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ABSTRACT 
 

We study relations between technological and organizational aspects of production and, 
particularly, a role of high-ability agents. We construct a theoretical model in which n physical 
resources and one informational resource (such as talented individuals, high-ability managers) are 
used in production process. We show that both the production function and its conjugate function, 
which describes spending of the informational resource, are generated by a choice of technology 
from a technological menu. These two dual choice problems correspond to decisions made by two 
interest groups in the organization. The group interested in increasing the output is referred as 
‘operatives’, and the group interested in diminishing the expenditures of the costly informational 
resource – as ‘minimizers’. We show that if technological progress is not accompanied by 
organizational changes, it leads to an incompatibility: the choices of the interest groups diverge. If 
the final decision is made by ‘minimizers’, it leads to a bottleneck role of the ‘non-talented’ labor. 
The exit from this trap can consist in continuous change of the social technology when the 
economy moves along the growth path. Two examples are provided, in which the model is applied 
to theoretical analysis of the learning-by-doing process in industrial firms and to dynamics of 
structural changes in a university occupying teaching and research activities. 
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1. INTRODUCTION  
 
An important topic in economic literature is the 
role plaid in production and economic growth by 
a few of the most talented individuals and, 
correspondingly, the role of the organizational 
structure. The internal organization of production 
was studied, in particular, by [1-8]. Hall and 
Jones [9] consider social infrastructure as one of 
determinants of economic growth. Nelson and 
Sampat [10] and Nelson [11] relate institutions to 
social technologies which are used in production, 
in a definite sense symmetrically to physical 
technologies. Papandreou [12] argues that 
“Though it is often difficult to distinguish 
institutional and physical constraints impinging 
on production and consumption sets, it is 
important to do so, as it provides a starting point 
for what can and cannot be controlled by human 
agency”.  
 

In the present paper, we study relations between 
organizational and technological aspects of 
production. We develop the Lucas’ [1] idea that, 
though the production technology exhibits 
constant returns with respect to basic resources, 
such as labor and capital, the result of the use of 
this technology depends in a nonlinear way on 
one more factor, ‘management’, in Lucas’ terms.    
 

We propose a theoretical model, in which 
physical resources (such as labor, physical 
capital, natural resources in use, etc.) and a 
separate informational resource are 
distinguished. The informational resource 
includes talented individuals, and, in particular, 
high-ability managers, whilst less talented 
assistants are one of the physical resources

1
.   

 

Production function is assumed to exhibit 
constant returns to scale with respect to physical 
resources, while the informational resource 
influences production in a more complex way. 
Lucas [1] proposes to use an additional function 
to express the action of the informational 
resource

2
. We, instead, introduce a social 

technology function which reflects the quantity of 
the informational resource needed to produce a 
product unit.  
 

Technically, our analysis is based on a 
representation of the production function as a 
result of optimal choice of a ‘local’ Leontief 
technology from a given technological menu            

[13-17]. We show that, symmetrically to the 
production function, its conjugate function related 
to the social technology can be represented in a 
similar way as a result of choice of technology 
from the same technological menu. We interpret 
this pair of choice problems as decisions made 
by two interest groups in the organization, 
referred as operatives and minimizers. A goal of 
the operatives is to maximize the output, while 
the goal of the minimizers is to minimize the 
expenditure of the costly informational resource, 
such as the number of talented and high-paid 
individuals in the organization.  
 
In the framework of the model, we study a 
question of compatibility, i.e. coincidence of the 
technological choices made by the two interest 
groups. We find that a necessary and sufficient 
condition of the compatibility is a full use of              
all resources, physical and informational. 
Technological progress in the model transforms 
the technological menu and, as result, influences 
the compatibility. If the technological progress is 
not accompanied by institutional changes 
(changes in the social technology), it leads to an 
incompatibility: the choices of the operatives and 
the minimizers diverse, and if the final decision is 
made by minimizers, it leads to a bottleneck role 
of the “non-talented” labor. The exit of this trap 
can consist in a continuous improvement of the 
social technology when the economy moves 
along the growth path.  
 
We provide two detailed examples of 
applications of our model. The first example 
relates to learning-by-doing – the processes of a 
growth of labor productivity evoked by an 
accumulated experience on a firm level. Attention 
to such processes was attracted by Arrow [18] 
who gave two historical examples of growth in 
labor productivity independently on investments. 
The first of his cases is so called Horndal    
effect: the Horndal iron works in Sweden “had  
no new investment (and therefore presumably no  
 
1 Relation between a few talented individuals and many less-
talented assistants is one of the basic points in modern 
organizational economics (see e.g. [6]). 
2 Lucas [1] assumes that if ),( nkf  is a production function 

under “normal” management (where k  is capital, n  is 

labor), and the firm’s manager is endowed with a managerial 

talent level x , then the firm produces )],([ knfxg  units of 

output, where (.,.)g  is an increasing, strictly concave 

function. 
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significant change in its methods of production) 
for a period of 15 years, yet productivity (output 
per man-hour) rose on the average close to 2% 
per annum” ([18], p. 156).  By now this case has 
been perfectly studied by economic historians 
(e.g. [19]). The second Arrow’s case relates to a 
practice of American military aircraft-building: a 
time of building of a frame of bomber diminished 
more than 2 times after each 20 built frames.   
 

In the Arrow’s cases, no equipment no labor did 
change. Changes concerned only experience 
and skills of the workers. Probably, these 
changes were connected also with changes in 
organization of the production process and in the 
use of some informational resource, such as the 
time of high-skilled experts and constructors of 
the aircraft who directed actions of the workers3. 
We can suppose that the learning-by-doing is 
closely related to a change in social technology 
and to improvement of organizational capital of 
the firm.  
 

However, despite he stressed the role of 
accumulated experience improving skills and 
increasing technological knowledge, Arrow 
himself in his formal model described somewhat 
different process which would be impossible 
without investments. In the Arrow’s model, new 
knowledge is embodied in new generations of 
capital possessing a more perfect production 
function; i.e. the main engine of growth in his 
model is an improvement of the physical 
technology and the structure of physical capital. 
A necessity to construct for explanation of the 
Horndal effect a theoretical model, in which an 
increase in labor productivity would not be based 
on investments, was stressed by Sheshinski [20]. 
Analysis of the learning-by-doing effect is still an 
open problem, and we contribute to it by use of 
our model.  
 

Another, quite different of industrial firm, example 
of an economic system whose dynamics 
essentially depends on its structural organization. 
is university. Two basic sides of activity of a 
university are teaching and research, and the 
latter plays an increasing role; e.g. at the end of 
1990s a half of fundamental research in US were 
done in the universities [21]. In the literature 
these two sides of activity of university are 
usually considered in isolation, despite success 
of the best universities is based on a high degree 
of integration and synergy of educational and 
research activities. Production functions are often 
used in analysis of educational system, but 
usually they reflect only the teaching activity (e.g. 
[22-24]). The research activity of the American 

universities, almost totally out of touch with their 
teaching activity, is studied in [25,22].  
 

Beside the choice of the ratio between teaching 
and research activities, there are two other 
important structural conflicts accompanying 
development of a modern university [26,27]. The 
first is a relation between two types of workers: 
high-paid tenured professors and temporary 
partially-paid instructors; the latter group holds in 
the modern university mostly a high teaching 
burden. The second is a presence ahead of the 
university two groups with non-coinciding 
interests: professors and professional managers.  
 

Attempts of modeling dynamics of organizational 
structure and developing of the university are not 
numerous. Del Rey [28] and De Fraja and Iossa 
[29] study a model of competition of two 
universities with teaching and research activities. 
Beath et al. [30] propose a model of time 
distribution between teaching and research (a 
tragic choice, by the authors’ words) in 
dependence on financing and with account for a 
quality of results of these two kinds of activity. 
Gautier and Wauthy [31] study a distribution of 
efforts between teaching and research in multi-
faculty and single-faculty universities.  
 

We apply our main model to analysis of such 
structural relations in universities.  
 

The paper is organized as follows. Section 2 
introduces the basic model and some tools from 
mathematical economics needed for analysis, 
defines the compatibility conditions, and deals 
with the questions of balanced growth and 
incompatibility. In Section 3 the basic model is 
applied to analysis of the learning-by-doing in 
industrial production and of the development of a 
university combining teaching and research 
activities. Section 4 concludes.    
 

The basic theoretical results are formulated in 
the form of theorems; the proves are provided in 
the Appendix.  
 

2. THEORETICAL FRAMEWORK AND 
MODEL  

 

2.1 Some Background from Mathematical 
Economics 

 

The theoretical model studied in the paper is 
based  on the use of  the neoclassical production  
 
 
 3The use of outside managers is typical on stage of 
launching of new production, while for developing 
countries typical is a permanent use of foreign specialists 
paid much higher than local ones.   
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function. Let )(xF  be a production function 

defined on the space 
nR  , which consists of all 

n-dimensional vectors x with strictly positive 
coordinates and of the оrigin4.  We use notation 

yx   if niyx ii ,...,1,  . As usually, it is 

assumed that 0)0( F , and 0)( xF  for 

0x . Function (.)F  is called increasing if 

yx   implies )()( yFxF  . We assume that 

the production function (.)F  is increasing, 

positively homogeneous of degree one function 
(IPH function). In a similar way, a case of 
homogeneity of any degree could be studied, but 
for simplicity we restrict ourselves only by the 
standard case of the constant returns to scale.  
 
The background fact from mathematical 
economics which we use in the paper is that for 

any neoclassical production function )(xF  there 

exists such a set of Leontief production 

technologies,  , – so called technological menu 

– that )(xF  is a result of optimal choice of a 

‘local’ Leontief technology from the menu  . 
Thus, the Leontief production functions can serve 
as elementary “bricks” in analysis of any 
structures related to neoclassical production 
functions. The notion of technological menu was 
studied from different positions by [13,14,17].  
 
More precisely this fundamental fact is 

formulated in the following way. Let 1M  be the 

unit level set of production function (.)F , i.e. 

}1)(:{1  xFxM . The following theorem is 

proved in [17]. 
 
THEOREM 1. For any IPH function there exists a 

set   of productivity vectors ),...,( 1 nlll  – 

referred as the technological menu – such that  
 

n
ii

il
RxxlxF 


 ,minmax)( . 

 

Here ii
i

xlmin  is the ‘local’ Leontief production 

function. Thus, according to Theorem 1, 

production function (.)F  corresponds to a family 

of Leontief production functions. In other words, 

(.)F  is generated by an optimal choice of a 

‘local’ Leontief technology from the technological 
menu  .  

 

The unique technological menu for this 
production function is the vector set 

}:{ 1
1 Mll  

, where ),...,( 11
1

1   nlll . 

Following [13], conjugate function can be defined 
as 
 

ii
iMx

xllF minmax)(
1

 5.   

       
The latter has an evident economic meaning: for 
each Leontief technology l it shows the maximal 
output which can be received if a bundle of 

physical resources is taken from the set 1M . 

Another economic interpretation of the conjugate 
function, more useful for us, will be received if 

the conjugate function (.)F  is represented in a 

similar way to how production function (.)F  is 

represented by Theorem 1. Such representation 
is provided by the following theorem. 
 

THEOREM 2.  
 

n
ii

iMx

RlxllF 


 ,maxmin)(
1


.               

 
Proof: see the Appendix. 
 
The following formula (see [17]) can be used to 
calculate conjugate functions:  
 

0,
)(

1
)(

1



h

hF
hF  . 

 

As an example, applying this formula to Leontief, 
Cobb-Douglas and CES production functions             
we obtain the conjugate functions collected in 
Table 1. 
 

2.2 Description of the Model 
 

Now, we introduce the main theoretical model 
studied in the paper. The model describes the 
dual structure of production. In our model there 

are n physical resources, ni ,...,2,1 , such as 

labor, physical capital, natural resources in use, 
etc. There is also an informational resource 
which possesses one of the characteristic 
properties of public good – non- rivalry:                    
a  unit  of the  informational  resource  can  serve  
 
 
 

4Thus, except the origin, vectors with zero components 
are not considered as arguments of the function. This 
does not narrow the class of production functions itself.   

 5 It can be checked that the conjugate function, (.)F  

is IPH and (.)(.))( FF  . 



 
 
 
 

Matveenko; BJEMT, 14(1): 1-13, 2016; Article no.BJEMT.25985 
 
 

 
5 
 

Table 1. Some production functions and their conjugate functions 
 
 Production function Conjugate function 
Leontief 

ii
i

xlxF min)(   
ii

i
hlhF 1max)( 

 

Cobb-Douglas n

nxAxxF  ...)( 1

1 , 

where 



n

i
iiA

1

1,0,0   

n

nhhAhF  ...)( 1

1
1

 

CES ...)([)( 111  pxAxF 

pp
nnn xA

1

])( , 





n

i
iiiA

1

1,0,0  , 

0,1  pp  

pp
nnn

p hAhAhF

1

1
1

1
11 ])(...)([)(


  

 

 
simultaneously all physical resources 

ni ,...,2,1  taken in some quantities. The most 

talented individuals in the firm or high-ability 
managers are examples of such informational 
resource. The output is defined by the physical 
resources if there is no scarcity in providing of 
the informational resource.  
 

The physical side of production is defined by a 

given technological menu  . Any technology 

from the technological menu   is a vector             
of productivities of physical resources, 

),...,( 1 nlll  .   Each such technology defines 

‘local’ Leontief production function 
n

ii
i

Rxxl ,min .  Correspondingly, inputs 
1
il , 

ni ,...,1  are needed to produce a unit of 

product. The informational side of production is 
described by a social technology characterized 

by a vector ),...,( 1 nhhh  , where ih  is the 

minimal quantity of the informational resource 
needed per unit of physical resource i, 

ni ,...,2,1 .  

 

Thus, there are two (mutually conjugate) 
‘elementary’ functions closely related to the 
production process:  
 

1)  Leontief production function 

ii
i

l xlxF min)(   which shows the output 

produced under the technology 

),...,( 1 nlll   given the vector of physical 

resources ),...,( 1 nxxx  ; 

2)  Social technology function 
1max)(  ii

i
l lhhF 

 which shows the 

quantity of the informational resource 
needed to produce a product unit under 

the social technology ),...,( 1 nhhh  and 

the Leontief production technology 

),...,( 1 nlll  . 

 
Let the vector of social technology h be an 

argument in the conjugate function, (.)F . 

Then, by Theorem 2,  
 

1maxminmaxmin)(
1




 ii

il
ii

iMx
lhxhhF  . 

 
This means that for each social technology h the 

conjugate function )(hF 
 shows the minimal 

quantity of the informational resource needed to 
produce a product unit under the technological 

menu   .  
 

2.3 Conditions of Compatibility 
 
We have come to the following pair of dual 
problems.  
 
PROBLEM 1. Choose from the technological 
menu   such Leontief technology l, for which, 
given a bundle of physical resources x, the 
output is maximal:  
 

n
ii

il
RxxlxF 


 ,minmax)( ,           
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PROBLEM 2. Choose from the technological 

menu   such Leontief technology l, for which 
given a social technology h, expenditures of the 
informational resource per unit of output are 
minimal:   
 

n
ii

il

RhhlhF 




 ,maxmin)( 1 .       

 
These two problems reflect non-coinciding 
interests of interest groups in a typical 
organization. The interest groups will be referred 
as operatives and minimizers; the problem 1 is 
solved by the operatives, while the problem 2 is 
solved by the minimizers. A natural question is: 
in what case the problems 1 and 2 are 
compatible, in the sense that their solutions 

provide the same Leontief technology 
l ? 

 
Theorem 3. Problems 1 and 2 are compatible iff  
 

xh 1
, where 0 .                          (1) 

 

Proof: see the Appendix.  
 

Remind that the informational resource has a 
feature of public good, non-rivalry: a unit of the 
informational resource can serve simultaneously 

the volumes 
1
ih  of all physical resources 

ni ,...,1 . Thus, Equation (1) is a condition of 

the full employment of the informational 
resource. Under this condition, it is impossible to 
increase the use of the physical resources and 
the output without increase of the expenditure of 
the informational resource.  
 

Similarly, each unit of output demands 

expenditures of physical resources 
1
il , 

ni ,...,1 . A condition of full employment of 

physical resources consists in the proportionality 

of vectors 
1l  and x, i.e. in the equality xl 1

, where 0 . Evidently, in the operative’s 

solution the physical resources are always fully 
employed. 
 
2.4 Technological Progress, Balanced 

Growth, and Incompatibility  
 

Now, let the ‘global’ production function ),( txF  

and, correspondingly, the unit level set )(1 tM  

and the technological menu )(t  depend on 

time. A factor-augmenting technological progress 

takes place if ))(,...,)((),( 11 nn xtAxtAFtxF  . 

A special case is the Hicks-neutral technological 

progress in which case )()(),( xFtAtxF  , 

where )(tA  is the total factor productivity (TFP). 

The homogeneity implies that the presence of 
the factor-augmenting technological progress is 
equivalent to the following equality which links 
the unit level sets at any two moments of time, 

12 tt   :  

 

)}()(,,...,1),(
)(

)(
:{)( 1111

2

1
21 tMtxnitx

tA

tA
xxtM i

i

i
i  . 

 
Correspondingly, for the technological menus:  
 

)}()(,,...,1),(
)(

)(
:{)( 111

1

2
2 ttlnitl

tA

tA
llt i

i

i
i 

. 

In particular, if )0()( i
t
ii AtA  , then for 0t : 

 

)}0(,,...,1,:{)( 11 MxnixxxtM i
t
ii   , 

                  

)}0(,,...,1,:{)(  lnilllt i
t
ii  .    (2)                 

 
In case of the Hicks-neutral technological 
progress,  
 

),(
)(

)(
)( 11

2

1
21 tM

tA

tA
tM   )(

)(

)(
)( 1

1

2
2 t

tA

tA
t  , 

 
where, as usually, the multiplication of a set by a 
number means multiplication of  each element of 
the set. It is important to notice that the Hicks-
neutral technological progress expands the 

technological menu )(t . 

 
Let us consider a typical situation in growth 
theory: balanced growth path (BGP) with labor-
augmenting technological progress. There are 
two physical production factors: capital, K, and 
labor, L. Time is discrete. Capital K, output, Y, 
and consumption, C grow at a common growth 
factor,  , while labor L grows at a lower growth 

factor,   ; and there is a labor-augmenting 

(Harrod-neutral) technological progress with a 

growth factor  1/   . In such case in            

(2):   LK ,1  ; thus, each particular 
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technology  ))0(),0(()0( LK lll  )0(  is 

transformed in time in the following way:  
 

)0()(,)0()( L
t

LKK ltlconstltl  .      (3)          

 

If initially (at period 0t ) the condition of full 
employment of physical resources is fulfilled, i.e.  
 


)0(

)0(

)0(

)0(

K

L

l

l

L

K
, 

 
then this condition is fulfilled along the whole 
BGP:   
 

 t

K

L

tl

tl

tL

tK

)(

)(

)(

)(
. 

 
It means that if the operative initially chooses the 

optimal technology ))0(),0(()0( LK lll  ,     

then the technology ))(),(()( tltltl LK  is 

transformed according to (3).  
 
Opposite to this, the minimizer under an 
unchanged social technology chooses an optimal 

path in such way that consttltl LK )(/)( .  

 
Thus, the technical progress leads to an 
incompatibility: the minimizer’s choice does not 
coincide with the operative’s choice. Moreover, if 
initially the condition (1) of full employment of the 
informational resource is fulfilled and the social 
technology does not change, then the condition 

(1) is violated soon: the ratio LK hh /  is constant, 

while the ratio )(/)( tLtK  changes.  

 
In case of the Cobb-Douglas production 

function, 
 1

0 )()( tLtKAt , the technological 

menu develops in time in the following way:  
 

}:),{()( 0
1 Allllt t
LKLK   

. 

 
Assuming that the social technology, h, is 
unchangeable, let us compare the BGP which 
would be chosen by the operative and by the 
minimizer. 
 

The operative at time t chooses technology 

))(),(()( tltltl LK  which solves the system of 

equations: 






















0

1

1

)(

)(

),()(

A
tL

tK
ll

tLltKl

t
LK

LK





 . 

 
THEOREM 4. Under the decision of the 

operative,
)1/(1   . 

 
Proof: see the Appendix. 
 
If the decision is made by the minimizer, then 
technology is found as a solution of the system of 
equations:  
 












0
1

11 ,

All

hlhl
t

LK

LLKK


. 

 
This implies  
 

  

















1

0)(
L

Kt
K

h

h
Atl ,   



 









K

Lt
L

h

h
Atl

1

0)( . 

 
Thus, in the BGP, Leontief factor productivities 

)(),( tltl LK  grow at a joint constant growth 

factor equal to  . Since the output is equal to 

)}()(),(()(min{ 21 tLtltKtl , it grows at growth 

factor  . Hence, the equation 

},min{    is fulfilled, which implies that 

  . 

 
Thus, under a fixed social technology, the growth 
rate of the economy controlled by the operative   
is higher than of the one controlled by the 
minimizer. In the latter case the labor becomes a 
limiter of growth.  
 

3. EXAMPLES OF APPLICATIONS 
 
3.1 Learning-by-Doing  
 
Now, we turn to the first of the examples of 
applications of our model.  Our approach 
provides several ways to model the learning-by-
doing. In particular, one can assume that the 

technological menu,  , labor, L, capital, K, and 
the volume of informational resource,  H, are 
fixed, and the learning-by-doing consists in 
changes in the social technology, h. Since 

)(hF 
 is the minimal volume of the 
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informational resource which ensures the unit 
output, the informational resource H allows 
(under absence of restrictions from the physical 

side of production) to produce )(/ hFH 
 units. 

Hence, the maximal output which is possible 

under the production function (.)F , the social 

technology  h, and the informational resource H  
is   
 










)(

),(min
hF

H
xFY


.                        (4) 

 

Learning-by-doing diminishes components of the 

vector h; correspondingly, )(hF 
decreases. 

The output Y increases until the second term in 
the R.H.S. of (4) becomes equal or greater than 
the first term. A further improvement of the social 
technology does not lead to any increase in 
output, and only an improvement in the physical 
technology (development of the technological 

menu  ) allows further increase of the output.  
  
Another modeling strategy is to assume that the 
informational resource H is not fixed and that the 
firm is controlled by a minimizer. Let us consider 

a numerical example. Let 100,10  LK . 

The technological menu is described by the 

equation 102/12/1 LK ll . Then the maximal 

possible output is equal to 316 and is achieved 

under the Leontief technology 6.31Kl , 

16.3Ll . Let the social technology be 

characterized by fixed expenditures of the 
informational resource per unit of capital, 

10Kh , but variable expenditures per unit of 

labor, Lh .  

 
First, let us consider the following scenario. Let 

initially be 1000)1( Lh ; at the next period 

500)2( Lh ; and after that 

 

,...,3,2),()9.0()1(   tthth LL
t          (5) 

 

where )1()(  tYtYt .  

 

Such change of the social technology reflects the 
effect of learning and, under a decline in output, 
can be explained as an increase in spending of 
the time of high-skilled experts to confront the 
output fall.  

It can be noticed that Eq. (5) implies that the 
social technology depends on the cumulative 
increment of the output: 
 

LL hth t ...32)9.0()1( .                         
 

Such kind of dynamics quite corresponds to the 
Arrow’s idea of dependence of workers’ skills on 
cumulative investments.  
 

For the case when decision is made by the 
minimizer, the dynamics of output in dependence 
on time are shown in Fig. 1. The output 
fluctuates on a level considerably lower than the 
maximal possible level of 316. The low output 
can be explained by the “overlearning” of the 
workers: they have learned to use the social 
technologies which correspond to the minimizer’s 
criterion.  
 

 
 

Fig. 1. Dynamics of the output in case when 
the process of learning is described by Eq. 

(5) for all ,...3,2t . Output in dependence on 

time is depicted by the red (unbroken) line. 
The blue (broken) line shows the endogenous 

change in parameter Lh  

 

Now, let us consider another scenario. Starting 
from the 9th period, the operative achieves that 
the expense of the informational resource does 
not decrease so fast:   
 

,...9,8),()99.0()1(   tthth LL
t              (6) 

 
The resulting path is presented in Fig. 2. The 
output now fluctuates on a level close to the 
maximally possible one.    
 

3.2 Structure of University  
 
In this section we apply our model to analysis of 
the relation between two basic activities of 
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university: teaching and research. Let a 
university receive a gain, Y, e.g., a reputation or 
a money income, defined by two ‘physical 

resources’: the number of students, sx , and            

the number of research projects, px : 

),( ps xxFY  . The function (.,.)F  satisfies 

conditions of Theorem 1 and, hence, can be 
represented in the form  
 

 ppss
l

ps xlxlxxF ,minmax),(


 , 

 

where   is a technological menu. Each ‘local’ 

Leontief technology, ),( ps lll  , represents a 

way of combining teaching and research 
activities to achieve a gain for the university.  
 

 
 
Fig. 2. Dynamics of the output in case when 
the process of learning is described by Eq. 

(5) under 7,...,2t  and by Eq. (6) under 

,...9,8t  Output in dependence on time is 

depicted by the red (unbroken) line. The blue 
(broken) line shows the endogenous change 

in parameter Lh  

 
Beside the “physical resources”, there is also an 
“informational resource” – high-paid tenured 
professors. They can simultaneously teach 
students and do research by use of a “social 

technology”, ),( ps hhh  , where sh  is the 

average number of professors per student, and 

ph  is the number of professors per research 

project. Thus, the number of high-paid professors 
needed for producing a unit of the university’s 
gain under social technology h and physical 
technology l is 

 11 ,max 
ppss lhlh . 

 
It seems natural to assume that in a short run the 
social technology, h, is less flexible than the 
physical technology, l. The Problems 1 and 2 
take the following form:  
 

PROBLEM 1 . To find a technology l  
maximizing the gain for the university.  
 

PROBLEM 2 . To find a technology l  
minimizing the number of the high-paid 
professors.  

 
The groups interested in solving these problems 
will be, as earlier, referred as ‘operatives’ and 
‘minimizers’. It will be assumed that an average 
research project demands more attention of high-
paid professors than an average student: 

sp hh  . Let us compare two universities: a 

“teaching” university in which the number of 
students is relatively high comparably to the 

number of research projects: t
p

t
s xx  , and a 

“research” university in which the number of 

research projects is higher: 
r
p

r
s xx  . In the 

“teaching” university, if it is controlled by the 

operative, a technology with a low sl  and a high 

pl  will be chosen, which allows to increase the 

gain by teaching a bigger number of students 
and doing a relatively small number of research 
projects. In the “research” university controlled by 
the operative, vice versa, a technology with a low 

pl  and a high sl  will be chosen. If the minimizer 

controls any of these two universities, he/she       

will choose a technology with a high pl  and a 

low sl . Thus, in the “research” university a 

conflict between the operative and the minimizer 
would be sharper and a degree of incompatibility 
would be higher than in the “teaching” university.  
 
If by any reasons financing increases 
considerably, then it is natural to expect that the 
control will be given to an operative. If a 
minimizer was in power before, then in the 
“teaching” university a structural change will be 
not so visible as in the “research” university; in 
the latter the share of research in the university 
gain will considerably fall and the share of 
teaching will increase. Beath et al. [30], by use of 
a different model, also point to a possibility of a 
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shift from a research strategy to a teaching 
strategy under an increase in financing.  
 

4. CONCLUSION 
 
In the present paper we study relations between 
organizational and technological aspects of 
production. We propose a model, in which 
physical resources (such as labor, physical 
capital, natural resources in use, etc.) and               
a separate informational resource are 
distinguished. Informational resource includes 
talented individuals, and, in particular, high-ability 
managers. In the framework of the model, we 
study a question of compatibility, i.e. coincidence 
of the choices made by two interest groups in the 
organization, referred as ‘operatives’ and 
‘minimizers’. We show that if the technological 
progress is not accompanied by institutional 
changes (changes in the social technology) it 
leads to an incompatibility, and if the decision is 
made by minimizers, it leads to a bottleneck role 
of the “non-talented” labor. The exit from this trap 
can consist in a continuous change of the social 
technology when the economy moves along the 
growth path.  
 
We consider two examples of application of our 
model: learning-by-doing in a firm and structure 
of a university providing research and teaching 
activities. 
 
One way to interpret changes in the social 
technology is education of managers and, 
correspondingly, an improvement of their 
abilities. Under such interpretation, the results 
obtained in the paper say that only an adequate 
human capital of managers allows the        
economy to entirely use possibilities provided by 
technological progress.  
 
For the first time, an approach to economic 
growth as depending on education of managers 
was proposed by Nelson and Phelps [32], who 
claimed that “in a technologically progressive or 
dynamic economy, productive management is a 
function requiring adaptation to change, and the 
more educated a manager is, the quicker will he 
be to introduce new techniques of production”. In 
our interpretation, educated managers (to whom 
a modified social technology corresponds) 
choose an adequate physical technology.  
 
However, in [32] the education level of managers 
is a fixed parameter – it is a typical example of a 
model in which institutions have a quantitative 
(but not a structural) nature and create a             

one-time incentive (or an obstacle) for economic 
growth. The Nelson-Phelps model was 
developed further by [33], where the education 
level ensuring the growth must correspond to a 
growth strategy – imitation or innovation –, and 
the choice of such a strategy in its turn depends 
on a proximity to the world technological frontier.  
 

In our model, interpreted in such way, the 
educational level of managers (a social 
technology) must change as the economy moves 
along a growth path. This is entirely compatible 
to the Nelson-Phelps’s claim that “the 
progressiveness of the technology has 
implications for the optimal capital structure in 
the broad sense.” The ‘broad sense’ certainly 
includes the organizational structure.  
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APPENDIX: PROOFS 
 

Proof of Theorem 2. If  lMx ,1  then 1max ii
i

xl .  (Otherwise 1min 11 
ii

i
lx , which 

contradicts to Theorem 1). Hence, for l : 
 

ii
iMx

xllF maxmin1)(
1


; 

 

The minimum is achieved under 
1 lx . For other l equation ii

iMx
xllF maxmin)(

1


 still holds 

because of the homogeneity.         
 

Proof of Theorem 3. Necessity. Let the problems be compatible; 
l  is their joint solution.  Then, 

solving the problems, we obtain: 
 

nn xlxlxl   ...2211 , 

 
11

22
1

11 ...   nn hlhlhl , 

 
which implies (1). 
 

Sufficiency. Let l  and l̂  be solutions of the problems 1 and 2 correspondingly. Then 
 

 nn xlxlxl ...2211 , 

 

̂ˆ...ˆˆ 11
22

1
11  

nn hlhlhl . 

 
Equation (1) implies 
 

11 ˆˆ   ll  . 

 

Hence, the vectors l̂  and l  are proportional, and, moreover, since they both belong the same 

technological menu  , they are equal.      □ 
        
Proof of Theorem 4. We find: 
 

















1

0
)(

)(
)(

tK

tL
Atl t

K ,  



 









)(

)(
)( 0

tL

tK
Atl t

L . 

 
Thus, in BGP the Leontief productivities have constant growth factors: 
 




















1

K ,   






 








L , 

 
 
 
 
 



 
 
 
 

Matveenko; BJEMT, 14(1): 1-13, 2016; Article no.BJEMT.25985 
 
 

 
13 

 

and 
 

 LK  , 

 

 },min{ LK . 

 

The latter two equations imply  /,1  LK ; i.e. the case of labor-augmenting technological 

progress takes place: the technological progress “hauls” the growth factor of the effective labor up to 

the growth factor of the economy. The latter is equal to 
)1/(1   .   
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