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Abstract

Despite improvement in medical and public health standards, influenza continues to plague
humankind causing high morbidity,mortality and socio-economic cost. Efforts to effectively
combat the spread of influenza can be put in place if its dynamics are well understood.
Numerous challenges have been faced in the event of controlling the spread and eradicating
this contagious disease, a major impediment being the rise of drug resistance. In light of this,
a deterministic model is formulated and used to analyze the transmission dynamics of influenza
having incorporated the aspect of drug resistance. A system of differential equations that models
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the transmission dynamics of influenza is developed. The effective reproduction number (Re)
and the basic reproduction number (R0) are calculated.For this model,there exists at least
four equilibrium points. The stability of the disease free equilibrium point and endemic
equilibrium point is analyzed. Results of the analysis show that there exists a locally stable
disease free equilibrium point, E0 when Re < 1 and a unique endemic equilibrium E∗, when
Re > 1. Sensitivity analysis is carried out to determine parameters that should be targeted
by intervention strategies. The effect of drug resistance and transmission rate of the resistant
strain on the infected and the recovered is discussed.Results show that development of drug
resistance and transmission of the resistant strain result in widespread of the resistant strain. A
decrease in either of these two factors leads to a significant reduction in the number of infected
individuals,hence, social distancing can be used as an intervention mechanism to curb the spread
of the resistant strain.

Keywords: Effective reproduction number; drug resistance; stability.
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1 Introduction

Influenza also called flu is a contagious respiratory illness caused by influenza viruses. The viruses
infect the nose, throat, and lungs. They usually are spread through the air when the infected people
cough, sneeze or talk making the surrounding air and surfaces to be temporarily contaminated with
infected droplets [1], [2]. A person gets infected when they inhale the infected droplets. A person
might also get flu by touching the surface or object that has flu virus on it and then touching their
own mouth, eyes or possibly their nose [2].

Influenza can be prevented by getting vaccination each year. However, given that the virus evolves
rapidly, a vaccine made for one year may not be useful in the following year. According to [3] other
preventive actions include staying away from people who are sick, covering coughs and sneezes and
frequent hand washing.

Influenza has afflicted the human population for centuries. For instance,the 1918 influenza pandemic
infected nearly one quarter of the world’s population and resulted in the deaths of about 100 million
people [4]. Studies show that this pandemic is specially responsible for the high morbidity and
mortality among vulnerable groups such as children,the elderly and patients with underlying health
conditions [5]. There is an outbreak of influenza every year around the world which results to about
three to five million cases of severe illness and about 250,000 to 500,000 deaths [6]. According to [7],
the mortality rates due to this respiratory disease are much higher in Africa than anywhere else in
the world. Poor nutritional status, poor access to healthcare including vaccination and antibiotics
and the presence of other, less measurable factors related to poverty in Africa may be additional
risk factors for higher mortality rates. The death toll from the disease is unacceptably high given
that influenza is preventable. Efforts to combat it must therefore be accelerated.

In view of the catastrophic effects of influenza globally, several models have been proposed and
analyzed with the aim of shedding more light in the transmission dynamics of influenza,among
them are; [8], [9], [10], [11], [12], [13], [14], [15]. Among the pioneer mathematical models to
describe influenza dynamics is one developed by [12].

Drug resistance refers to reduction in the effectiveness of a drug in curing a disease. It occurs
when microorganisms such as bacteria, viruses, fungi and parasites change in ways that render the
medications used to cure the infections they cause ineffective [16], [17]. The microorganisms are
therefore able to survive the treatment.
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According to [18] epidemics with drug resistant strains and those with drug sensitive strains are
fundamentally different in their growth and dynamics. Drug-sensitive epidemics are fuelled by
only one process i.e. transmission, however, drug-resistant epidemics are fuelled by two processes:
transmission and the conversion of treated drug sensitive infections to drug-resistant infections
(acquired resistance). Therefore the rate of increase in drug-resistant infections can be much faster
than the rate of increase in drug-sensitive infections. Studies from [19] show that drug resistance
is a function of time and treatment rate.With the development of drug resistant influenza viruses,
various models have also been formulated in order to understand this phenomena better. Among
them are [20], [21], [22], [23], [24].

In this paper, a mathematical model that illustrates the transmission dynamics of a wild type
influenza virus and the development and transmission of drug resistant influenza virus is formulated
and analyzed.

2 Model Description and Formulation

The model subdivides the total population into five compartments; Susceptible(S), Vaccinated(V),
Infected with Wild type strain(Iw), Infected with Resistant strain(IR) and Recovered(RC).
Individuals in a given compartment are assumed to have similar characteristics. Parameters vary
from compartment to compartment but are identical for all individuals in a given compartment.
Individuals enter the population at the rate of π,all recruited individuals are assumed to be
susceptible. The susceptible get infected after effective contact with either the Infected with wild
type strain or the Infected with resistant strain.The force of infection is given by either λ1 = βwIw
or λ2 = βrIR.(λ1 is the force of infection of the wild type strain while λ2 is the force of infection of
the resistant strain).βw and βr refer to the transmission rate of wild type strain and resistant strain
respectively. The susceptible can only be infected by one strain at a time. While in the population,
the susceptible get vaccinated at the rate of ϕ.The vaccinated can however become infected with
either the wild type strain or the resistant strain. This depends on the vaccine efficacy. When the
vaccine efficacy is 100 percent,the vaccinated cannot become infected.Individuals who are infected
with the wild type strain are treated and recover at the rate of α while those who are infected with
the resistant strain recover at the rate of αr. The wild type strain is assumed to mutate to resistant
strain and hence those infected with the wild type join those infected with the resistant strain at
the rate of b.Individuals with wild type strain and those with resistant strain suffer disease induced
death at the rates aw and ar, respectively. The recovered lose immunity at the rate of ϑ and join
the susceptible class. Individuals in all the epidemiological compartments suffer natural death at
the rate of µ.

The model considered in this study is illustrated by the population flow diagram in Fig. 1 and the
associated system of differential equations (1)-(5).

Model Equations

From Fig. 1, we deduce the model equations;

dS

dt
= π + ϑRC − (ϕ+ µ+ λ1 + λ2)S(t) (1)

dV

dt
= ϕS(t)− ((1− ϵ)λ1 + (1− ϵ)λ2 + µ)V (t) (2)

dIw
dt

= λ1S(t) + (1− ϵ)λ1V (t)− (b+ µ+ aw + α)Iw(t) (3)
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dIR
dt

= λ2S(t) + (1− ϵ)λ2V (t) + bIw − (µ+ αr + ar)IR(t) (4)

dRC

dt
= αIw(t) + αrIR(t)− (ϑ+ µ)RC(t) (5)

Fig. 1. Flow diagram showing population flows between different compartments

Table 1 gives the description of the various parameters used in the model along with reasonable
estimates of their values.

Table 1. Description and values of Parameters used

Parameter Symbol Description Value Reference.
1
µ

Average human lifespan 70 ∗ 365 days estimated.

π Recruitment rate 1000/70 ∗ 365 estimated.
ϵ vaccine efficacy 0.6 [25]
ϕ Vaccination rate 0.00109589 [26]
β1 Transmission rate of wild type strain 0.0008 estimated
β2 Transmission rate of resistant strain 0.0006 estimated
b Rate of developing drug resistance 0.04 estimated.
α Recovery rate for individuals in Iw class 0.1428 [2].
αr Recovery rate for individuals in IR class 0.0714 estimated
ϑ Rate of losing immunity 0.00833 [27].
aw Death rate due to infection with wild type virus 0.01 [13].
ar Death rate due to infection with resistant virus 0.01 estimated

3 Model Analysis

In this section, essential properties of the model system (1)-(5) are derived.

3.1 Positivity of the solutions

Theorem 1:The state variables of the model system (1)-(5) are non-negative and solutions remain
positive for all time t ≥ 0 provided that the initial conditions are non-negative.
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Proof
Let {S(t), V (t), Iw(t), IR(t), RC(t)} be any solutions of the system for all t ≥ 0 with non-negative
initial conditions {S(0) ≥ 0, V (0) ≥ 0, Iw(0) ≥ 0, IR(0) ≥ 0, RC(0) ≥ 0}. Considering equation(1),
it follows that

dS(t)

dt
≥ −(ϕ+ µ+ λ1 + λ2)S(t)

Using separation of variables to integrate yields;
lnS ≥ −(ϕ+ µ+ λ1 + λ2)t+ C, where C is the constant of integration.
S(t) ≥ S0e

−(ϕ+µ+λ1+λ2)t ≥ 0, hence S(t) ≥ 0
Considering equation (2),

dV

dt
≥ ((1− ϵ)λ1 + (1− ϵ)λ2 + µ)V∫

dV

V
≥

∫
((1− ϵ)λ1 + (1− ϵ)λ2 + µ)dt

V (t) ≥ V0e
((1−ϵ)λ1+(1−ϵ)λ2+µ)t ≥ 0

Hence,V (t) ≥ 0,
The positivity of V (t), Iw(t), IR(t), RC(t) is proved along the same lines to yield;
Iw(t) ≥ Iw0e

−(b+α+aw+µ)t ≥ 0,
IR(t) ≥ IR0e

−(αr+ar+µ)t ≥ 0,
RC(t) ≥ RC0e

−(ϑ+µ)t ≥ 0.
The solutions to the model remain positive given positive initial conditions. This shows that the
model is biologically relevant.

3.2 Boundedness of the solutions

Theorem 2:The solutions of the system are bounded in a region Q given by;
Q = {S(t), V (t), Iw(t), IR(t), RC(t)ϵR5

+ : N(t) ≤ π
µ
} for all time t ≥ 0.

Proof
The total population N(t) = S(t) + V (t) + Iw(t) + IR(t) +RC(t).

dN(t)

dt
=

dS(t)

dt
+

dV (t)

dt
+

dIw(t)

dt
+

dIR(t)

dt
+

dT (t)

dt
+

dR(t)

dt

dN(t)

dt
= π − µN − awIw − arIR

In the absence of influenza infection, it follows that, dN(t)
dt

≤ π − µN

dN(t)

dt
+ µN ≤ π

Using integrating factor: e
∫
µdt yields;

Neµt ≤ πeµt

µ
+ C, where C is a constant of integration.

Dividing through by eµt yields,
N(t) ≤ π

µ
+ Ce−µt,at t = 0,C = N0 − π

µ
,hence

N(t) ≤ N0e
−µt + π

µ
(1− e−µt),where N0 is the initial population size. Therefore,

N(t) ≤ π
µ
for N0 ≤ π

µ
or

N(t) ≤ N0 for N0 ≥ π
µ

Thus, N(t) ≤ max{N0,
π
µ
},therefore bounded above.
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4 Equilibrium Points and Stability Analysis

At the equilibrium points the populations are unchanging and hence the rate of change for each
population is zero. With this model,it can be shown that there exists four equilibria:-

• When both influenza strains are extinct from the population (E0)

• When the resistant strain is extinct but the wild type persists(E1)

• When the wild type is extinct but the resistant strain persists(E2)

• When both strains persists (EE)

The equilibrium points are analyzed in order to understand what behavior is predicted by the
differential equations in the neighbourhood of the points.

Since the model system is nonlinear, Jacobian linearization and the Hartman-Grobman Theorem
will be used to unify the local behavior of the linear and nonlinear systems, [28].According to
Hartman-Grobman Theorem,the asymptotic behavior of a non-linear system in the neighbourhood
of an equilibrium point is equivalent to that of the linear system near this equilibrium point [29].

4.1 Disease Free Equilibrium point (DFE)

To obtain the DFE of the model system (1)-(5),the derivatives with respect to time are set to
zero.DFE describes the model in the absence of disease or infection, hence all the infectious
classes(Iw and IR) and the recovered class (RC) are also set to zero. This yields;

π − (ϕ+ µ)S0 = 0 (6)

ϕS0 − µV 0 = 0 (7)

Using equation (6), S0 is obtained as S0 = π
ϕ+µ

. Substituting S0 in equation (7), V 0 is obtained

as V 0 = ϕπ
µ(ϕ+µ)

.
The DFE point of the system is hence given by;

E0 =
(
S0, V 0, I0w, I

0
R, RC0) =

(
π

ϕ+ µ
,

ϕπ

µ(ϕ+ µ)
, 0, 0, 0

)

The DFE point of the model system (1)-(5), indicates that in the absence of influenza, the system
will consist of only two compartments, the susceptible and the vaccinated. If E0 is stable, both
strains, i.e the wild type strain and the resistant strain will vanish.

The stability of each equilibrium point depends on the threshold parameter that governs the
spread of the disease,in the case of this model; the effective reproduction number.Theorems that
demonstrate the relationship between the effective reproduction number and the local asymptotic
stability of equilibria are proved. These results imply that it is possible to examine the value of this
threshold parameter and determine whether the disease persists or the disease dies out as t → ∞.

4.1.1 Threshold for disease spread

A major concern regarding any infectious disease is its ability to invade the population. It is hence
paramount to obtain the threshold parameter which determines whether the disease will persist or
die out. This is one of the most important parameters in epidemiology and is known as the basic
reproduction number(R0).This quantity gives the average number of secondary infections generated
when one infected individual is introduced in a fully susceptible population [30]. If R0 < 1,on
average an infected individual produces less than one new infected individual in the course of the
infectious period and hence the disease dies out of the population. However, if R0 > 1, each
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infected individual produces,on average, more than one new infection and spread of the disease is
possible [31]. In the case of this model, the effective reproduction number (Re) is calculated since
the population consists of both the susceptibles and non susceptible(the vaccinated).The effective
reproduction number may be calculated the same way as the basic reproduction number is calculated
using the next generation matrix approach as illustrated in [31] . Using the model system (1)-(5),the
effective reproduction number is obtained as shown in the following subsection.

4.1.2 Effective reproduction number

From the model, the infected compartments are Iw and IR. Using the notation f for the new
infections and v for the transition terms, the following matrices are obtained;

f =

[
λ1S(t) + (1− ϵ)λ1V (t)
λ2S(t) + (1− ϵ)λ2V (t)

]
, v =

[
K1Iw(t)

K2IR(t)− bI(t)

]
where λ1 = βwIw, λ2 = βrIR, K1 = α+ b+ aw + µ and K2 = αr + ar + µ.
The partial derivatives of f with respect to the infected classes, evaluated at E0 is denoted by F
and obtained as;

F =

[
βwS

0 + (1− ϵ)βwV
0 0

0 βrS
0 + (1− ϵ)βrV

0

]
Next, the partial derivative of v with respect to the infected classes,evaluated at E0, is obtained
and denoted by V given as;

V =

[
K1 0
−b K2

]
The inverse of V is computed and obtained as;

V −1 =

[ 1
K1

0
b

K1K2

1
K2

]
Multiplying matrices F and V −1 yields;

FV −1 =

[
βwS

0 + (1− ϵ)βwV 0
βrS

0+(1−ϵ)βrV b
K1K2

βrS
0+(1−ϵ)βrV

K2

]
The effective reproduction number is given by the spectral radius of FV −1. The eigenvalues of

the matrix FV −1 are βwS0+(1−ϵ)βwV 0

K1
and βrS

0+(1−ϵ)βrV
0

K2
. Therefore the effective reproduction

number is given by;

Re = max{βwS
0 + (1− ϵ)βwV

0

K1
,
βrS

0 + (1− ϵ)βrV
0

K2
}

Substituting S0,V 0,K1 and K2 gives;

Re = max{ βwπ(µ+ ϕ(1− ϵ))

µ(ϕ+ µ)(a+ b+ aw + µ)
,

βrπ(µ+ (1− ϵ)ϕ)

µ(ϕ+ µ)(αr + ar + µ)
}

DenotingRew = βwπ(µ+ϕ(1−ϵ))
µ(ϕ+µ)(a+b+aw+µ)

andRer = βrπ(µ+(1−ϵ)ϕ)
µ(ϕ+µ)(αr+ar+µ)

, it follows thatRe = max{Rew, Rer}.
Rew is a measure of the average number of secondary wild type influenza infections caused by a
single infected individual introduced into the model population. Similarly,Rer, gives the average
number of secondary resistant-influenza infections caused by one infected individual introduced into
the model population.

The basic reproduction number can then be obtained from the effective reproduction number already
calculated. This is done by setting the vaccination rate ϕ to zero. Thus the basic reproduction
number R0 is given by:

R0 = max{ βwπµ

µ2(α+ b+ aw + µ)
,

βrπµ

µ2(αr + ar + µ)
}.
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4.1.3 Effect of vaccination on basic reproduction number

Fig. 2 illustrates the effect of vaccination on the basic reproduction number.

Fig. 2. Effect of vaccination on R0

It can be observed that vaccination reduces the basic reproduction number. This implies that
vaccination should be put into consideration in order to control the spread of influenza.

A necessary condition for the establishment of a given strain is that its reproduction number should
be greater than one [32]. In this model, there is no cross immunity. The wild type influenza strain
and the resistant influenza strain compete for susceptible individuals. Fig. 3 depicts the outcome
of this competition.

Fig. 3. Outcome of competition between the two strains with no cross immunity
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4.2 Existence of endemic equilibruim (E1)

There exists an endemic state when the resistant strain dies out but the wild type strain persists.
Theorem 3: For Rew > 1 a unique endemic equilibrium E1 exists.
Proof
To obtain the steady state E1 of the model system (1)-(5), the derivatives with respect to time are
set to zero. In this case, the infectious class (Iw) and the recovered class (RC) are not set to zero.
This yields:

S∗ =
πϑ+ πµ+ ϑαI∗w
ϕ+ µ+ βwI∗w

V ∗ =
ϕ(πϑ+ πµ+ ϑαI∗w)

((1− ϵ)βwI∗w + µ)(ϕ+ µ+ βwI∗w)

I∗w =
βwI

∗
wS

∗ + (1− ϵ)βwI
∗
wV

∗

b+ µ+ aw + α

RC∗ =
αI∗w
ϑ+ µ

The wild type influenza strain endemic equilibrium satisfies the following polynomial.

P (I∗w) = I∗w(AI∗2w +BI∗w + C) = 0

Either I∗w = 0, corresponding to the disease free equilibrium, or the roots of the quadratic AI∗2w +
BI∗w + C = 0, give the endemic equilibrium,where;

A = β2
wϑα((1− ϵ) + µ(1− ϵ) + ϕ(1− ϵ)),

B = β2
wπ((1− ϵ)(ϑ+ ϑµ+ µ+ ϕµ+ ϕϑ+ µ2)) + βwϑα((1− ϵ)(2µϕ+ µ2 + ϕ2)),

C = µ(ϕ+µ)(ϕ+µ)(b+µ+aw+α)[βwπµ
2((1−ϵ)(2ϕ+µ)−ϑϵ)+βwπµ(ϕ((1−ϵ)+ϑϵ))+ϑ(1−Rew])]

All the variables are positive and ϵ is the vacccine efficacy where 0 < ϵ < 1. The existence
of endemic equilibria is determined by the presence of positive real solutions of the quadratic
equation AI∗2w + BI∗w + C.For positive real roots,B2 > 4AC. A > 0 and for Rew > 1,C =
µ(ϕ+µ)(ϕ+µ)(b+µ+aw+α)[βwπµ

2((1−ϵ)(2ϕ+µ)−ϑϵ)+βwπµ(ϕ((1−ϵ)+ϑϵ))+ϑ(1−Rew)] < 0,
hence there exists at least one positive root.This implies that the system has a unique endemic
equilibrium E1.

4.3 Existence of endemic equilibrium (E2)

There exists an endemic state when the wild type strain dies out but the resistant strain persists.
Theorem 4: For Rer > 1 a unique endemic equilibrium E2 exists.

Proof To obtain the steady state E2 of the model system (1)-(5), the derivatives with respect
to time are set to zero. In this case, the infectious class (IR) and the recovered class (RC) are not
set to zero. This yields:

S∗ =
π + ϑRC∗

ϕ+ µ+ βrI∗R

V ∗ =
ϕ(πϑ+ πµ+ ϑαrI

∗
R)

((1− ϵ)βrI∗R + µ)(ϕ+ µ+ βrI∗R)

I∗R =
βrI

∗
RS

∗ + (1− ϵ)βrI
∗
RV

∗

µ+ ar + αr

RC∗ =
αrI

∗
R

ϑ+ µ

9



Kanyiri et al.; JAMCS, 25(3): 1-19, 2017; Article no.JAMCS.37442

The resistant influenza strain endemic equilibrium satisfies the following polynomial.

q(I∗R) = I∗R(G1I
∗2
R +G2I

∗
R +G3) = 0

I∗R = 0, corresponds to the disease free equilibrium.The roots of the quadraticG1I
∗2
R +G2I

∗
R+G3 = 0,

give the endemic equilibrium,where;

G1 = β2
rϑαr((1− ϵ) + µ(1− ϵ) + ϕ(1− ϵ)),

G2 = β2
rπ((1− ϵ)(ϑ+ ϑµ+ µ+ ϕµ+ ϕϑ+ µ2)) + βrϑαr((1− ϵ)(2µϕ+ µ2 + ϕ2)),

G3 = (arµ+arϕ+µ2+µϕ+µαr+ϕαr)[βrπµ
2((1−ϵ)(2ϕ+µ)−ϑϵ)+βrπµ(ϕ((1−ϵ)+ϑϵ))+ϑ(1−Rer)]µ(µ+ϕ)

For positive real solutions in the quadratic equation G1I
∗2
R +G2I

∗
R +G3 = 0, G2

2 > 4G1G3. G1 > 0
and for Rer > 1,G3 < 0,this shows that there exists at least one positive root;implying that the
system has a unique endemic equilibrium E2.

4.4 Local stability analysis of the disease free equilibrium point

The local stability of the DFE is established using Jacobian of the model evaluated at E0. The
stability of this equilibrium point, is then determined based on the sign of the real part of the
eigenvalues of the corresponding Jacobian.

Theorem 5:The disease free equilibrium point (E0) of the system of differential equations(1)-(5)
is locally asymptotically stable whenever Rew < 1 and Rer < 1.That is whenever Re < 1 since
Re = max{Rew, Rer}
Proof
The Jacobian matrix evaluated at E0 is obtained as;

J(E0) =


−ϕ− µ 0 −βwS

0 −βrS
0 ϑ

ϕ −µ −(1− ϵ)βwV
0 −(1− ϵ)βrV

0 0
0 0 βwS

0 + (1− ϵ)βwV
0 −K1 0 0

0 0 b βrS
0 + (1− ϵ)βrV

0 −K2 0
0 0 α αr −ϑ− µ


where K1 = α+ b+ aw + µ and K2 = αr + ar + µ,
The following eigenvalues are obtained:

λ1 = −µ,

λ2 = −ϕ− µ,

λ3 = −ϑ− µ,

λ4 = βw(S
0 + (1− ϵ)V 0)−K1,

λ5 = βr(S
0 + (1− ϵ)V 0)−K2.

λ1, λ2, λ3 have negative real part,the condition necessary and sufficient for λ4 and λ5is;

λ4 : βw(S
0 + (1− ϵ)V 0)−K1 < 0

βw(S
0 + (1− ϵ)V 0) < K1

βw(S
0 + (1− ϵ)V 0)

K1
< 1

That is,

Rew < 1

10



Kanyiri et al.; JAMCS, 25(3): 1-19, 2017; Article no.JAMCS.37442

Similarly from λ5, it can be shown that;

βr(S
0 + (1− ϵ)V 0)

K2
< 1

That is,
Rer < 1

Under the condition that all the eigenvalues have negative real part, then E0 is locally asymptotically
stable, otherwise it is unstable.

4.5 Local stability analysis of the endemic equilibrium

Theorem 6: For Rew > 1 and Rer > 1 there exists an Endemic Equilibrium (EE) of the model
system which is locally asymptotically stable.

The system (1)-(5) is linearized about EE and the characteristic polynomial examined. The Jacobian
matrix at the Endemic Equilibrium is as follows:-

J(EE) =


−ϕ− µ− λ̄1 − λ̄2 0 0 0 ϑ

ϕ −µ− (1− ϵ)λ̄1 − (1− ϵ)λ̄2 0 0 0
λ̄1 (1− ϵ)λ̄1 −K1 0 0
λ̄2 (1− ϵ)λ̄2 b −K2 0
0 0 α αr −ϑ− µ


where K1 = α+ b+ aw + µ and K2 = αr + ar + µ. λ̄1 and λ̄2 is the force of infection of the wild
type strain and resistant strain respectively,at the endemic equilibrium.

The characteristic polynomial obtained is;

P5(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5

where;
a1 = µ+ ϑ+K1 +K2 + J2 + J1,

a2 = J1J2 +K1 +K2 + µ+ ϑ(J1 + J2) +K1K2 +K1µ+K1ϑ+K2µ+K2ϑ,

a3 = J1J2(K1 +K2 + µ+ ϑ) +MJ1 +MJ2− λ̄1αϑ− J3αrϑ+K1K2µ+K1K2ϑ,

a4 = MJ1J2 + J1(K1K2µ+K1K2ϑ) + J2(K1K2µ+K1K2ϑ− J3αrϑ− λ̄1αϑ)

−λ̄1K2αϑ− λ̄1bαrϑ− λ̄2αϕϑ− J3K1αrϑ− J4ϕαrϑ,

a5 = K2K1J2J1µ+K1K2J2J1ϑ− λ̄1J2K2αϑ− λ̄1J2bαrϑ− J2J3K1αrϑ

−λ̄2K2αϕϑ− λ̄2bϕαrϑ− J4K1ϕαrϑ.

and;
K1 = α+ b+ aw + µ, K2 = αr + ar + µ

J1 = ϕ+ µ+ λ̄1 + λ̄2, J2 = (1− ϵ)λ̄1 + (1− ϵ)λ̄2 + µ

J3 = (1− ϵ)λ̄1, J4 = (1− ϵ)λ̄2

M = K1K2 +K1µ+K1ϑ+K2µ+K2ϑ

Using Routh-Hurwitz criterion, the following matrix is obtained;

1 a2 a4 0 λ5

a1 a3 a5 0 λ4

a2 − a3
a1

a4 − a5
a1

0 0 λ3

a3 − a4−a5

a2−
a3
a1

a5 0 0 λ2

a4 − a5
a1

− a5

( (b1)
2

a3(a4−a5)

)
0 0 0 λ

a5 0 0 0 1


(8)
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where b1 = a2 − a3
a1

. According to Routh-Hurwitz criterion [33], [34], for Rew > 1 and Rer > 1,
the endemic equilibrium is locally asymptotically stable if a1, a2, a3, a4, a5 > 0 and all the elements
of the first column of matrix (8) are positive,i.e, a1 > 0, a2 − a3

a1
> 0, a3 − a4−a5

a2−
a3
a1

> 0,a4 − a5
a1

−

a5

( (b1)
2

a3(a4−a5)

)
and a5 > 0. This implies that all the eigenvalues of J(EE) have negative real parts.

5 Sensitivity Analysis

The sensitivity analysis of the reproduction number Re is used to quantify the relative importance
of the different parameters to disease control. It is used to discover the parameters that have a high
impact on Re and should be targeted by intervention strategies [35]. Sensitivity indices of the model
reproduction number to the parameters in the model are calculated. The normalized sensitivity
index which measures the relative change in a parameter k, with respect to the reproduction number
Re is given by Pq = k

Re

∂Re
∂k

.The sign of Pq determines the direction of changes,increasing (for
positivePq) and decreasing (for negativePq) [36]. Table 2 gives the sensitivity indices obtained
using the parameter values given in Table 1.

Table 3. Sensitivity Indices of Rew and Rer

Parameter Symbol Description Sensitivity Index

βw transmission rate of wild type 1
βr transmission rate of resistant strain 1
π Recruitment rate 1
ϕ Vaccination rate -0.9408538762
αr Recovery rate for resistant strain -0.8767287461
α Recovery rate for wild type strain -0.7405137236
b Development of drug resistance rate** -0.2074268133
ar Death rate due to infection with resistant strain -0.1227911409
aw Death rate due to infection with wild type strain -0.05185670333
µ Natural death rate -0.03421955424
ϵ vaccine efficacy -0.01884699679

The parameters are ordered from the most sensitive to the least .It can be observed that the
most sensitive parameters are transmission rates and recruitment rate. A positive sensitivity index
indicates that Re is an increasing function of the corresponding parameter and hence an increase
in the parameter while other factors are held constant leads to disease spread [36]. On the other
hand, a negative sensitivity index shows that an increase in the parameter while other factors are
held constant leads to disease control.

6 Numerical Simulation

In this section simulations of the model system (1)-(5) are carried out using parameter values in
Table 1.

Simulation of model population depicted by system (1)-(5)

Fig. 4 shows the relationship between susceptible, Infected with wild type strain,infected with
resistant strain and the recovered.
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Fig. 4. Model population of system (1)-(5)

It can be observed that in the first about three weeks,there is a sharp decrease in the susceptible and
a sharp increase in those infected with wild type strain and those infected with resistant strain.The
sharp increase in the infected could be attributed to the fact that influenza is highly contagious.The
recovered gradually increases from zero. From week four,the infected decreases as the recovered
increase. This decrease in the infected could be as a result of disease induced deaths and recovery.

6.1 Effect of drug resistance and transmission rate of the resistant
strain

A major challenge in controlling the spread of diseases is the development of drug resistance. The
challenge becomes even harder in case the drug resistant virus can be transmitted. This section
focuses on the effect of drug resistance and transmission rate of the resistant virus on individuals
infected with the resistant virus and on the recovered individuals.

6.1.1 Resistant strain is not transmissible while rate of developing drug
resistance is varied

The rate of developing drug resistance b, is varied while the rate of transmitting the resistant virus
is set as zero and all the other factors are held constant.

Fig. 5 shows that when there is no development of drug resistance and the resistant strain is not
being transmitted, the number of infected individuals decrease gradually to zero. An increase in
b leads to a sharp increase in the number of infected individuals followed by a gradual decrease.
The decrease could be attributed to disease induced deaths and recovery. From Fig. 6, it can be
observed that the number of recovered individuals decrease with increase in b.
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Fig. 5. Infected with resistant strain

Fig. 6. Recovered individuals

6.1.2 Resistant strain is transmissible and rate of developing drug
resistance is varied

The resistant strain is assumed to be transmitted at a rate lower than that of transmitting the wild
type strain, b is varied and all the other factors are held constant.
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Fig. 7. Infected with resistant strain

Fig. 8. Recovered individuals

Fig. 7 shows that when the resistant strain is being transmitted and there is no development of
drug resistant, there is an initial sharp increase in the number of the infected followed by a drastic
decrease to about fifty percent of the initial number infected. An increase in the rate of developing
drug resistance results to a high number of the infected in the first about ten days. Later,this high
number decreases gradually to about the initial number of the infected. The recovered, from Figure
8, decrease with increase in b and the resistant strain being transmitted.

6.1.3 Rate of transmitting resistant strain varied while rate of developing
drug resistance is constant

The rate of developing drug resistance b is taken to be a constant, while the rate of transmitting
the drug resistance strain is varied and all other factors held constant.
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Fig. 9. Infected with resistant strain

Fig. 10. Recovered individuals

Fig. 9 shows that when the resistant strain is not being transmitted and the development of drug
resistance is a constant, the infected increase slightly in the first about ten days and then drastically
decrease to about ten percent of the initial number infected. Increase in the transmission rate results
to a increase in the infected and followed by a gradual decrease.

The recovered, from Fig. 10, are observed to decrease with increase in the transmission rate in the
first about thirty days. After about the thirty days,the recovered increase. The increase could be
attributed to the constant rate of developing resistance and hence many recover.
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7 Conclusion

From analysis of the model system (1)-(5), it has been shown that given positive initial conditions,
solutions to the system remain positive for all time.In the absence of influenza,the population size
approaches the carrying capacity. The stability analysis shows that whenever Re < 1 the disease
free equilibrium point is locally asymptotically stable and whenever Re > 1 there is a locally
asymptotically stable endemic equilibrium. From the sensitivity analysis, it has been shown that a
major factor that should be targeted in order to control the spread of influenza is vaccination.Results
from the numerical simulation done indicate that in order to eradicate influenza in a population
especially in the case where drug resistance sets in, it is paramount to consider with great precision
the influence of various parameters. Of great importance would be the parameters that fuel the
spread of resistant strain. Among other parameters, the rate of developing drug resistant strain
and the transmission of this strain have great impact on the spread or control of influenza.
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