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Abstract

In this paper, we define the concepts of (δ, 1 − δ)-weak contraction, (φ, 1 − δ)-weak contraction
and Ćirić-type almost contraction in the sense of Berinde in Gp-complete Gp-metric space.
Furthermore, we prove the existence of fixed points and common fixed points of mappings
satisfying Berinde-type contractions stated above and also provide the conditions which are
necessary for the uniqueness of the fixed points and common fixed points. Consequently, we
obtain the generalizations of comparable results in the literature. In addition, we introduce a
few examples which ensure the existence of these attained results.
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1 Introduction

Fixed-point theory has become one of the fundamental subject of studies which gathers the attention
of many scientists within and outside mathematics. It has enormous amount of applications in the
fields beside mathematics such as biology, chemistry, physics, economics, computer sciences and
engineering which allow rapid advances in a short span of time and improve the existent ideas by
providing a wide range of practice possibilities. In 1922, Banach [1] established the fixed point theory
and named it as the Banach contraction theory. From then on, a lot of fixed point theorems for
different types of contractions came to light. Some of these fixed point theorems were introduced
by Berinde. Berinde [2, 3, 4] presented challenging fixed point theorems for different kinds of
contraction mappings. Firstly in 2004, Berinde introduced the almost contradiction also known
as the weak contraction. Later, in [4], by using comparison function, he defined the concept of
φ-almost contraction which is also addressed as (φ,L)-weak contraction. Aside from Berinde, in
1974, Ćirić presented some fixed point theorems by defining Ćirić-type almost contractions which
are regarded as one of the most general contractions. Most recently, Ampadu [5] introduced a new
type contraction which is called (δ, 1− δ)-weak contraction.

In addition to the classical concepts of metric space on almost contractions mentioned above, there
are some generalizations of metric spaces. One of these generalizations is partial metric space. In
1994, Matthews [6] introduced this concept which differentiated from metric space as it claimed
the self-distance is not necessarily zero. Later in 2005, another generalization was introduced by
Mustafa and Sims [7] which is known as G-metric space. The latest generalization which constitute
a combination of both partial metric space and G-metric space is established by Zand and Nezhad
[8]. As the continuation, Aydi et al. [9] familiarized some fixed point results in Gp-metric spaces
which is regarded as the source of fixed point results in Gp-metric spaces. Based on the notion of
a Gp-metric space, many fixed point results for mappings satisfying various contractive conditions
have been presented, for more detailed information (see [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]).

The aim of this study is to construct fixed point and common fixed point theorems for (δ, 1−δ)-weak
contraction, (φ, 1−δ)-weak contraction and Ćirić-type almost contraction in the sense of Berinde in
Gp-complete Gp-metric space. Moreover, we provide some conditions to attain unique fixed point
and common fixed points. The results we obtain extend and generalize some of the results in the
literature. Lastly, we present a few examples to illustrate the usability of our obtained results.

2 The Basic Results and Definitions

The aim of this section is to present some preliminary definitions, concepts and theorems used in
the paper. First, we provide some basic definitions and properties of Gp-metric space.

Recently, a new generalization and unification of both partial metric space and a G-metric space is
introduced by Zand and Nezhad [8]. They named this new space as Gp-metric space and defined it
in the following way. We will use the following definition of a Gp-metric space.

Definition 2.1. [8] Let X be a nonempty set. A function Gp : X ×X ×X → [0,+∞) is called a
Gp-metric space if the following conditions are satisfied:

Gp1 . If Gp(x, y, z) = Gp(z, z, z) = Gp(y, y, y) = Gp(x, x, x), then x = y = z;

Gp2 . 0 ≤ Gp(x, x, x) ≤ Gp(x, x, y) ≤ Gp(x, y, z) for all x, y, z ∈ X;

Gp3 . Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) = . . . , symmetry in all three variables;

Gp4 . Gp(x, y, z) ≤ Gp(x, a, a) +Gp(a, y, z)−Gp(a, a, a) for any x, y, z, a ∈ X.

Then the pair of (X,Gp) is called a Gp-metric space.
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Remark 2.1. With Gp2 assumption, it is very easy to show that

Gp(x, y, y) = Gp(x, x, y)

holds for all x, y ∈ X, i.e., the respective space is symmetric.

An easy example of Gp-metric space is given as follows:

Example 2.1. [8] Let X = [0,∞) and define Gp(x, y, z) = max{x, y, z}, for all x, y, z ∈ X. Then,
(X,Gp) is a symmetric Gp-metric space.

Some of the properties of Gp-metric space are given in the following proposition.

Proposition 2.1. [8] Let (X,Gp) be a Gp-metric space, then for any x, y, z and a ∈ X, the
followings hold:

i. Gp(x, y, z) ≤ Gp(x, x, y) +Gp(x, x, z)−Gp(x, x, x);

ii. Gp(x, y, y) ≤ 2Gp(x, x, y)−Gp(x, x, x);

iii. Gp(x, y, z) ≤ Gp(x, a, a) +Gp(y, a, a) +Gp(z, a, a)− 2Gp(a, a, a);

iv. Gp(x, y, z) ≤ Gp(x, a, z) +Gp(a, y, z)−Gp(a, a, a).

The following proposition proves that we can link every Gp-metric space to one particular metric
space.

Proposition 2.2. [8] Every Gp-metric space (X,Gp) defines a metric space (X,DGp),

DGp(x, y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y)

for all x, y ∈ X.

Zand and Nezhad [8] also defined the basic topological concept of Gp-convergence in Gp-metric
spaces as the following.

Definition 2.2. Let (X,Gp) be a Gp-metric space and let {xn} be a sequence of points of X. A
point x ∈ X said to be the limit of the sequence {xn} and denoted by xn → x if

lim
m,n→∞

Gp(x, xn, xm) = Gp(x, x, x).

In this case, we say that the sequence {xn} is Gp-convergent to x.
Thus, if xn → x in a Gp-metric space (X,Gp), then for any ε > 0, there exists l ∈ N such that

|Gp(x, xn, xm)−Gp(x, x, x)| < ε

for all n,m > l.

By using the above definition, the following proposition can be proved. Moreover, this proposition
will play a crucial role in obtaining our results.

Proposition 2.3. [8] Let (X,Gp) be a Gp-metric space. Then, for any sequence {xn} in X and a
point x ∈ X the followings are equivalent:

i. {xn} is Gp-convergent to x;

ii. Gp(xn, xn, x) → Gp(x, x, x) as n → ∞;

iii. Gp(xn, x, x) → Gp(x, x, x) as n → ∞.

Through the definition of DGp , the following proposition can be deduced.
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Proposition 2.4. Let (X,Gp) be a Gp-metric space. Then, for any sequence {xn} in X Gp-
convergent to a point x ∈ X such that lim

n→∞
Gp(xn, xn, xn) = Gp(x, x, x) then DGp(xn, x) → 0.

Zand and Nezhad [8] also defined some basic topological concepts like Gp-Cauchy sequence and
Gp-completeness in Gp-metric spaces as follows.

Definition 2.3. Let (X,Gp) be a Gp-metric space.

i. A space {xn} is called Gp-Cauchy sequence if and only if lim
n,m→∞

Gp(xn, xm, xm) exists (and is

finite);

ii. A Gp-metric space (X,Gp) is said to be Gp-complete if and only if every Gp-Cauchy sequence
in X is Gp-converges to x ∈ X such that

lim
n,m→∞

Gp(xn, xm, xm) = Gp(x, x, x).

In order to obtain our main results, we need following lemmas.

Lemma 2.2. [9] Let (X,Gp) be a Gp-metric space.

i. If Gp(x, y, z) = 0, then x = y = z;

ii. If x ̸= y, then Gp(x, y, z) > 0.

Proof. Let Gp(x, y, z) = 0. Then, by Gp2 we get

0 ≤ Gp(z, z, z), Gp(y, y, y), Gp(x, x, x) ≤ Gp(x, y, z) = 0.

Therefore, we get Gp(x, y, z) = Gp(x, x, x) = Gp(y, y, y) = Gp(z, z, z) = 0. By Gp1 , we conclude
that x = y = z. Thus, i holds.

On the other hand, let x ̸= y and Gp(x, y, z) = 0. Then, by i, x = y, which is a contradiction.
Hence, ii holds.

Lemma 2.3. [9] Assume that {xn} → x as n → ∞ in a Gp-metric space (X,Gp) such that
Gp(x, x, x) = 0. Then, for every x, y ∈ X

i. lim
n→∞

Gp(xn, y, y) = Gp(x, y, y).

ii. lim
n→∞

Gp(xn, xn, y) = Gp(x, x, y).

The following definition and proposition which were described by Zand and Nezhad will be useful
in the process.

Definition 2.4. [8] Let (X1, G1) and (X2, G2) be two Gp-metric spaces and let f : (X1, G1) →
(X2, G2) be a function. Then, f is said to be Gp-continuous at a point a ∈ X1 if and only if for a
given ε > 0, there exists δ > 0 such that x, y ∈ X1 and G1(a, x, y) < δ + G1(a, a, a) implies that
G2(f(a), f(x), f(y)) < ε+G2(f(a), f(a), f(a)). A function f is Gp-continuous on X1 if and only if
it is Gp-continuous at all a ∈ X1.

Proposition 2.5. [8] Let (X1, G1) and (X2, G2) be two Gp-metric spaces. Then, a function f :
X1 → X2 is Gp-continuous at a point x ∈ X1 if and only if it is Gp-sequentially continuous at a x;
that is, whenever {xn} is Gp-convergent to x one has {f(xn)} is Gp-convergent to f(x).

The following lemma, which was given by Parvaneh et al. in [10], provides the characterizations of
concepts of Cauchy and completeness for Gp-metric spaces.
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Lemma 2.4. [10]

i. A sequence {xn} is a Gp-Cauchy sequence in a Gp-metric space (X,Gp) if and only if it is a
Cauchy sequence in the metric space (X,DGp);

ii. A Gp-metric space (X,Gp) is Gp-complete if and only if the metric space (X,DGp) is complete.
Moreover lim

n→∞
DGp(x, xn) = 0 if and only if

lim
n→∞

Gp(x, xn, xn) = lim
n→∞

Gp(xn, x, x) = lim
n,m→∞

Gp(xn, xn, xm)

= lim
n,m→∞

Gp(xn, xm, xm) = Gp(x, x, x).

The concepts of comparison function and (c)-comparison function which play significant role in
forming some of our results are defined as follows.

Definition 2.5. [2] Let φ : [0,∞) → [0,∞) be a function. If

iφ. φ is monotone increasing, that is, t1 < t2 ⇒ φ(t1) ≤ φ(t2)

and

iiφ. for all t ≥ 0, {φn(t)}∞n=0 converges to zero,

then φ is called a comparison function. Furthermore, if φ satisfies both iφ and the following
condition

iiiφ. the series

∞∑
n=0

φn(t) converges for all t > 0,

then φ is called a (c)-comparison function.

From above definition, it is easy to notice that every (c)-comparison function is also a comparison
function.

Lemma 2.5. [2] If φ is a comparison function then φ(t) < t for each t > 0.

The concept of quasi-contraction, which is one of the most general contraction criteria, was defined
by Ćirić in 1974 as follows.

Definition 2.6. [17] Let (X, d) be a metric space and let T : X → X be a self-mapping. T is called
a quasi-contraction if there exists a λ ∈ [0, 1) such that for all x, y ∈ X the following inequality
holds

d(Tx, Ty) ≤ λmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

2.1 Main Results

In this section, we attain some fixed point results related to (δ, 1− δ)-weak contraction, (φ, 1− δ)-
weak contraction and Ćirić-type almost contraction in the sense of Berinde defined on Gp-complete
Gp-metric space.

First, we provide some definitions which are used to constitute our results.

Definition 2.7. Let (X,Gp) be a Gp-metric space. A mapping T : X → X is called (δ, 1− δ)-weak
contraction if there exists a δ ∈ (0, 1) such that for all x, y ∈ X the following inequality holds

Gp(Tx, Ty, Ty) ≤ δGp(x, y, y) + (1− δ)DGp(y, Tx). (2.1)

Moreover, by Gp2 assumption, the (δ, 1 − δ)-weak contraction condition implicitly includes the
following dual one

Gp(Tx, Ty, Ty) ≤ δGp(x, y, y) + (1− δ)DGp(x, Ty) (2.2)
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Çevik and Furkan; JAMCS, 25(3): 1-18, 2017; Article no.JAMCS.37129

for all x, y ∈ X. Consequently, to ensure the (δ, 1 − δ)-weak contraction of T , it is necessary to
check both (2.1) and (2.2). Thus, by (2.1) and (2.2), (δ, 1 − δ)-weak contraction criteria can be
interpreted as the following:

Gp(Tx, Ty, Ty) ≤ δGp(x, y, y) + (1− δ)min{DGp(y, Tx), DGp(x, Ty)}.

Definition 2.8. Let (X,Gp) be a Gp-metric space. A mapping T : X → X is called (φ, 1−δ)-weak
contraction if there exist δ ∈ (0, 1) and a comparison function φ such that for all x, y ∈ X the
following inequality holds

Gp(Tx, Ty, Ty) ≤ φ(Gp(x, y, y)) + (1− δ)DGp(y, Tx). (2.3)

Similarly, by (Gp2) assumption, the dual (φ, 1− δ)-weak contraction is obtained as the following

Gp(Tx, Ty, Ty) ≤ φ(Gp(x, y, y)) + (1− δ)DGp(x, Ty) (2.4)

for all x, y ∈ X. Consequently, in order to be regarded as the (φ, 1 − δ)-weak contraction, a
mapping has to satisfy both (2.3) and (2.4). Thus, by integrating (2.3) and (2.4), the (φ, 1 − δ)-
weak contraction condition can be replaced by the following;

Gp(Tx, Ty, Ty) ≤ φ(Gp(x, y, y)) + (1− δ)min{DGp(y, Tx), DGp(x, Ty)}.

Theorem 2.6. Let (X,Gp) be a Gp-complete Gp-metric space and let T : X → X be a (δ, 1−δ)-weak
contraction mapping. Then T has a unique fixed point in X.

Proof. x0 ∈ X be an arbitrary point. And let for all n ∈ N {xn} is defined as xn = Txn−1. If
xn = xn+1 then xn = Txn. Thus, the proof is finished. Therefore, let’s suppose xn ̸= xn+1. Since
T is (δ, 1− δ)-weak contraction, we deduce

Gp(xn, xn+1, xn+1) = Gp(Txn−1, Txn, Txn)

≤ δGp(xn−1, xn, xn) + (1− δ)DGp(xn, Txn−1)

= δGp(xn−1, xn, xn)

where δ ∈ (0, 1). Similarly, from (2.1), we obtain

Gp(xn−1, xn, xn) ≤ δGp(xn−2, xn−1, xn−1).

By induction, we get

Gp(xn, xn+1, xn+1) ≤ δGp(xn−1, xn, xn) ≤ ... ≤ δnGp(x0, x1, x1).

Now, let’s show {xn} is a Gp-Cauchy sequence. For all m,n ∈ N with m > n, we have

Gp(xn, xm, xm) ≤ Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + . . .

+Gp(xm−1, xm, xm)− [Gp(xn+1, xn+1, xn+1)

+Gp(xn+2, xn+2, xn+2) + · · ·+Gp(xm−1, xm−1, xm−1)]

≤ Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + . . .

+Gp(xm−1, xm, xm)

≤ δnGp(x0, x1, x1) + δn+1Gp(x0, x1, x1) + . . .

+δm−1Gp(x0, x1, x1)

= δn[1 + δ + · · ·+ δm−n−1]Gp(x0, x1, x1)

= δn
1− δm−n

1− δ
Gp(x0, x1, x1)

≤ δn

1− δ
Gp(x0, x1, x1).
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As n → ∞ in the last inequality, we obtain

lim
n,m→∞

Gp(xn, xm, xm) = 0.

This shows that {xn} is a Gp-Cauchy sequence in X. Since (X,Gp) is a Gp-complete Gp-metric
space, {xn} converges to a point x ∈ X such that

lim
n,m→∞

Gp(xn, xm, xm) = lim
n→∞

Gp(xn, x, x) = Gp(x, x, x) = 0.

Therefore, from Lemma 2.4, we have

lim
n→∞

DGp(xn, x) = 0.

Now, let’s show that Gp(x, Tx, Tx) = 0. Suppose the contrary. Then Gp(x, Tx, Tx) > 0. In this
case;

Gp(x, Tx, Tx) ≤ Gp(x, xn+1, xn+1) +Gp(xn+1, Tx, Tx)−Gp(xn+1, xn+1, xn+1)

≤ Gp(x, xn+1, xn+1) +Gp(Txn, Tx, Tx)

≤ Gp(x, xn+1, xn+1) + δGp(xn, x, x) + (1− δ)DGp(x, Txn).

Letting n → ∞ in the above inequality, we deduce

0 ≤ Gp(x, Tx, Tx) ≤ 0

which equals to Gp(x, Tx, Tx) = 0, that is, Tx = x. Hence, T has a fixed point in X. For the
uniqueness of the fixed point, suppose y is another fixed point of T but x ̸= y. Then,

Gp(x, y, y) = Gp(Tx, Ty, Ty) ≤ δGp(x, y, y) + (1− δ)DGp(y, Tx)

≤ δGp(x, y, y) + (1− δ)[Gp(x, y, y) +Gp(y, y, x)]

= Gp(x, y, y) + (1− δ)Gp(y, y, x)

≤ δGp(x, y, y) + (1− δ)Gp(y, y, x)

≤ (δ + 1− δ)max{Gp(x, y, y), Gp(y, y, x)}
= Gp(x, y, y)

which is a contradiction, so x = y and the uniqueness follows.

Theorem 2.7. Let (X,Gp) be a Gp-complete Gp-metric space and T : X → X be a (φ, 1− δ)-weak
contraction where φ is a (c)-comparison function, then T has a fixed point in X. Moreover, the fixed
point is unique if and only if the (c)-comparison function is given by φ(t) = δt, where δ ∈ (0, 1).

Proof. x0 ∈ X be an arbitrary point. And let for all n ∈ N, {xn} is defined as xn = Txn−1. If
xn = xn+1 then xn = Txn. So, the proof is finished. Therefore, let’s suppose xn ̸= xn+1. Since T
is a (φ, 1− δ)-weak contraction, we have the following

Gp(xn, xn+1, xn+1) = Gp(Txn−1, Txn, Txn)

≤ φ(Gp(xn−1, xn, xn)) + (1− δ)DGp(xn, Txn−1)

= φ(Gp(xn−1, xn, xn)).

Similarly, from (2.3), we deduce

Gp(xn−1, xn, xn) ≤ φ(Gp(xn−2, xn−1, xn−1)).

By induction, we obtain

Gp(xn, xn+1, xn+1) ≤ φ(Gp(xn−1, xn, xn)) ≤ · · · ≤ φn(Gp(x0, x1, x1)).
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Now, let’s show {xn} is a Gp-Cauchy sequence. For all m,n ∈ N with m > n ,

Gp(xn, xm, xm) ≤ Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + . . .

+Gp(xm−1, xm, xm)− [Gp(xn+1, xn+1, xn+1)

+Gp(xn+2, xn+2, xn+2) + · · ·+Gp(xm−1, xm−1, xm−1)]

=

m−1∑
k=n

Gp(xk, xk+1, xk+1)−
m−2∑
k=n

Gp(xk+1, xk+1, xk+1)

≤
m−1∑
k=n

Gp(xk, xk+1, xk+1)

≤
m−1∑
k=n

φk(Gp(x0, x1, x1))

≤
∞∑

k=n

φk(Gp(x0, x1, x1)).

Since φ is a (c)-comparison function,

∞∑
k=0

φk(Gp(x0, x1, x1)) is convergent and as n → ∞ we obtain

φk(Gp(x0, x1, x1)) → 0. Therefore, lim
n→∞

Gp(xn, xm, xm) = 0 which implies {xn} sequence is a

Gp-Cauchy sequence in X. Since (X,Gp) is a Gp-complete Gp-metric space, the sequence {xn}
converges to a point x ∈ X such as

lim
n,m→∞

Gp(xn, xm, xm) = lim
n→∞

Gp(xn, x, x) = Gp(x, x, x) = 0. (2.5)

So, from Lemma 2.4,
lim

n→∞
DGp(xn, x) = 0.

Now, claim that Gp(x, Tx, Tx) = 0. Suppose the contrary, that is, Gp(x, Tx, Tx) > 0. In this case,
from (2.5), there exists an n0 ∈ N such that

Gp(xn, x, x) <
Gp(x, Tx, Tx)

2
.

Then, by using Lemma 2.5, we obtain

Gp(x, Tx, Tx) ≤ Gp(x, xn+1, xn+1) +Gp(xn+1, Tx, Tx)−Gp(xn+1, xn+1, xn+1)

≤ Gp(x, xn+1, xn+1) +Gp(xn+1, Tx, Tx)

= Gp(x, xn+1, xn+1) +Gp(Txn, Tx, Tx)

≤ Gp(x, xn+1, xn+1) + φ(Gp(xn, x, x)) + (1− δ)DGp(x, Txn)

≤ Gp(x, xn+1, xn+1) + φ

(
Gp(x, Tx, Tx)

2

)
+ (1− δ)DGp(x, xn+1)

< Gp(x, xn+1, xn+1) +
Gp(x, Tx, Tx)

2
+ (1− δ)DGp(x, xn+1).

If we take the limit of last inequality as n → ∞, we deduce

Gp(x, Tx, Tx) <
Gp(x, Tx, Tx)

2

which is a contradiction. Therefore, as our assumption being false, we obtain Tx = x. Hence, T
has a fixed point in X. For the uniqueness of the fixed point, suppose y is another fixed point of
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Çevik and Furkan; JAMCS, 25(3): 1-18, 2017; Article no.JAMCS.37129

T . If Gp(x, y, y) = 0, then x = y is clear. So we assume, Gp(x, y, y) > 0. Now observe we have the
following

Gp(x, y, y) = Gp(Tx, Ty, Ty) ≤ φ(Gp(x, y, y)) + (1− δ)DGp(y, Tx)

≤ δGp(x, y, y) + (1− δ)[Gp(x, y, y) +Gp(y, y, x)]

= Gp(x, y, y) + (1− δ)Gp(y, y, x)

≤ δGp(x, y, y) + (1− δ)Gp(y, y, x)

≤ (δ + 1− δ)max{Gp(x, y, y), Gp(y, y, x)}
= Gp(x, y, y)

which is a contradiction. Thus, x = y and the uniqueness follows.

Theorem 2.8. Let (X,Gp) be a Gp-complete Gp-metric space and T : X → X be a Ćirić (α, 1−α)-
weak contraction, that is, there exists α ∈

[
0, 1

2

)
such that for all x, y ∈ X the following holds

Gp(Tx, Ty, Ty) ≤ αM(x, y, y) + (1− α)min{DGp(x, Tx), DGp(y, Ty), DGp(x, Ty),

DGp(y, Tx)} (2.6)

where

M(x, y, y) = max{Gp(x, y, y), Gp(x, Tx, Tx), Gp(y, Ty, Ty), Gp(x, Ty, Ty), Gp(y, Tx, Tx)}.

Then, T has a unique fixed point in X.

Proof. x0 ∈ X be an arbitrary point. And let for all n ∈ N, {xn} is defined as xn = Txn−1. If
xn = xn+1, then xn = Txn. So, the proof is completed. Therefore, let’s suppose xn ̸= xn+1. From
(2.6), we obtain

Gp(xn, xn+1, xn+1) = Gp(Txn−1, Txn, Txn)

≤ αM(xn−1, xn, xn) + (1− α)min{DGp(xn−1, Txn−1),

DGp(xn, Txn), DGp(xn−1, Txn), DGp(xn, Txn−1)}
= αM(xn−1, xn, xn) + (1− α)min{DGp(xn−1, xn),

DGp(xn, xn+1), DGp(xn−1, xn+1), DGp(xn, xn)}
= αM(xn−1, xn, xn), (2.7)

where

M(xn−1, xn, xn) = max{Gp(xn−1, xn, xn), Gp(xn−1, Txn−1, Txn−1),

Gp(xn, Txn, Txn), Gp(xn−1, Txn, Txn),

Gp(xn, Txn−1, Txn−1)}
= max{Gp(xn−1, xn, xn), Gp(xn, xn+1, xn+1),

Gp(xn−1, xn+1, xn+1)}.

If M(xn−1, xn, xn) = Gp(xn, xn+1, xn+1) then from (2.7), we deduce

Gp(xn, xn+1, xn+1) ≤ αGp(xn, xn+1, xn+1) < Gp(xn, xn+1, xn+1)

which is a contradiction.

If M(xn−1, xn, xn) = Gp(xn−1, xn, xn), then we get

Gp(xn, xn+1, xn+1) ≤ αGp(xn−1, xn, xn). (2.8)

9
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And lastly, if M(xn−1, xn, xn) = Gp(xn−1, xn+1, xn+1), then we obtain

Gp(xn, xn+1, xn+1) ≤ αGp(xn−1, xn+1, xn+1)

≤ α[Gp(xn−1, xn, xn) +Gp(xn, xn+1, xn+1)

−Gp(xn, xn, xn)]

≤ α[Gp(xn−1, xn, xn) +Gp(xn, xn+1, xn+1)]

and consequently, we infer

Gp(xn, xn+1, xn+1) ≤ α

1− α
Gp(xn−1, xn, xn). (2.9)

Considering h = α
1−α

, we conclude that h ∈ [0, 1) and so, we obtain

Gp(xn, xn+1, xn+1) ≤ hGp(xn−1, xn, xn). (2.10)

Therefore, by taking a constant r as r ∈ {α, h} and using (2.8) and (2.10), we deduce the following
inequality

Gp(xn, xx+1, xn+1) ≤ rGp(xn−1, xn, xn).

By induction, we acquire
Gp(xn, xn+1, xn+1) ≤ rnGp(x0, x1, x1).

Now, let’s show {xn} is a Gp-Cauchy sequence. For all m,n ∈ N with m > n, we have

Gp(xn, xm, xm) ≤ Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + . . .

+Gp(xm−1, xm, xm)

≤ rnGp(x0, x1, x1) + rn+1Gp(x0, x1, x1) + . . .

+rm−1Gp(x0, x1, x1)

= rn[1 + r + · · ·+ rm−n−1]Gp(x0, x1, x1)

≤ rn
1− rm−n

1− r
Gp(x0, x1, x1)

≤ rn

1− r
Gp(x0, x1, x1).

Taking the limit in the last inequality as n → ∞, we get

lim
n,m→∞

Gp(xn, xm, xm) = 0.

Thus, {xn} is a Gp-Cauchy sequence in X. Since (X,Gp) is a Gp-complete Gp-metric space, {xn}
converges to a point x ∈ X such that

lim
n,m→∞

Gp(xn, xm, xm) = lim
n→∞

Gp(xn, x, x) = Gp(x, x, x) = 0. (2.11)

Moreover, from Lemma 2.4, we have

lim
n→∞

DGp(xn, x) = 0.

Now let’s show x = Tx. Suppose the contrary, that is, x ̸= Tx. Then, from (2.11), we deduce

Gp(x, Tx, Tx) ≤ Gp(x, xn+1, xn+1) +Gp(xn+1, Tx, Tx)−
Gp(xn+1, xn+1, xn+1)

≤ Gp(x, xn+1, xn+1) +Gp(Txn, Tx, Tx)

≤ Gp(x, xn+1, xn+1) + αM(xn, x, x)

+(1− α)min{DGp(xn, Txn), DGp(x, Tx), DGp(xn, Tx), DGp(x, Txn)}
≤ Gp(x, xn+1, xn+1) + αM(xn, x, x) + (1− α)min{DGp(xn, xn+1),

DGp(x, Tx), DGp(xn, Tx), DGp(x, xn+1)} (2.12)

10
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where

M(xn, x, x) = max{Gp(xn, x, x), Gp(xn, Txn, Txn),

Gp(x, Tx, Tx), Gp(xn, Tx, Tx), Gp(x, Txn, Txn)}
= max{Gp(xn, x, x), Gp(xn, xn+1, xn+1), Gp(x, Tx, Tx),

Gp(xn, Tx, Tx), Gp(x, xn+1, xn+1}. (2.13)

Letting n → ∞ in (2.13), we deduce

lim
n→∞

M(xn, x, x) = Gp(x, Tx, Tx).

Consequently, by taking the limit of (2.12) as n → ∞, we acquire

Gp(x, Tx, Tx) ≤ αGp(x, Tx, Tx)

which is a contradiction. Thus, x is a fixed point of T in X. For the uniqueness of the fixed point,
suppose y is another fixed point of T but x ̸= y. Then,

where

M(x, y, y) = max{Gp(x, y, y), Gp(x, Tx, Tx), Gp(y, Ty, Ty), Gp(x, Ty, Ty),

Gp(y, Tx, Tx)}
= Gp(x, y, y).

As a result,
Gp(x, y, y) ≤ αGp(x, y, y) < Gp(x, y, y)

which is impossible. So, x = y and the uniqueness follows.

Theorem 2.9. Let (X,Gp) be a Gp-complete Gp-metric space and let T, S : X → X be two
(δ, 1− δ)-weak contractions, that is, there exists a δ ∈ (0, 1) such that for all x, y ∈ X the following
holds

Gp(Tx, Sy, Sy) ≤ δGp(x, y, y) + (1− δ)min{DGp(y, Tx), DGp(x, Sy)}. (2.14)

Then T and S have a common fixed point in X.

Proof. x0 ∈ X be an arbitrary point and choose x1 = Tx0 and x2 = Sx1. Continuing this process,
we construct a sequence {xn} in X such that for each n ≥ 0,

x2n+1 = Tx2n and x2n+2 = Sx2n+1.

Suppose Gp(xn, xn+1, xn+1) = 0 for some n ∈ N. Without loss of generality, we assume n =
2k for some k ∈ N. Thus, Gp(x2k, x2k+1, x2k+1) = 0 implies x2k = x2k+1. Now, claim that
Gp(x2k+1, x2k+2, x2k+2) > 0. Hence, by using (2.14), we obtain

Gp(x2k+1, x2k+2, x2k+2) = Gp(Tx2k, Sx2k+1, Sx2k+1)

≤ δGp(x2k, x2k+1, x2k+1)

+(1− δ)min{DGp(x2k+1, Tx2k), DGp(x2k, Sx2k+1)}
= δGp(x2k, x2k+1, x2k+1)

+(1− δ)min{DGp(x2k+1, x2k+1), DGp(x2k, x2k+2)}
= 0.

11
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Therefore, we conclude that x2k+1 = x2k+2. Hence, we have x2k = Tx2k = Sx2k which implies that
x2k is a common fixed point of T and S. As a result, we can also suppose that the successive terms
of {xn} are different. Thus, we get Gp(xn, xn+1, xn+1) > 0 for all n ∈ N. If n is even, then n = 2t
for some t ∈ N. From (2.14), we have

Gp(x2t, x2t+1, x2t+1) = Gp(x2t+1, x2t, x2t) = Gp(Tx2t, Sx2t−1, Sx2t−1)

≤ δGp(x2t, x2t−1, x2t−1)

+(1− δ)min{DGp(x2t−1, Tx2t), DGp(x2t, Sx2t−1)}
= δGp(x2t, x2t−1, x2t−1)

= δGp(x2t−1, x2t, x2t). (2.15)

If n is odd, then n = 2t+ 1 for some t ∈ N and so we deduce

Gp(x2t+1, x2t+2, x2t+2) = Gp(Tx2t, Sx2t+1, Sx2t+1)

≤ δGp(x2t, x2t+1, x2t+1)

+(1− δ)min{DGp(x2t+1, Tx2t), DGp(x2t, Sx2t+1)}
= δGp(x2t, x2t+1, x2t+1). (2.16)

From (2.15) and (2.16), we have

Gp(xn, xn+1, xn+1) ≤ δGp(xn−1, xn, xn).

By induction,

Gp(xn, xn+1, xn+1) ≤ δnGp(x0, x1, x1).

Now let’s show that {xn} is a Gp-Cauchy sequence. For all m,n ∈ N with m > n, we acquire

Gp(xn, xm, xm) ≤ Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + . . .

+Gp(xm−1, xm, xm)

≤ δnGp(x0, x1, x1) + δn+1Gp(x0, x1, x1) + . . .

+δm−1Gp(x0, x1, x1)

= δn[1 + δ + · · ·+ δm−n−1]Gp(x0, x1, x1)

= δn
1− δm−n

1− δ
Gp(x0, x1, x1)

≤ δn

1− δ
Gp(x0, x1, x1).

By taking the limit of last inequality as n → ∞, we deduce

lim
n,m→∞

Gp(xn, xm, xm) = 0

which implies {xn} is a Gp-Cauchy sequence in X. Since (X,Gp) is a Gp-complete Gp-metric space,
{xn} converges to a point x ∈ X such that

lim
n,m→∞

Gp(xn, xm, xm) = lim
n→∞

Gp(xn, x, x) = Gp(x, x, x) = 0.

Furthermore, from Lemma 2.4, we have

lim
n→∞

DGp(xn, x) = 0.

12
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Now, let’s show that Gp(Tx, x, x) = 0. Suppose the contrary, that is, Gp(Tx, x, x) > 0. Then, from
(2.14) and triangle inequality, we have

Gp(Tx, x, x) ≤ Gp(Tx, x2n+2, x2n+2) +Gp(x2n+2, x, x)

−Gp(x2n+2, x2n+2, x2n+2)

≤ Gp(Tx, x2n+2, x2n+2) +Gp(x2n+2, x, x)

= Gp(Tx, Sx2n+1, Sx2n+1) +Gp(x2n+2, x, x)

≤ δGp(x, x2n+1, x2n+1)

+(1− δ)min{DGp(x2n+1, Tx), DGp(x, Sx2n+1)}+Gp(x2n+2, x, x).

As n → ∞ in the last inequality, we obtain Gp(Tx, x, x) = 0 indicating Tx = x. Now, let’s show
Sx = x. Suppose Sx ̸= x. Then, by (2.14),

Gp(x, Sx, Sx) = Gp(Tx, Sx, Sx)

≤ δGp(x, x, x) + (1− δ)min{DGp(x, Sx), DGp(x, Tx)}
= 0.

Taking the limit in the last inequality as n → ∞, we derive Gp(x, Sx, Sx) = 0 which denotes
Sx = x. Therefore, Tx = x = Sx and so x is a common fixed point of T and S in X.

Corollary 2.10. Let (X,Gp) be a Gp-complete Gp-metric space and let T, S : X → X be two
(δ, 1− δ)-weak contractions, that is, there exists a δ ∈ (0, 1) such that for all x, y ∈ X the following
holds

Gp(Tx, Sy, Sy) ≤ δGp(x, y, y) + (1− δ)min{DGp(y, Tx), DGp(x, Sy), DGp(x, Tx)}.

Then T and S have a unique common fixed point in X.

Theorem 2.11. Let (X,Gp) be a Gp-complete Gp-metric space and let T, S : X → X be two
(φ, 1− δ)-weak contractions, that is, there exist δ ∈ (0, 1) and a (c)-comparison function such that
for all x, y ∈ X the following holds

Gp(Tx, Sy, Sy) ≤ φ(Gp(x, y, y)) + (1− δ)min{DGp(y, Tx), DGp(x, Sy)}. (2.17)

Then T and S have a common fixed point in X.

Proof. x0 ∈ X be an arbitrary point and choose x1 = Tx0 and x2 = Sx1. Continuing this process
we construct a sequence {xn} in X such that

x2n+1 = Tx2n and x2n+2 = Sx2n+1 (2.18)

for each n ≥ 0. Suppose Gp(xn, xn+1, xn+1) = 0 for some n ∈ N. Without loss of generality, we
assume n = 2k for some k ∈ N. Thus, Gp(x2k, x2k+1, x2k+1) = 0 which implies x2k = x2k+1. Now
assume Gp(x2k+1, x2k+2, x2k+2) > 0. Hence, using (2.17), we obtain

Gp(x2k+1, x2k+2, x2k+2) = Gp(Tx2k, Sx2k+1, Sx2k+1)

≤ φ(Gp(x2k, x2k+1, x2k+1))

+(1− δ)min{DGp(x2k+1, Tx2k), DGp(x2k, Sx2k+1)}
= φ(0)

≤ φ(Gp(x2k+1, x2k+2, x2k+2))

< Gp(x2k+1, x2k+2, x2k+2)

13
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which is a contradiction. Then, we conclude that x2k = x2k+1 = x2k+2. So, we deduce x2k =
Tx2k = Sx2k proving x2k is a common fixed point of T and S. Therefore, we can claim that the
successive terms of {xn} are different. Then Gp(xn, xn+1, xn+1) > 0 for all n ∈ N. If n is even,
then n = 2t for some t ∈ N. Then, by using (2.17), we obtain

Gp(x2t, x2t+1, x2t+1) = Gp(x2t+1, x2t, x2t) = Gp(Tx2t, Sx2t−1, Sx2t−1)

≤ φ(Gp(x2t, x2t−1, x2t−1))

+(1− δ)min{DGp(x2t−1, Tx2t), DGp(x2t, Sx2t−1)}
= φ(Gp(x2t, x2t−1, x2t−1))

= φ(Gp(x2t−1, x2t, x2t)). (2.19)

If n is odd, then n = 2t+ 1 for some t ∈ N, so we have

Gp(x2t+1, x2t+2, x2t+2) = Gp(Tx2t, Sx2t+1, Sx2t+1)

≤ φ(Gp(x2t, x2t+1, x2t+1))

+(1− δ)min{DGp(x2t+1, Tx2t), DGp(x2t, Sx2t+1)}
= φ(Gp(x2t, x2t+1, x2t+1)). (2.20)

From (2.19) and (2.20), we get

Gp(xn, xn+1, xn+1) ≤ φ(Gp(xn−1, xn, xn)).

By induction, we obtain

Gp(xn, xn+1, xn+1) ≤ φn(Gp(x0, x1, x1)).

Now let’s show that {xn} is a Gp-Cauchy sequence. For all m,n ∈ N with m > n, we have

Gp(xn, xm, xm) ≤ Gp(xn, xn+1, xn+1) +Gp(xn+1, xn+2, xn+2) + . . .

+Gp(xm−1, xm, xm)

≤ φn(Gp(x0, x1, x1)) + φn+1(Gp(x0, x1, x1)) + . . .

+φm−1(Gp(x0, x1, x1))

=

m−1∑
i=n

φi(Gp(x0, x1, x1))

≤
∞∑
i=n

φi(Gp(x0, x1, x1)).

In the last inequality as n → ∞, we get

lim
n,m→∞

Gp(xn, xm, xm) = 0.

Thus, {xn} is a Gp-Cauchy sequence in X. Since (X,Gp) is a Gp-complete Gp-metric space, {xn}
converges to a point x ∈ X such that

lim
n,m→∞

Gp(xn, xm, xm) = lim
n→∞

Gp(xn, x, x) = Gp(x, x, x) = 0

Furthermore, from Lemma 2.4,

lim
n→∞

DGp(xn, x) = 0.

Now let’s show Gp(Tx, x, x) = 0. Suppose the contrary, that is, Gp(Tx, x, x) > 0. Then, from
(2.17) for all n ≥ n0, there exists an n0 ∈ N such as

Gp(x, x2n+1, x2n+1) <
Gp(Tx, x, x)

2
.
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Consequently, we obtain

Gp(Tx, x, x) ≤ Gp(Tx, x2n+2, x2n+2) +Gp(x2n+2, x, x)

−Gp(x2n+2, x2n+2, x2n+2)

≤ Gp(Tx, x2n+2, x2n+2) +Gp(x2n+2, x, x)

= Gp(Tx, Sx2n+1, Sx2n+1) +Gp(x2n+2, x, x)

≤ φ(Gp(x, x2n+1, x2n+1))

+(1− δ)min{DGp(x2n+1, Tx), DGp(x, Sx2n+1)}+Gp(x2n+2, x, x)

≤ φ

(
Gp(Tx, x, x)

2

)
+(1− δ)min{DGp(x2n+1, Tx), DGp(x, x2n+2)}+Gp(x2n+2, x, x).

Letting n → ∞ in the last inequality and using Lemma 2.5, we get

Gp(Tx, x, x) ≤ φ

(
Gp(Tx, x, x)

2

)
<

Gp(Tx, x, x)

2

which is a contradiction. Therefore, Gp(Tx, x, x) = 0 indicating Tx = x. Now, let’s show Sx = x.
Assume that Sx ̸= x. Then by (2.17), we deduce

Gp(Sx, x, x) = Gp(Tx, Sx, Sx)

≤ φ(Gp(x, x, x)) + (1− δ)min{DGp(x, Tx), DGp(x, Sx)}
= φ(0)

≤ φ(Gp(x, Sx, Sx))

< Gp(x, Sx, Sx)

which is a contradiction. Hence, Sx = x. As a result Tx = x = Sx and so x is a common fixed
point of T and S in X.

Corollary 2.12. Let (X,Gp) be a Gp-complete Gp-metric space and let T, S : X → X be two
(φ, 1− δ)-weak contractions, that is, there exist δ ∈ (0, 1) and a (c)-comparison function such that
for all x, y ∈ X the following holds

Gp(Tx, Sy, Sy) ≤ φ(Gp(x, y, y)) + (1− δ)min{DGp(y, Tx), DGp(x, Sy), DGp(x, Tx)}.
Then T and S have a unique common fixed point in X.

Theorem 2.13. Let (X,Gp) be a Gp-complete Gp-metric space and let T, S : X → X be two
strong Ćirić (α, 1−α)-weak contractions, that is, there exists a constant α ∈ [0, 1

2
) such that for all

x, y ∈ X the following holds

Gp(Tx, Sy, Sy) ≤ αM(x, y, y) + (1− α)min{DGp(y, Tx), DGp(x, Sy)} (2.21)

where

M(x, y, y) = max{Gp(x, y, y), Gp(x, Tx, Tx), Gp(y, Sy, Sy), Gp(x, Sy, Sy), Gp(y, Tx, Tx)}.
Then T and S have a common fixed point in X.

Corollary 2.14. Let (X,Gp) be a Gp-complete Gp-metric space and let T, S : X → X be two Ćirić
(α, 1−α)-weak contractions, that is, there exists a constant α ∈ [0, 1

2
) such that for all x, y ∈ X the

following holds

Gp(Tx, Sy, Sy) ≤ αM(x, y, y) + (1− α)min{DGp(y, Tx), DGp(x, Sy), DGp(x, Tx)}
where

M(x, y, y) = max{Gp(x, y, y), Gp(x, Tx, Tx), Gp(y, Sy, Sy), Gp(x, Sy, Sy), Gp(y, Tx, Tx)}.
Then T and S have a unique common fixed point in X.
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3 Examples

In this section, we present some examples to illustrate the usability of the previously obtained
results.

Example 3.1. Let X = [0, 1], Gp : X ×X ×X → [0,∞) be defined by Gp(x, y, z) = max{x, y, z}.
Then (X,Gp) is a Gp-complete Gp-metric space and for all x, y ∈ X

DGp(x, y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y) = |x− y|.

Define T : X → X as Tx =
x

5
for all x, y ∈ X. Without loss of generality suppose x ≤ y for all

x, y ∈ X and δ =
2

5
. Then, we get

Gp(Tx, Ty, Ty) = max
{x

5
,
y

5

}
=

y

5

≤ 2y

5
= δmax{x, y}

≤ δmax{x, y}+ (1− δ)min
{∣∣∣x− y

5

∣∣∣ , ∣∣∣y − x

5

∣∣∣}
= δGp(x, y, y) + (1− δ)min{DGp(x, Ty),

DGp(y, Tx)}.

Therefore all the conditions of (2.1) and (2.2) hold and T has a fixed point in X.

Example 3.2. Let X = [0, 1], Gp : X ×X ×X → [0,∞) be defined by Gp(x, y, z) = max{x, y, z}.
Then (X,Gp) is a Gp-complete Gp-metric space and for all x, y ∈ X

DGp(x, y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y) = |x− y|.

Define T : X → X and φ : [0,∞] → [0,∞] respectively as Tx =
x

3
and φ =

2t

3
for all x, y ∈ X.

Without loss of generality suppose x ≤ y, δ ∈ (0, 1) and φ is a comparison function. Then, we get

Gp(Tx, Ty, Ty) = max
{x

3
,
y

3

}
=

y

3

≤ 2y

3
= φ(y) = φ(max{x, y})

≤ φ(max{x, y}) + (1− δ)min
{∣∣∣x− y

3

∣∣∣ , ∣∣∣y − x

3

∣∣∣}
= φ(Gp(x, y, y)) + (1− δ)min{DGp(x, Ty),

DGp(y, Tx)}.

Therefore, all the conditions of (2.3) and (2.4) hold and T has a fixed point in X.

Example 3.3. Let X = [0, 1], Gp : X ×X ×X → [0,∞) be defined by Gp(x, y, z) = max{x, y, z}.
Then (X,Gp) is a Gp-complete Gp-metric space and for all x, y ∈ X

DGp(x, y) = Gp(x, y, y) +Gp(y, x, x)−Gp(x, x, x)−Gp(y, y, y) = |x− y|.

Define T, S : X → X as Tx =
x

6
and Sx =

x

2
. Also φ : [0,∞] → [0,∞] is defined as φ =

3t

4
.

Without loss of generality suppose x ≤ y, δ ∈ (0, 1) and φ is a comparison function. Then, we
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obtain

Gp(Tx, Sy, Sy) = max
{x

6
,
y

2

}
=

y

2

≤ 3y

4
= φ(y) = φ(max{x, y})

≤ φ(max{x, y}) + (1− δ)min
{∣∣∣x− y

2

∣∣∣ , ∣∣∣y − x

6

∣∣∣}
= φ(Gp(x, y, y)) + (1− δ)min{DGp(x, Sy),

DGp(y, Tx)}.

Then, the conditions of (2.17) hold and T and S have a common fixed point in X.

4 Conclusions

In the present paper, we define the concepts of (δ, 1−δ)-weak contraction, (φ, 1−δ)-weak contraction
and Ćirić-type almost contraction in the sense of Berinde in Gp-complete Gp-metric space and
establish some fixed point theorems in Gp-metric space which demonstrate the existence of fixed
points and common fixed points of mappings satisfying Berinde-type contractions. We note that
the results of this paper generalize several results in the literature.
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[17] Ćirić LjB. A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc.
1974;45:267-273.

[18] Granas A, Dugundji J. Fixed point theory. Springer Monographs in Mathematics; 2002.

[19] Berinde V. Generalized contractions and applications. (in Romanian), Editura Cub Press 22,
Baia Mare; 1997.

[20] Ampadu CB. Fixed point theorems for (δ, 1 − δ)-weak contractions in the sense of Ampadu
on partial metric spaces. Carrolton Road, Boston; 2017.

——————————————————————————————————————————————-
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