud contamination, there may
potentially be inaccuracies contained within the dataset. Furthermore, vegetation
biophysical characteristics, LAI estimation algorithms and seasonal influences also
contribute to inaccuracies [58] and remain unaccounted for in this study. Subsequently,
these potential inaccuracies in this dataset may contribute to the KCact model being
trained on data that are not always an adequate representation of the vegetation’s
biophysical characteristics.

(iii) According to Drechsler et al. [51], KCact estimates derived during summer periods are
generally more consistent than those derived during winter, since ETo is less variable
from day to day during the summer.

A further limitation of the methods employed in this study was that KCact was po-
tentially derived during sub-optimal conditions, such as when there is a limit on water
availability and ET was not occurring at potential rates. While it was difficult to ascertain
whether this was the case from the comparison between measured and simulated ETa, this
assumption can prove to be problematic when using KCact estimates derived from these
methods for hydrological modelling purposes.
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Hydrological models are often conceptualised to account for soil water availability to
sustain ET, with the potential ET being reduced to account for the effects of water stress
during suboptimal conditions. Subsequently, if KCact estimates used in a hydrological
model have been derived during water-limited conditions, this may result in an underesti-
mation of ET when using these models. In such instances, it may prove to be beneficial to
also derive or utilise an index that provides an indication as to whether the vegetation is
experiencing water stress. These can be derived from available in situ or remote sensing
data [59–62] to screen and filter out periods whereby water stress is being experienced to
ensure that KCact is derived during stress-free conditions.

The reliance on in situ measurements to estimate KCact as a function of satellite-based
LAI estimates poses additional challenges as the footprint for which the in situ ETa mea-
surements are acquired will influence the spatial resolution that the KCact estimate can
adequately represent. This may prove to be problematic when applying this method to
estimate ETa outside of the in situ measurement footprint, especially if there is a high degree
of heterogeneity in vegetation characteristics or environmental conditions. Furthermore,
the transferability of the model to other regions (even those with similar environmental con-
ditions) may be constrained by the site-specific nature of the model, limiting the feasibility
of applying these methods in regions where additional training data are unavailable.

In such instances, the use of satellite-derived estimates of ETa and ETo may represent
the most pragmatic approach to estimate KCact or quantify the water use of non-agricultural
and natural environments.

Although the Kc_est values presented in this study were within the acceptable range
defined by Pereira et al. [11], caution should be exercised when attempting to utilise
these values in other locations, since (i) these values are largely site-specific and have
been derived from a relatively small sample size, (ii) they represent actual and potentially
suboptimal growing conditions, and (iii) were not adjusted to the standard climate adopted
by the FAO56 approach, i.e., sub-humid climate where minimum relative humidity and
wind speed at 2 m height are 45% and 2 m s−1, respectively [11].

Notwithstanding the limitations of the methods presented in this study, the results
demonstrated that satellite-derived estimates of LAI can provide a pragmatic approach
to derive spatially and temporally explicit KCact estimates, which can then be used to
estimate ETa for non-agricultural or natural vegetation. Furthermore, since the methods
applied herein are fairly robust, if finer spatial resolution estimates of KCact are required
in these environmental settings, then LAI can be derived from freely available Sentinel-2
imagery [15,63].

The advantages of adopting machine learning-based approaches are that these tech-
niques can allow for complex relationships between target and explanatory variables to be
more adequately accounted for and represented [56,64]. Furthermore, the ability of these
approaches to include additional explanatory variables can prove to be beneficial for the
estimation of KCact for different vegetation types and in other environmental settings. For
example, Park et al. [24] showed that the inclusion of soil moisture data with vegetation
indices resulted in the improved estimation of Kc as opposed to the use of vegetation
indices alone, since soil moisture is a limiting factor to ET particularly in water-limited
environments. Moreover, the ability of machine learning-based approaches to more ad-
equately account for complex relationships between variables can be invaluable when
attempting to estimate KCact by extrapolating Kc-LAI models to ungauged sites where only
satellite-derived estimates of LAI can be acquired.

It should also be noted that while the focus of this study was to derive KCact and
estimate ETa based on satellite-based estimates of LAI, the methods described herein can
also be extended to other vegetation indices that may potentially allow for improved
estimation and representation of KCact [15].
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5. Conclusions

The general lack of Kc values for non-agricultural and natural vegetation types hinders
the application of the FAO56 Kc-ETo approach in these settings. To address this limitation,
we explored the use of satellite-derived LAI to estimate Kc with a particular focus on
Acacia mearnsii. The results from this study were quite promising and demonstrated that
the use of geospatial cloud computing and machine learning-based approaches provides
a robust and efficient means of handling and optimally utilising large volumes of data.
Furthermore, the methodological approach adopted herein can serve as a basis for the
development of a generic Kc-LAI model should in situ measurements of ETa and ETo
within the greater study region become available for other non-agricultural or natural
vegetation types. This could be quite useful for future hydrological modelling applications
within the study region, since it facilitates the seamless generation of Kc values for various
non-agricultural and natural vegetation types using easily accessible and readily available
satellite-based LAI or similar products and datasets. This, in turn, may allow for the
improved understanding and estimation of the hydrological impacts of anthropogenic
activities such as commercial afforestation in the region, which is urgently required and
necessary to improve the management and regulation of this activity.
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