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Abstract

In this paper, we construct a type of plane wave solution of Landau-Lifshitz equation with the
model |u| = 1. In addition, we discover the law which when the spin vector u is moving along
one direction, the spin vector u approaches the south pole (0, 0,−1) from the north pole (0, 0, 1)
with the model |x| from 0 tend to ∞. Landau-Lifshitz equations describe an evolution of spin
field in continuous ferromagnetic. Therefore, it is very significant to study the problems about
magnetization movement. Many people studied a lot of problems and constructed many solutions
about the Landau-Lifshitz equation, but no one to study the linear plane wave solution. So, in
this paper, we construct some stationary solutions of Schrodinger Map equation which contains
a style of plane wave solutions.
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1 Introduction

Landau and Lifshitz [1] proposed the equation{
∂u
∂t

= λ1u×He − λ2u× (u×He), Ω× (0, T ),
He := −H(u) + Σ3

i,j=1
∂

∂xj
(aij

∂u
∂xi

) +H, Ω× (0, T ),
(1.1)

where λ1 and λ2 are constants with λ2 > 0, the three-dimensional vector u(x, t) = (u1(x, t), u2(x, t),
u3(x, t)) means the evolution of the magnetization vector with t ∈ (0, T ) and T > 0, the n-
dimensional vector x ∈ Ω ⊂ Rn remarks the physical particle of magnet, He is general effective
field. This equation describes an evolution of spin fields in continuous ferromagnetic and bears a
fundamental role in the understanding of non-equilibrium, just as the Navier-Stokes equation does
in that of fluid dynamics.

It is also very difficult to find the exact solution of the Landau-Lifshitz equation with external field,
especially, the case when the evolution of the magnetization vector u with |u| = 1. In recent years,
more and more physicists and mathematicians studied and did a lot of work on the Landau-Lifshitz
equations. Ding and Guo [2] given the existence, partial regularity and uniqueness of weak solution
to the initial boundary value problem for the unsaturated Landau-Lifshitz systems. Ding and Wang
[3] proved that in dimensions three or four, for suitably chosen initial data, the short time smooth
solution to the Landau-Lifshitz-Gilbert equation blows up at finite time. Zhong, [4] constructed
the exact solution of two or three-dimensional space time Landau-Lifshitz equation raised in the
ferromagnetic materials, under suitable transformations, some exact solutions are obtained in the
radially symmetric coordinates and the type of solution covered the finite time blow-up solution,
vortex solution and periodic solution. Zhong, etc. [5] constructed two exact blowup solutions of the
(2 + 1)-dimensional space-time inhomogeneous isotropic Landau-Lifshitz equation under suitable
transformations.

Considering Landau-Lifshitz equation (1.1) without dynamical damp (λ2 = 0), and without external
magnetic field, suppose λ1 = 1, we have {

ut = u×∆u,
u ∈ S2,

(1.2)

which means the intensity of magnetization u moving around the effective field ∆u. It is famous
Heisenberg spin system [6] and so-called Schrödinger map (SM) equation in the geometry [7].

As regard SM equation of one-dimensional, Zhou, etc. [8] and Sulem, etc. [9] studied the Cauchy
problem respectively and proved the global existence of the weak solution and global existent unique
of small data smooth solution. Chang, etc. [10] and Ding, etc. [11] proved the global existent unique
of one dimension smooth solution. For the Cauchy problem of two dimensions case, Chang, etc.
[10] had got the existent unique of small data global smooth solution. In order to avoid the limit of
small data, Gustafson, etc. [12] analyzed the existence of solitary wave solution, they also analysed
the anisotropic SM equation

ut = u× (∆u+ λu3(0, 0, 1)), λ > 0, (1.3)

and obtained unique global smooth solution of Cauchy problem with initial value is equivalent or
localized. About multidimensional case, Yang, etc. [13, 14, 15] constructed some explicit solutions.
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There is an interesting result, Guo, etc. [16] constructed non-trivial global smooth solution of SM
equation and the energy of initial value is arbitrary large, which is no limit of small energy.

However, many people studied a lot of problems and construct many solutions about the LL
equation, but no one to study the linear plane wave solution. So, in this paper, we construct
some stationary solutions of Schrödinger map equation which contain a style linear plane wave
solutions. and obtain some dynamical solutions of the equation

{
vt = v × (∆v + (0, 0, h)),
v ∈ S2.

(1.4)

where constant vector (0, 0, h) is external magnetic field. In addition, we discover the law which
when the intensity of magnetization u is moving along one direction, the intensity of magnetization
u approaches the south pole (0, 0,−1) from the north pole (0, 0, 1) with the model |x| from 0 tend
to ∞.

2 Stationary Solutions of SM Equation

In this section, we consider the stationary solutions of the equation (1.2):

{
u×△u = 0,
u ∈ S2.

(2.1)

which has the form

u = (u1, u2, u3) =
1

1 + f2
1 + f2

2

 2f2
1

2f2
2

1− f2
1 − f2

2

 , (2.2)

where f1 = f1(x), f2 = f2(x) and x = (x1, x2, · · · , xn). We compute the term ∆u firstly,

∆u = uf1f1 |Df1|2 + uf2f2 |Df2|2 + 2uf1f2Df1Df2 + uf1∆f1 + uf2∆f2. (2.3)

Substituting (2.3) into the equation (2.1), we have

u×∆u = u×uf1f1 |Df1|2+u×uf2f2 |Df2|2+u×2uf1f2Df1Df2+u×uf1∆f1+u×uf2∆f2. (2.4)

Next we calculate the terms of the equation (2.4),



u× uf1f1 = −8f1
1+f2

1+f2
2
u×

 1
0

−f1

+ 1
1+f2

1+f2
2
u×

 0
0
−2

 ,

u× uf2f2 = −8f2
1+f2

1+f2
2
u×

 1
0

−f2

+ 1
1+f2

1+f2
2
u×

 0
0
−2

 ,

u× uf1f2 = −4f1
(1+f2

1+f2
2 )2

u×

 1
0

−f2

+ −4f2
(1+f2

1+f2
2 )2

u×

 1
0

−f1

 .

(2.5)
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Substituting (2.5) into the equation (2.4), we have

0 =
−8f1|Df1|2

(1 + f2
1 + f2

2 )
3

 2f1
2f2

1− f2
1 − f2

2

×

 0
0
2

+
|Df1|2

(1 + f2
1 + f2

2 )
2

 2f1
2f2

1− f2
1 − f2

2

×

 0
0
−2

+
−8f2|Df2|2

(1 + f2
1 + f2

2 )
3

 2f1
2f2

1− f2
1 − f2

2

×

 0
1

−f2

+
|Df2|2

(1 + f2
1 + f2

2 )
2 2f1

2f2
1− f2

1 − f2
2

×

 0
0
−2

+
−8f1Df1Df2
(1 + f2

1 + f2
2 )

3

 2f1
2f2

1− f2
1 − f2

2

×

 0
1

−f2

+

−8f1Df1Df2
(1 + f2

1 + f2
2 )

3

 2f1
2f2

1− f2
1 − f2

2

×

 1
0

−f1

+
∆f1

(1 + f2
1 + f2

2 )
2

 2f1
2f2

1− f2
1 − f2

2

×

 2
0

−2f1

+
∆f2

(1 + f2
1 + f2

2 )
2

 2f1
2f2

1− f2
1 − f2

2

×

 0
2

−2f2

 .

(2.6)

Multiplying the formula (1 + f2
1 + f2

2 )
3 in both sides of above formula, then (2.6) is equivalent to

0 = −8f1|Df1|2
 2f1

2f2
1− f2

1 − f2
2

×

 1
0

−f1

+ |Df1|2(1 + f2
1 + f2

2 )

 2f1
2f2

1− f2
1 − f2

2


×

 0
0
−2

− 8f2|Df2|2
 2f1

2f2
1− f2

1 − f2
2

×

 0
1

−f2

+ |Df2|2(1 + f2
1 + f2

2 )

 2f1
2f2

1− f2
1 − f2

2

×

 0
0
−2

− 8f1 ·Df1 ·Df2

 2f1
2f2

1− f2
1 − f2

2

×

 0
1

−f2


− 8f2 ·Df1 ·Df2

 2f1
2f2

1− f2
1 − f2

2

×

 1
0

−f1

+∆f1(1 + f2
1 + f2

2 )

 2f1
2f2

1− f2
1 − f2

2


×

 2
0

−2f1

+∆f2(1 + f2
1 + f2

2 )

 2f1
2f2

1− f2
1 − f2

2

×

 0
2

−2f2

 .

(2.7)

Following the proposition of the cross product, there exist g such that the equation (2.7) can rewrite
as following: 1

0
−f1

 (∆f1(1 + f2
1 + f2

2 )− 4f1|Df1|2)− (4f2|Df2|2 + 4f1 ·Df1 ·Df2)

 0
1

−f2


+

 0
0
−1

 (1 + f2
1 + f2

2 )(|Df1|2 + |Df2|2)− 4f1 ·Df1 ·Df2

 1
0

−f1

+

∆f2(1 + f2
1 + f2

2 )

 0
1

−f2

 = −g

 2f1
2f2

1− f1 − f2

 .

(2.8)
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That is 
−4f1|Df1|2 +∆f1(1 + f1

2 + f2
2)− 4f2 ·Df1 ·Df2 = −2gf1

−4f2|Df2|2 +∆f2(1 + f1
2 + f2

2)− 4f1 ·Df1 ·Df2 = −2gf2
(−f1∆f1 − |Df1|2 − |Df2|2 − f2∆f2)(1 + f1

2 + f2
2) + 4f1

2|Df1|2
+4f2

2|Df2|2 + 8f1f2 ·Df1 ·Df2 = −g(1− f1
2 − f2

2).

(2.9)

After simplifying, we can get the following formula:

|Df1|2 + |Df2|2 = g. (2.10)

Thus, the equation (2.9) is equivalent to the following equations:
|Df1|2 + |Df2|2 = g
4f1|Df1|2 −∆f1(1 + f1

2 + f2
2) + 4f2 ·Df1 ·Df2 = 2gf1

4f2|Df2|2 −∆f2(1 + f1
2 + f2

2) + 4f1 ·Df1 ·Df2 = 2gf2.
(2.11)

We can simplify the above equations, and we get the following equations:{
2f1|Df1|2 −∆f1(1 + f1

2 + f2
2) + 4f2 ·Df1 ·Df2 − 2f1|Df2|2 = 0

2f2|Df2|2 −∆f2(1 + f1
2 + f2

2) + 4f1 ·Df1 ·Df2 − 2f2|Df1|2 = 0.
(2.12)

Next we construct the Plane wave solutions of equation (2.12). Assuming that f1 = Σn
i=1aixi, and

f2 = Σn
i=1bixi, then the equations (2.12) can be rewrote as following:{

2Σn
i=1aixi · Σn

i=1ai
2 + 4Σn

i=1bixi · Σn
i=1aibi − 2Σn

i=1aixi · Σn
i=1bi

2 = 0
2Σn

i=1bixi · Σn
i=1bi

2 + 4Σn
i=1bixi · Σn

i=1aibi − 2Σn
i=1bixi · Σn

i=1ai
2 = 0

. (2.13)

Let the vector A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn), then we rewrote the equation (2.13) as
following: {

ai(A
2 −B2) + 2biAB = 0

bi(B
2 −A2) + 2aiAB = 0, i = 1, . . . , n.

(2.14)

According to the Cramer’s rule, the equations (2.14) has unique solution, which is{
AB = 0,
A2 = B2.

i.e. {
Σn

i=1aibi = 0,
Σn

i=1bi
2 = ai

2.
(2.15)

2.1 Considering the two dimensional case (n = 2)

In this section, we consider the two-dimensional case.

(i) If A = (a, b), a, b ∈ R, then B = (−b, a) or B = (b,−a). We can obtain the following equations:{
f1 = ax1 + bx2,
f2 = −bx1 + ax2,

or {
f1 = ax1 + bx2,
f2 = bx1 − ax2.

Thus, the solution of the equation (2.1) can be wrote as following:

g1 =
1

1 + (a2 + b2)(x1
2 + x2

2)
(2ax1 + 2bx2, 2ax2 − 2bx1, 1− (a2 + b2)(x1

2 + x2
2)), (2.16)

or

g2 =
1

1 + (a2 + b2)(x1
2 + x2

2)
(2ax1 + 2bx2, 2bx1 − 2ax2, 1− (a2 + b2)(x1

2 + x2
2)). (2.17)

5
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(ii) If A = (a, ia), a ∈ R, then B = (−ia, a) or B = (ia,−a), we have{
f1 = ax1 + iax2,
f2 = −iax1 + ax2,

or {
f1 = ax1 + iax2,
f2 = iax1 − ax2.

So, the solutions of the equation (2.1) can be wrote as following:

g3 = (2ax1 + 2iax2,−2iax1 + 2ax2, 1), (2.18)

or
g4 = (2ax1 + 2iax2, 2iax1 − 2ax2, 1). (2.19)

(iii) If A = (ia, a), a ∈ R, then B = (a,−ia) or B = (−a, ia). We have:{
f1 = iax1 + ax2,
f2 = ax1 − iax2,

or {
f1 = iax1 + ax2,
f2 = −ax1 + iax2.

So, the solutions of the equation (2.1) can be wrote as following:

g5 = (2iax1 + 2ax2, 2ax1 − 2iax2, 1), (2.20)

or
g6 = (2iax1 + 2ax2,−2ax1 + 2iax2, 1). (2.21)

2.2 Considering the three dimensional case (n = 3)

In this section, we consider the three-dimensional case. Assume that the vector A = (a1, b1, c1),
a1, b1, c1 ∈ R, substituting it into (2.15), we have

B = (
b1

2c1c2 − b1M
1
2 − (a1

2 + b1
2)c1c2

(a1
2 + b12)a1

,
M

1
2 − b1c1c2
a1

2 + b12
, c2),

where c2 is arbitrary constant and

M = a1
6 + 2a1

4b1
2 + a1

4c1
2 + a1

2b1
4 − a1

4c2
2 + a1

2b1
2c1

2 − a1
2b1

2c2
2 − a1

2c1
2c2

2,

Therefore, {
f1 = a1x1 + b1x2 + c1x3,

f2 = b1
2c1c2−b1M

1
2 −(a1

2+b1
2)c1c2

(a1
2+b12)a1

x1 +
−b1c1c2+M

1
2

a1
2+b12 x2 + c2x3.

(2.22)

We can substitute the equality (2.22) into the equation (2.2) and obtain the solution g7 of the
equation (2.1), that is

g7 =

(
1 + (a1x1 + b1x2 + c1x3)

2 +
( b1

2c1c2x1

(a1
2 + b12)a1

− c1c2x1

a1
− b1c1c2x2

a1
2 + b12

+ c2x3−

b1M
1
2 x1

(a1
2 + b12)a1

+
M

1
2 x2

a1
2 + b12

)2
)−1(

2(a1x1 + b1x2 + c1x3), 2
( M

1
2

(a2
1 + b21)a1

x1 + c2x3

+
c1c2
a1

x1 +
−b1c1c2 +M

1
2

a2
1 + b21

x2 −
b1c1c2

(a2
1 + b21)a1

x1

)
, 1− (a1x1 + b1x2 + c1x3)

2−

(M 1
2 − b1c1c2 + c1c2(a

2
1 + b21)

(a2
1 + b21)a1

x1 +
−b1c1c2 +M

1
2

a2
1 + b21

x2 + c2x3

)2)
.

(2.23)

6
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We assume

M = a1
6 + 2a1

4b1
2 + a1

4c1
2 + a1

2b1
4 − a1

4c2
2 + a1

2b1
2c1

2 − a1
2b1

2c2
2 − a1

2c1
2c2

2.

After computing by the Maple Soft, we can prove the conclusion that all solutions above are satisfied
the equation (2.1). Next we will consider the dynamical solutions of SM equation with external
magnetic field (0, 0, h).

3 Dynamical Solutions of SM Equation with External
Magnetic Field

Now, we consider the dynamical solutions of the SM equation with external magnetic field (0, 0, h).
In order to construct the solutions of equation (1.4), we firstly exhibit the following Lemma.

Lemma 3.1. If u is the stationary solution of the equation (2.1), then v = uQ is the solution of
the equation (1.4), where Q is the following first class Orthogonal matrix:(

cosht − sinht 0
sinht cosht 0

0 0 1

)
.

Proof. Substituting v = uQ into the equation (1.4), we have

v × (∆v + (0, 0, h)) = v ×∆v + v × (0, 0, h)

= u ·Q×∆v + h · u ·Q× (0, 0, 1)

= (u×∆u)Q+ h · u ·Q× (0, 0, 1)

= h · u ·Q× (0, 0, 1)

= h(u1, u2, u3)
(

cosht − sinht 0
sinht cosht 0

0 0 1

)
× (0, 0, 1)

= (−hu1 sinht+ hu2 cosht,−hu1 cosht− hu2 sinht, 0),

(3.1)

and

vt =
(
(u1, u2, u3)

(
cosht − sinht 0
sinht cosht 0

0 0 1

))
t

= (u1, u2, u3)
(

cosht − sinht 0
sinht cosht 0

0 0 1

)
t

= (u1, u2, u3)
(−h sinht −h cosht 0

h cosht −h sinht 0
0 0 0

)
= (−hu1 sinht+ hu2 cosht,−hu1 cosht− hu2 sinht, 0).

(3.2)

Thus v = uQ is the solution of the equation (1.4).

According to the above lemma, we can get the following solutions of the equation (1.4):

v1 =
1

1 + (a2 + b2)(x2
1 + x2

2)

(
(2ax1 + 2bx2) cosht+ (2ax2 − 2bx1) sinht,

− (2ax1 + 2bx2) sinht+ (2ax2 − 2bx1) cosht, 1− (a2 + b2)(x1
2 + x2

2)
)
,

v2 =
1

1 + (a2 + b2)(x2
1 + x2

2)

(
(2ax1 + 2bx2) cosht+ (2bx1 − 2ax2) sinht,

− (2ax1 + 2bx2) sinht+ (2bx1 − 2ax2) cosht, 1− (a2 + b2)(x1
2 + x2

2)
)
,

v3 =
(
(2ax1 + 2iax2) cosht+ (2ax2 − 2iax1) sinht,−(2ax1 + 2iax2) sinht

+ (2ax2 − 2iax1) cosht, 1
)
,

7
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v4 =
(
(2ax1 + 2iax2) cosht+ (2iax1 − 2ax2) sinht,−(2ax1 + 2iax2) sinht

+ (2iax1 − 2ax2) cosht, 1
)
,

v5 =
(
(2iax1 + 2ax2) cosht+ (2ax1 − 2iax2) sinht,−(2iax1 + 2ax2) sinht

+ (2ax1 − 2iax2) sinht, 1
)
,

v6 =
(
(2iax1 + 2ax2) cosht+ (−2ax1 + 2iax2) sinht,−(2iax1 + 2ax2) sinht

+ (−2ax1 + 2iax2) cosht, 1
)
,

and u7 ·Q is also the solution of the equation (1.4), that is

v7 =

(
1 + (a1x1 + b1x2 + c1x3)

2 +
( b1

2c1c2x1

(a1
2 + b12)a1

− c1c2x1

a1
− b1c1c2x2

a1
2 + b12

+ c2x3

− b1M
1
2 x1

(a1
2 + b12)a1

+
M

1
2 x2

a1
2 + b12

)2
)−1(

2 sinht
( M

1
2

(a2
1 + b21)a1

x1 + c2x3 +
c1c2
a1

x1

−b1c1c2 +M
1
2

a2
1 + b21

x2 −
b1c1c2

(a2
1 + b21)a1

x1

)
+ 2 cosht(a1x1 + b1x2 + c1x3),

− 2 sinht(a1x1 + b1x2 + c1x3) + 2 cosht
( M

1
2

(a2
1 + b21)a1

x1 + c2x3 +
c1c2
a1

x1

+
−b1c1c2 +M

1
2

a2
1 + b21

x2 −
b1c1c2

(a2
1 + b21)a1

x1

)
, 1− (a1x1 + b1x2 + c1x3)

2−

(M 1
2 − b1c1c2 + c1c2(a

2
1 + b21)

(a2
1 + b21)a1

x1 +
−b1c1c2 +M

1
2

a2
1 + b21

x2 + c2x3

)2)
.

We assume

M = a1
6 + 2a1

4b1
2 + a1

4c1
2 + a1

2b1
4 − a1

4c2
2 + a1

2b1
2c1

2 − a1
2b1

2c2
2 − a1

2c1
2c2

2.

4 The Figures of the Solutions of the Schrödinger Map
Equation

Firstly, we construct the figures of the stationary solutions g1 and help us find out the law of the

solution of the Schrödinger map equation. We assume that the parameters of g1, a =
√

2
2

and

b =
√

2
2
. Therefore, the solution g1 becomes as the following formula: g1 = 1

1+(x1
2+x2

2)
(
√
2x1 +

√
2x2,−

√
2x1 +

√
2x2, 1 − (x1

2 + x2
2)). Then we assume x2 = kx1 and observe the phenomenon

that when k = 1, |u| = 1, |x| ≤ 0.001, |x| ≤ 0.1, |x| ≤ 1, |x| ≤ 100 :

Fig. 1. Let x2 = kx1, k = 1, |x1| ≤ 0.0001 (left figure), and |x1| ≤ 0.01 (right figure)
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Fig. 2. Let x2 = kx1, |x1| ≤ 1 (left figure), and |x1| ≤ 100 (right figure)

From above figures we can discover the phenomenon that the intensity of magnetization g1 approaches
the north pole (0, 0, 1) along the curve x2 = kx1, k ∈ R when the model |x| tend to 0. Another
aspect, the intensity of magnetization g1 approaches the south pole (0, 0,−1) along the same curve
x2 = kx1, k ∈ R when the model |x| tend to ∞.

Then we study again the case when x2 = kx1
2, assume a =

√
2

2
and b =

√
2

2
, k = 1, |u| = 1, |x1| ≤

0.0001, 1, 2, 4, 10, 20 and we describe those orbits as following:

Fig. 3. Let |x1| ≤ 0.0001 (left figure), and |x1| ≤ 1 (right figure)

Fig. 4. Let |x1| ≤ 2 (left figure), and |x1| ≤ 4 (right figure)

Fig. 5. Let x2 = kx1
2, |x1| ≤ 10 (left figure), and |x1| ≤ 20 (right figure)
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From above figures we can find that the intensity of magnetization g1 approaches the north pole
(0, 0, 1) along the curve x2 = kx1

2, k ∈ R when the model |x| tend to 0. Another aspect, the
intensity of magnetization g1 approaches the south pole (0, 0,−1) when the model |x| tend to ∞.

Next we study the different cases when x2 = kx1, x2 = kx1
2, and x2 = kx1

3, k ∈ R, and assume

a =
√

2
2
, b =

√
2

2
, k = 3, |x1| ≤ 2, the solution : u = 1

1+(x1
2+x2

2)
(
√
2x1 +

√
2x2,−

√
2x1 +

√
2x2, 1−

(x1
2 + x2

2)), and we describe those orbits as following:

Fig. 6. x2 = kx1, (left) and x2 = kx1
2, |x1| ≤ 2, (right)

Fig. 7. x2 = kx1
3, k = 3, |x1| ≤ 2

Finally, we construct figures of the dynamical solutions v1 and help us find out the logic of the

solution of the Schrödinger map equation. We assume a =
√

2
2
, b =

√
2

2
, h = 1. Therefore, the

solution v1 becomes as the following formula:

v1 =
1

1 + (x2
1 + x2

2)

(
(
√
2x1 +

√
2x2) cos t+ (−

√
2x1 +

√
2ax2) sin t,

− (
√
2x1 +

√
2x2) sin t+ (−

√
2x1 +

√
2x2) cos t, 1− (x1

2 + x2
2)
)
,

Fig. 8. Let t = 0, x1 ∈ (0, 5), x2 ∈ (0, 5) (left) and t = 1, x1 ∈ (0, 5), x2 ∈ (0, 5)(right)
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Fig. 9. t = 2 (left) and t = 10 (right)

Fig. 10. t = 20 (left) and t = 50, (right)

From above figures we can find that the intensity of magnetization v1 approaches the south pole
(0, 0,−1) from the north pole (0, 0, 1) when the time t tend to ∞.

And then, we study the different cases when x1, x2 ∈ (0, 0.1), (0, 5), (0, 50) and (0, 1000) and assume

a =
√

2
2
, b =

√
2

2
, t = 2, h = 1, the solution can be wrote: v1 = 1

1+(x2
1+x2

2)

(
(
√
2x1 +

√
2x2) cos 2 +

(−
√
2x1 +

√
2x2) sin 2,−(

√
2x1 +

√
2x2) sin 2 + (−

√
2x1 +

√
2x2) cos 2, 1− (x1

2 + x2
2)
)

Fig. 11. x1 ∈ (0, 0.1), x2 ∈ (0, 0.1) (left) and x1 ∈ (0, 5), x2 ∈ (0, 5)(right)

Fig. 12. x1 ∈ (0, 50), x2 ∈ (0, 50) (left) andx1 ∈ (0, 1000), x2 ∈ (0, 1000)(right)

From above figures we can find that the intensity of magnetization v1 approaches the south pole
(0, 0,−1) from the north pole (0, 0, 1) when the model |x1| tend to ∞ at the same time.
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All in all, we discover the law which when the intensity of magnetization v1 is moving along one
direction, the intensity of magnetization v1 approaches the south pole (0, 0,−1) from the north pole
(0, 0, 1) with the model |x1| from 0 tend to ∞.

5 Conclusions

a In the section (2), people construct solution of Landau Lifshitz equation usually by hirota method
and Backlund transformation. However, in this paper, we construct another style solution
that a type of plane wave solution of Landau-Lifshitz equation with the model |u| = 1 by
different method.

b In the section (4), we discover the law that when the external magnetic field u is moving along
one direction, the magnetic field strength u approaches the south pole (0,0,-1) from the north
pole (0,0,1) with the model |x| from 0 tend to ∞.

.
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