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Simulating multiple urban land use changes by integrating transportation 
accessibility and a vector-based cellular automata: a case study on city of 
Toronto
Xiaocong Xu a, Dachuan Zhang a, Xiaoping Liu a,b, Jinpei Ou a and Xinxin Wu a

aSchool of Geography and Planning, Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-Sen University, 
Guangzhou, China; bSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

ABSTRACT
The accessibility provided by the transportation system plays an essential role in driving urban 
growth and urban functional land use changes. Conventional studies on land use simulation 
usually simplified the accessibility as proximities and adopted the grid-based simulation 
strategy, leading to the insufficiencies of characterizing spatial geometry of land parcels and 
simulating subtle land use changes among urban functional types. To overcome these limita-
tions, an Accessibility-interacted Vector-based Cellular Automata (A-VCA) model was proposed 
for the better simulation of realistic land use change among different urban functional types. 
The accessibility at both local and zonal scales derived from actual travel time data was 
considered as a key driver of fine-scale urban land use changes and was integrated into the 
vector-based CA simulation process. The proposed A-VCA model was tested through the 
simulation of urban land use changes in the City of Toronto, Canada, during 2012–2016. 
A vector-based CA without considering the driving factor of accessibility (VCA) and a popular 
grid-based CA model (Future Land Use Simulation, FLUS) were also implemented for compar-
isons. The simulation results reveal that the proposed A-VCA model is capable of simulating 
fine-scale urban land use changes with satisfactory accuracy and good morphological feature 
(kappa = 0.907, figure of merit = 0.283, and cumulative producer’s accuracy = 72.83% ± 1.535%). 
The comparison also shows significant outperformance of the A-VCA model against the VCA 
and FLUS models, suggesting the effectiveness of the accessibility-interactive mechanism and 
vector-based simulation strategy. The proposed model provides new tools for a better simula-
tion of fine-scale land use changes and can be used in assisting the formulation of urban and 
transportation planning.
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1. Introduction

Urbanization is a global trend unique to the past few 
centuries, featured with continuous urban land expan-
sion in urban fringes (Liu et al. 2020; Yeh, Li, and Xia 
2021) and multitype urban land use changes within 
cities (Chen et al. 2020, 2017). As suggested by many 
previous studies, urban expansions and urban land use 
changes are closely linked to the development of trans-
portation system (Wegener 2021; Soteropoulos, Berger, 
and Ciari 2019). In fact, the urban transportation net-
work not only provides opportunities for socioeco-
nomic activities within/between cities but also 
contributes to shape the city forms and urban land use 
patterns over the long term (Iacono, Levinson, and El- 
Geneidy 2008; Wee 2004). Specifically, the transport 
supply from the transportation network determines 
the attractiveness of location to people’s activities, for 
example, the choices for places to live, work, sport, and 
leisure, which therefore drives the urban growth and the 
changes the functional land use in urban areas 
(Bertolini 2017; Rodrigue, Comtois, and Slack 2016). 
Thus, urban transportation system has long been 

regarded as the fundamental driving force of the socio-
economic developments and urban land use changes, 
especially in metropolitan areas (Glaeser, Kahn, and 
Rappaport 2008; Zhang, Zhang, and He 2021).

Given that urban land use and transportation system 
are interacted together as a synthesis, a series of land use 
and transport interaction models have been designed to 
investigate the urban land use changes driven by acces-
sibility provided by transportation infrastructure 
(Chang 2006; Ortuzar and Willusen 2001; Wegener 
2021). Previous models can be roughly generalized 
into three categories: method based on regression ana-
lysis (Iacono and Levinson 2009), agent-based model-
ing (Salvini and Miller 2005; Wise, Crooks, and Batty 
2016), and Cellular Automata (CA) land use simula-
tions (Abolhasani et al. 2016). Among these models, the 
CA-based approaches can provide advantage in com-
prehending the complex dynamics of the urban growth 
and its interactions with the local environment. 
Conventional CA models are composed of five compo-
nents (Santé et al. 2010; Verburg et al. 2004; Batty, Xie, 
and Sun 1999): a space containing a collection of 
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homogeneous cells, a sequence of discrete time steps, 
a definition of neighborhood of each cell, a set of states 
describing the dynamics of cells, and a set of transition 
rules determining the changes of state of each cell. 
Because of its simplicity of computations and assump-
tions, CA models are immensely popular for simulating 
the spatiotemporal dynamics of land use changes (Wu 
and Martin 2002; Mohan Rajan and Loganathan 2021).

In the context of urban expansion and urban func-
tional land use change, accessibility, which is known as 
a measure of easiness with which people can reach or 
interact with destinations (Hansen 1959), plays an 
essential role in connecting the transportation system 
and urban land use dynamics (Kelobonye et al. 2019; 
Liu and Zhu 2004). A series of studies suggested that the 
dynamic couple of accessibility into the land use model 
is a feasible way to investigate the evolution of urban 
land use driven by the transportation (Aljoufie et al. 
2013; Liu and Zhu 2004; Kasraian, Maat, and van Wee 
2017). In fact, many existing studies on urban change 
simulation have already taken into account the impact 
from transportation system in CA modeling by adopt-
ing transportation-related variables, such as distance to 
road networks and bus stations (Liu et al. 2017; Verburg 
et al. 2004). Although great progress has been made 
previously (Chang 2006; Ortuzar and Willusen 2001), 
there are still limitations on the integration of accessi-
bility in CA modeling, which needs further improve-
ments for a better simulation of urban land use change 
driven by the transportation system.

The first limitation is that most traditional CA mod-
els usually interpretate the accessibility as simplified 
variables, for example, proximity to transportation 
facilities (Euclidean distance to road network or bus 
stations) (Feng and Tong 2018; Liu et al. 2010; Zhang 
et al. 2020). There is no doubt that the urban develop-
ment is closely related to the proximity of land patch to 
roads and other travel facilities. However, these simpli-
fied proximity variables are incapable of reflecting 
actual people’s movement and traffic flows, whereas 
the urban land use dynamics, especially the changes 
among different urban functional types (e.g. transition 
from residential to mixed land use or commercial use), 
are more directly linked to this kind of travel informa-
tion. Some studies also pointed out that the routinely 
collected travel information, such as travel time and 
traffic volumes on the transportation network, is 
a more intuitive and rational representation in the 
modeling of interaction between urban transportation 
and land use (Luna, Miller, and Shoshanna 2018; Rad 
and Alimohammadi 2021). Unfortunately, there is lim-
ited research on the integration of such detail traffic 
information into the land use simulation, probably due 
to the difficulty of traffic data collection.

The second limitation is that conventional CA mod-
els adopt the grid-based representation (raster data for-
mat) in the urban land use change simulation because 

of its simplicity of data organization and convenience of 
computation (Aljoufie et al. 2013). These CA models 
typically take grid cells as their basic modeling unit 
without considering the fine-scale shape of ground 
objects. Therefore, they are usually considered inade-
quate for applications with fine resolution spatial data 
(Pinto, Antunes, and Roca 2017; Moghadam, Karimi, 
and Habibi 2018) and thus unable to simulate the 
spatial configuration of urban patches (Chen et al. 
2019; Yao et al. 2017). In addition, the simulation of 
land use patterns from the grid-based CA model is 
usually sensitive to the cell size parameter and neigh-
borhood configuration (Chen et al. 2014; Dahal and 
Chow 2015). Moreover, the subtle urban land use 
changes, which are closely related to human daily travel 
behaviors, are barely able to be captured and simulated 
with the regular geometry of grid cell in the CA simula-
tion (González, Gómez-Delgado, and Benavente 2015; 
Stevens and Dragićević 2007). In fact, people living in 
urban areas usually schedule their destination and rou-
tine of activities according to the location’s accessibility 
provided by the transportation network (Badoe and 
Miller 2000; Li et al. 2021). When introducing the 
accessibility into the land use simulation, the complex-
ity of accessibility itself (e.g. travel time on the road 
network) requires fine-scale shape of land patches to 
better represent the actual travel cost in the transporta-
tion network rather than simplified Euclidean distances 
between the origins and destinations. Compared with 
the grid-based representation, the vector format data is 
more capable of capturing fine-scale ground objects 
with irregular polygons and thus can avoid the bias 
caused by the grid-based representation (Yao et al. 
2017; Chen et al. 2019; Barreira-González, Gómez- 
Delgado, and Aguilera-Benavente 2015). Recently, 
a series of patch-based and vector-based CA models 
were proposed to simulate fine urban land use changes 
and proved to be more realistic for revealing the tem-
poral dynamics of ground object (Abolhasani et al. 
2016; Dahal and Chow 2015; Barreira-González, 
Gómez-Delgado, and Aguilera-Benavente 2015; Chen 
et al. 2014; Lu, Cao, and Zhang 2015). Thus, the incor-
poration of vector-based simulation strategy into the 
modeling is expected to better characterize the interac-
tion between the transportation system and land use 
dynamics, especially the subtle urban changes driven by 
the accessibility.

The motivation of this study is to overcome the two 
abovementioned limitations and develop a better model 
for the simulation of urban land use change driven by 
the transportation system. To achieve this, we proposed 
an Accessibility-interacted vector-based CA (A-VCA) 
model to simulate the subtle urban land use changes 
among different functional types. Different from pre-
vious models, we took the accessibility derived 
from actual urban traffic data as a key driver to 
investigate the urban land use changes driven by 
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transportation infrastructures. In order to simulate 
the urban land use changes among different urban 
functional types, for example, transition from resi-
dential to mixed land use, we adopted the Random 
Forest Algorithm (RFA) to calibrate the A-VCA 
model since it is popular and effective for high- 
dimensional data modeling (Belgiu and Drăguţ 
2016; Yao et al. 2017). Specifically, the accessibility 
variables at both local and zonal scales were esti-
mated based on using actual auto-in-vehicle travel 
time collected by the Transportation Tomorrow 
Survey (TTS) and was processed with the EMME 
transportation network analysis software (https:// 
www.inrosoftware.com/en/products/emme/). 
Then, the estimated accessibility variables were 
incorporated into the vector-based CA model to 
explore the transition rules and derive the land 
use transition probabilities. The proposed A-VCA 
model was applied and tested in the City of 
Toronto, Canada, during 2012–2016. Note that 
we mainly focused on the fragmented processes 
of urban land use change among different func-
tional types within the urban area. The number of 
such land use changes is usually not large, and 
most of them mainly occur in discrete and frag-
mented land parcels within the urban area. Thus, 
simulations for a relatively shorter time span, that 
is, from 2012 to 2016 in this study, are more 
suitable to test the model’s capability of simulating 
these fragmented and subtle urban land use 
changes among different functional types. 
Hopefully the model is expected to accurately 
simulate the subtle urban land use changes in the 
City of Toronto with good morphological features.

The rest of the article is organized as follows: In 
Section 2, we give a brief description of the study area 
(City of Toronto, Canada) and the data used to conduct 
the simulations and analyses. Section 3 presents the 
development of the proposed A-VCA model, including 
how to define and derive the accessibility (at both local 
and zonal scales), and how to embed the accessibility 
variable into a vector-based CA model. In Section 4, we 
apply the proposed A-VCA model in the study area and 
evaluate the performance of the simulation. 
A comparison of the proposed and existing models is 
also presented in this section. Finally, some conclusive 
remarks and limitations are presented in the Section 5. 
The results and findings in this study can deepen our 
undersetting of the interaction between land use changes 
and transportation, and provide useful knowledge for 
urban growth management and transportation planning.

2. Study area and data

The proposed model was tested through the simula-
tion of urban land use changes in the City of Toronto, 
Canada (Figure 1). The City of Toronto is the most 

populous city in Canada (2.96 million in 2018) and 
the fourth largest city in North America (630.2 km2). 
In recent decades, Toronto has been among the fast-
est-growing large metropolitan areas in high-income 
countries and became the principal commercial cen-
ter in Canada. Like most megacities in North 
America, Toronto formed a monocentric urban 
structure with large urban sprawl in the suburban 
area after urbanization. The downtown area is den-
sely built with commercial and high-rise residential 
land use. The monocentric urban structure and long- 
term urban growth indicate that Toronto is in the 
phase of steady urbanization stage, which led to the 
rapid urban land use changes within the study area. 
Thus, the City of Toronto is a suitable study area for 
testing the performance of the proposed A-VCA 
model.

The travel data used to estimate the accessibility 
were acquired from the 2011 TTS. The TTS is 
a 1-day telephone-based travel survey that is 
sampled at a rate of 5% of households within the 
Greater Toronto Area (Data Management Group 
2013). In this study, we randomly selected the 
auto in-vehicle travel time records from the TTS 
on a weekday to estimate the accessibility variables. 
The auto in-vehicle travel time records are archived 
as an origin–destination matrix of average travel 
hours from 625 TTS Traffic Analysis Zones 
(TAZs) of the City of Toronto. The accessibility 
of a land parcel depends not only on the traffic 
demands from the origin to the destination but also 
on the width of the road network. Since the TTS 
travel time records are synthesis observations from 
the real traffic flow in the transportation network, 
these traffic time data should have already impli-
citly taken both the traffic demand and road width 
into consideration. The time period we used in this 
study was the morning rush hour on a weekday.

The land use data used in the simulation were 
obtained from the Geospatial Competency Centre, 
City of Toronto, which originally includes the 
detailed land use information in 50 subcategories. 
The vector-format land use data set in the study 
area of the City of Toronto consists of totally 
487,509 parcels. To simplify the initial data set, the 
land use data were generalized and then reclassified 
into 10 categories according to Table 1, including 
high-rise residential, low-rise residential, commer-
cial, industrial, government, institution, or commu-
nity (G/IC), open space, mixed, utilities, vacant, and 
water. The initial year of vector land use data we used 
is 2012, and the simulation was performed from 2012 
to 2016. Because of the availability of land use data in 
2016, we conducted the model calibration only based 
on land use data in the downtown Toronto, where 
detailed spatial information of multifarious land use 
changes is available.
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The auxiliary geospatial variables data, which are 
contributed to drive the urban land uses from trans-
forming into others, were used to estimate land use 
suitability with the RFA regression model. The details 
of the geospatial variables selected in our study are 
summarized in Table 2. The auxiliary spatial variables 
can be categorized into three major categories, including 
natural condition variables, traffic location variables, 

and urban environment variables. Figure 2 shows the 
visualizations of the spatial variables after using spatial 
analysis tools (e.g. Euclidean distance, Kernel density) 
via ArcGIS toolboxes (ESRI Company, CA, USA; 
https://www.esri.com/software/arcgis). All the data 
used in this study were registered and reprojected into 
the Universal Transverse Mercator zone 17 north coor-
dinate system.

Figure 1. Geographic location of the study area: City of Toronto.
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3. Methodology

In this study, we developed a A-VCA model to simu-
late the land use changes among different urban sub-
types driven by the transportation system. Figure 3 
illustrates the flow of the land use change simulation 
using the A-VCA model. Firstly, the selected geospa-
tial driving factors and urban land use maps were 
used to calibrate a random forest regression to esti-
mate the land use suitability (probability-of- 
occurrence) for each urban land use subtype. 
Secondly, the transportation data collected from 
TTS were processed to derive the local and zonal 
accessibilities for vector and TAZ scales, respectively. 

Thirdly, a vector-based CA model was built, taking 
into account the land use suitability (probability-of- 
occurrence), accessibility (combination of local and 
zonal accessibilities with the Cobb–Douglas func-
tion), neighborhood environments, development 
constraints, and unexpected random factors. 
Finally, the land use changes of difference urban 
subtypes were iteratively simulated with the vector- 
based simulation strategy.

3.1. Accessibility

The accessibility to urban land use types was generated 
from the travel time derived from the actual trip gen-
eration and conducted from the production and 
attraction per vector for each specific land use cate-
gory. The transportation data from TTS were based on 
the TAZ level, and the trip generation could be simply 
calculated from the average number of trip origins and 
trip destinations per TAZ. However, the trip genera-
tion results calculated in this manner could be biased 
and bring the inhomogeneity since they only focus on 
the TAZ center rather than the global extent. In fact, 
the actual trip generations for the rest of the TAZ are 
heterogeneous and may be greatly different from the 
average situation because of some traffic condition 
such as congestions. Thus, we designed a two- 
perspective accessibility (i.e. local and zonal) to better 
describe trip generation at a finer scale: 

Ak;i ¼ f ðAlocalðk; iÞ;Azonalðk; zÞÞ (1) 

where Ak;i denotes the accessibility for urban type k in 
urban land parcel i, Alocal denotes the local accessibility 
calculated at the vector scale, and Azonal denotes the 
zonal accessibility calculated at TAZ scale. We applied 
the Cobb–Douglas production function to numeri-
cally combine these two accessibilities together, and 
Equation (1) can be rewritten as 

Ak;i ¼ μ� Alocalðk; iÞa � Azonalðk; zÞb; aþ b ¼ 1 (2) 

where μ, a, and b are parameters set according to 
empirical knowledge. The Cobb–Douglas production 
function has long been popular for measuring and 
regressing factors accounting for the differences in 
productivity (Lobo et al. 2013; Montolio and Solé 
Ollé 2009) because of its simple formulation and 
empirical estimation mechanisms, and can be general-
ized in urban studies and geography (Santías, 
Cadarso-Suárez, and Rodríguez-Álvarez 2011).

The local accessibility in Equation (2) is defined as 
a function to describe the accessibility for urban land 
parcels relative to the road network: 

Alocalðk; iÞ ¼
Mk;r

1þ di
�
Dk;r

(3) 

Table 1. Reclassification and generalization of land use 
categories.

Generalized 
category

Reclassified 
code Subdivision

Original 
code

High-rise 
residential

1 Residential 1
Apartments/condos/residence 6

Low-rise 
residential

2 Townhouses/semi-detached 
(condo ownership)

5

Strata-detached homes 10
Duplex/semi-detached 42
Townhouse 43

Commercial 3 Commercial/shopping 2
Industrial 4 Industrial/employment lands 3
G/IC 5 Government/institutional 4

Religious institutions 8
Public/structure parking lots 9
Hospitals/public health 12
Long-term care homes/ 

disability resources
13

Police/fire/ambulance 14
Libraries 16
Community centers/cultural 

centers/arenas
17

Sewage treatment/pumping 
stations/water tower

18

Public markets 19
Public works yards 20
Correctional services 21
Municipal offices 22
School 34
Universities/colleges 35
Provincial offices 36
Canadian forces 37
Federal offices 38
Post offices 39
Not for profit 40
Galleries 44

Open space 6 Hydro corridor 25
Parks 29
Cemetery 30
Golf course/driving range 31
Attraction (private) 32
Attraction public 33
Green lane 94

Mixed 7 Mixed (commercial residential) 7
Utilities 8 Public transportation 11

Airports 15
Rail corridor 26
Freeway 27
Streets 28
Passages 46
GO station and parking 97

Vacant 9 Un-code 0
Unsure 23
Farmland 24
No name 96
Underdeveloped land 98

Water 10 Water 99
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where Mk;r is calibrated parameter for differenct land 
use type k and road type r (we considered two road 
types in this study: highways and main roads), di is the 
nearest distance from current land use k in land parcel 
i to the road network, and Dr is the distance decay 
parameter to control the proximity effect for road type 
r. For current land parcels located near the highway 
interchanges within a specific distance, the accessibil-
ity for people to get to the highways is superior to 

other roads (main roads). Thus, we built a set of buffer 
rings around the highway interchanges and calculated 
the di for these land parcels according to the buffer 
distance without considering other road types. For 
current land parcels located outside the buffer rings, 
the di were calculated through finding the nearest 
Euclidean distance to the road network. The buffer 
rings distance and Dr can be calibrated in calibration 
procedure.

Table 2. List of auxiliary geospatial variables used in the study.
Categories Variables Data source Year

Natural condition Digital elevation maps Open data from United States 
Geological Survey (USGS)

Newest
Slope

Traffic location Distance to airports EMME version 4.2 (INRO Company, 
Quebec, Canada; https://www.inro 
software.com/en/products/emme/)

Newest
Distance to city center Newest 

2012–2015Distance to main roads
Distance to planning roads 2012–2015

Urban environment Density of government organizations Address points data sets published by 
the City of Toronto Open Data 
Master Plan (https://open.toronto. 
ca/dataset/)

2016

Density of stadiums Address points data sets published by 
the City of Toronto Open Data 
Master Plan (https://open.toronto. 
ca/dataset/) 
Population census Canada

2016
Density of industrial locations
Density of health-care locations
Density of parks
Density of facilities for public safety
Density of density of parking lots
Density of hotels
Density of schools
Density of libraries/galleries/museums
Density of transit stations
Density of shopping centers
Population density

Figure 2. Spatial patterns of auxiliary geospatial variables. All variables were normalized into the range of 0–1.
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The zonal accessibility in Equation (2) represents 
the accessibility that can be reached by all land use 
types from all TAZs. We assumed that the zonal 
accessibility for the current land use types in a TAZ 
is influenced by all other land uses within the study 
area through a distribution function. The gravity 
model (Erlander and Stewart 1990) was adopted to 
calculate the zonal accessibility of all land parcels 
from all other TAZs: 

Azonalðk; zÞ ¼
X

z0;k
ðαLke� βtz;z0 Þ (4) 

where z and z’ denote the origin and destination of 
TAZs, respectively, tz;z0 denotes the in-vehicle travel 
time from origin to the destination zone, Lk counts the 
current iterated land use amount for land use type k in 
zone z’, and α and β are the parameters of the gravity 
model that vary from cases to cases and calibrated and 
set in calibration procedure.

3.2. A-VCA model

Different from the conventional grid-based CA mod-
els, the proposed A-VCA model uses land parcel as the 
basic modeling unit for the simulation process. Thus, 
the land use data should be divided into small land 
parcels beforehand in order to simulate the subtle 
urban land use changes. Based on previous studies 
(Vanegas et al. 2009; Yao et al. 2017), we adopted an 
interactive dichotomy strategy to spit large land par-
cels into subparts and maintain the along-the-road 
direction after the land parcel subdivision. For the 
detailed process of land parcel subdivision, please 
refer to Yao et al. (2017).

In general, the transition rules in a classic CA 
model typically consist of four components (Li and 
Yeh 2002; Liu et al. 2017): the land use suitability to 
describe the suitability for specific land use type to 
convert according to the essential nature of land use, 
the neighborhood interaction to represent the spatial 
autocorrelation, the constrain to denote the difficulty 
of change from one land use type to another one for 
a specific land parcel, and the randomness to account 
for unexpected random factors. In this study, we intro-
duced the accessibility estimated from the previous 
section as an additional independent component to 
derive the urban land use transition rule within the 
proposed A-VCA model: 

Pk;i ¼ f Sk;i � Nk;i � Ak;i � Rs � C
� �

(5) 

where the subscripts k and i represent land use type 
k and land parcel i, respectively; Pk;i denotes the final 
transition probability; Sk;i denotes the land use suit-
ability; Nk;i is neighborhood interactions; Ak;i repre-
sents the processed accessibility; the stochastic factors 
Rs can be further expressed as 1þ ð� ln γÞα, where γ 
and α are uniform random variables where γ ranges 
from 0 to 1 and α ranges from 0 to 10, respectively; and 
C represents the constraints of the conversion.

The land use suitability Sk;i in Equation (5) was 
calibrated with a series of geospatial variables listed 
in Table 2. We adopted the RFA regression model to 
calibrate and estimate the land use suitability since it is 
capable of overcoming the multicollinearity problem 
among spatial variables and efficient for high- 
dimensional fitting tasks (Palczewska et al. 2014). For 
each land parcel, the land use suitability can be 
expressed as 

Figure 3. The methodology of the proposed A-VCA model.
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Sk;i ¼
1

nTtee
PnTree

t¼1
I Pret Xð Þ ¼ Qkð Þ (6) 

where nTtee denotes total number of decision tree in 
the RFA, I �ð Þ is the indicator function, X denotes the 
high-dimensional vector of auxiliary spatial variables 
listed in Table 2, and Pret Xð Þ denotes the prediction 
land use type of the tth decision tree for X.

The neighborhood interaction in the CA model is an 
important component to describe the spatial autocor-
relation of complex geographical phenomena (Dahal 
and Chow 2015; Liu et al. 2017). Traditional neighbor-
hood definitions in the grid-based CA model, such as 
the Moore neighborhood and Von Neumann neighbor-
hood, are not applicable for the vector-based CA mod-
els because of the irregular geometry of land parcels. In 
this study, we adopted a land parcel area-weighted 
method (Abolhasani et al. 2016; Yao et al. 2017) to 
define the neighborhood effect in the A-VCA model: 

Ωt
i;k ¼

P

j
Ωt

i;j;k ¼
P

j
edij=d �

Sj=Si
Smax=Smin

; if dij < d (7) 

where Ωt
i;k denotes the neighborhood effect of land use 

type k for land parcel i at time t; dij is the distance 
between the centroids of land parcel i and j; d is the 
buffer range from land parcel i; Sj and Si represent the 
geometric areas of land parcel j and i, respectively; 
Smax and Smin are the maximum and minimum geo-
metric areas of land parcel within the entire study area. 
The Ωt

i;k is updated in each simulation iteration and 
only valid when dij < d.

The constraints of the conversion C in Equation 
(5) represent the easiness (or cost) of a particular 
land use type to change to another. Here, we set 
land use of water-type-restricted areas that cannot 
be changed during the simulation. The conversion 
costs among other land use types were estimated 
based on an analysis of the historical land use data 
in the study area and regional expert opinions. 
During the simulation, we iteratively estimated the 
final transition probability for each land use type in 
every land parcels according to Equation (5). 
A conversion was taken when the highest transition 
probability at a land parcel exceeds the conversion 
thresholds for different land use types. The threshold 
for a specific conversion (e.g. from residential to 
commercial) was set to be the mean probability of 
all transition probabilities of this specific conversion 
estimated from the entire study area. The simulation 
will keep iterating until all land use changes reach the 
land use areas in the terminate year.

3.3. Model assessment indicators

In this study, three indicators were selected to assess 
the simulation performance of the A-VCA model, 
including the kappa indicator, Figure of Merit (FoM) 

indicator, and the Cumulative Producer’s Accuracy 
(CPA). Firstly, we used the kappa indicator, 
a traditional and reliable approach for evaluating the 
accuracy of CA land use simulations, especially for 
multiple land uses (Sim and Wright 2005; Van Vliet, 
Bregt, and Hagen-Zanker 2011). After generating 
a confusion matrix, the kappa indicator can evaluate 
the simulation results against the actual land use 
pattern: 

Kappa ¼
PN

k¼1
pkk�
PN

k¼1
ðpkþ�pþkÞ

1�
PN

k¼1
ðpkþ�pþkÞ

(8) 

where pk+ represents the proportion of land parcels 
in the confusion matrix simulated in land use type 
k, p+k represents the proportion of land parcels in 
the confusion matrix that are land use type k in the 
actual land use pattern, and pkk represents the 
proportion of land parcels that were simulated as 
land use type k and are actually land use type k in 
the actual land use pattern.

Previous studies suggested that using the kappa 
indicator might be unstable in simulations in which 
the unchanged land parcels dominate (Pontius et al. 
2008; Chen et al. 2014; Liu et al. 2017). Thus, we also 
adopt the FoM indicator (Pontius et al. 2008) to assess 
the performance of the simulation results. The FoM is 
often used in the CA simulation estimations to reveal 
the relevance of the ground truth land use changes and 
the simulated urban land use changes. It is a ratio of 
four subvariables, namely, the denominator (A), the 
numerator (B), and the errors C and D: 

FoM ¼ B
ðAþBþCþDÞ (9) 

Specifically, A represents the error due to observed 
land use change and is simulated as the persistence, 
B represents the number of samples that are observed 
and simulated correctly, C is the error caused by the 
observed changes and is meanwhile simulated as an 
incorrect gaining category, and D represents the error 
caused by observed persistence and is simulated as 
changed.

The last indicator is the producer’s spatial accu-
racy (PA, and its cumulative form, namely, CPA). 
The PA indicator is commonly applied to evaluate 
the performance of simulating correctly and stands 
for the proportion of correctly simulated cells to all 
cells (Lu et al. 2019): 

PA ¼ Carea
TCarea

(10) 

where Carea represents the count of correctly modeled 
transformed cells, and TCarea is the total number of all 
transformed cells. Note that the PA indicator can also 
be calculated through four subvariables in the FoM 
indicator, that is, B/(A + B + C). However, the PA 
calculated in this manner is more reasonable for asses-
sing the accuracy of grid-based CA simulations (He 
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et al. 2015). In this study, the PA indicator is calculated 
specifically for vector-based CA by taking the area of 
transition land parcels into consideration. Furthermore, 
we designed the cumulative form of PA, namely, CPA, 
to assess the stability of the simulation model through 
multiple repeating simulations: 

CPA ¼
PM

i¼1
PAi

M
(11) 

where M is the repeating times of simulation.

4. Results and discussion

4.1. Calibration of the A-VCA model

In this study, the auto in-vehicle travel time was calcu-
lated using EMME V4.2 software, and the urban land 
use changes was simulated using the proposed A-VCA 
model. Through model calibrations, we calibrated all 
parameters for the calculation of the gravity model- 
based zonal accessibility, the distance decay effect- 
based local accessibility, the Cobb–Douglas function, 
the RFA formulation, and the neighborhood distance. 
In local accessibility calibration, Mk;r is defined as the 
weight parameter for road type r for land use k, and Dk;r 
is the impedance parameter related to distance decay 
effect for road type r and land use k. Table 3 lists the 
results of the calibrated parameters of local accessibility. 
All other certain calibrated parameters are listed in 
Table 4, where the value of β in zonal accessibility 
calibration refers to a previous study on Toronto 
(Kasraian, Maat, and van Wee 2017). Besides, the data 
sets for the A-VCA calibration were randomly divided 
into two groups, that is, training samples (60%) and 

validation samples (40%). Thus, the training samples 
used to calibrate the A-VCA model are completely 
independent from the validation samples used to eval-
uate the model performance.

4.2. Simulation of urban land use changes

The estimation of accessibility is the first step of the 
implementation of the proposed A-VCA model for the 
land use simulation in this study. As mentioned in 
Section 3, the accessibility used in this study consists 
of two separate components, that is, the zonal accessi-
bility, generated by gravity model with actual in-vehicle 
travel time from the TTS records, and the local acces-
sibility estimated based on the hierarchical distance 
decay effect. Figures 4 and 5 illustrate the zonal acces-
sibility results for nine land use types and the local 
accessibility results toward different land use and road 
hierarchies, respectively. Generally, the higher zonal 
accessibility for urban land types of residential, com-
mercial, G/IC, mixed, and utilities is mainly located in 
the central area of Toronto. The higher zonal accessi-
bility for industrial land use is found in the west, 
whereas the higher zonal accessibility for open space 
and vacant is in the east. For local accessibility, the 
higher values are found mainly around the highways 
(Ontario 401 Express, Don Valley Express, and 
Gardiner Express) since they have higher priority in 
the estimation of local accessibility.

We used the training data set that contains the urban 
land use changes and auxiliary geospatial variables to 
calibrate the RFA regression model and estimate the 
land use suitability for each urban land use type. 
Figure 6 visualizes the spatial patterns of the land use 
suitability for nine urban land use types after 
a minimum–maximum normalization. They describe 
the suitability for specific land use type to covert accord-
ing to the essential nature of land use. This pattern of 
land use suitability will be combined with the estimated 
accessibility, the neighborhood effect, the constraints of 
conversion, and stochastic factor to update the final 
conversion probability in every iteration of the simula-
tion process according to Equation (5).

The proposed A-VCA model was applied to simu-
late the land use changes among different urban land 
use types from 2012 to 2016. The simulation will keep 

Table 3. The calibrated parameters of local accessibility in this 
study.

Land use Road hierarchy

Main road Highway Main road Highway

High-rise residential 1 0.9 1 1.5
Low-rise residential 0.95 1 1.2 1.2
Commercial 1 0.9 1 1.5
Industrial 1 1.5 1.7 0.8
G/IC 1 0.85 1 1.2
Open space 0.95 1.1 0.95 1
Mixed 1 0.95 1.1 1.4
Utilities 1.5 1.5 1 1
Vacant 1 0.95 1 1.45

Table 4. Calibrated parameters for zonal accessibility, Cobb–Douglas function, RFA formulation, and neighborhood interaction in 
the A-VCA model.

Reference Parameters Value Explanation

Zonal accessibility α 1 Parameters in the gravity model
β 0.05

Cobb–Douglas function µ 1 Parameters in Cobb–Douglas function that are set with empirical knowledge
a 0.6
b 0.4

RFA Number of trees 80 Parameter for building RFA
Rate of OOB data sets 20% Parameter for RFA bootstrapping sample method

Neighborhood interaction Neighborhood distance 500 (m) Parameter used in equation of neighborhood interaction
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iterating until all land use changes reach the land use 
areas in the terminate year. The computational com-
plexity of the proposed A-VCA during the simulation 
iteration is O T � K � N � Jð Þ, where T is the total 
iteration time, K is the number of urban functional 
types, N is the total land use parcels in the study area, 
and J is the number of land use parcels within the 
neighborhood buffer range. The proposed A-VCA 
model was implemented in C++ programming lan-
guage. We carried out the simulations on a local work-
station equipped with Intel Core i9-9900 K CPU, 
NVIDIA GeForce RTX 2080 (8 GB graphics memory), 
and 16 GB dual-channel DDR4 RAM. The computa-
tional time cost for the entire simulation process was 
37.32 ± 3.42 s in 10 times repeating simulations.

We presented the actual (Figure 7(a)) and simulated 
(Figure 7(b)) patterns in 2016 to show a visual compar-
ison at global scale. Overall, the simulated pattern 
agrees well with the actual land use across the entire 
study area. The zoom-in view of the simulation result in 
downtown Toronto is also illustrated in Figure 8 to 

present more spatial details of land use changes and 
the spatial agreement of the simulation result. From the 
zoom-in view of the downtown Toronto (Figure 8(a,b)), 
we can see that obvious land use changes were taking 
place during this period, especially in areas marked with 
dashed circles. Favorably, most of the changed land 
parcels were well simulated with the proposed A-VCA 
model (Figure 8(c)).

The regions marked with dashed circles (Figure 8) 
are three typical areas where urban land use changes 
were taking place during this period. Region 1 is an 
aggregated commercial zone near the Yonge Street. The 
main change of land use in this area was the transition 
from vacant to commercial land use. In region 2, many 
vacant land parcels were transformed into G/IC build-
ings during this period because this area possesses very 
high accessibility to multilevel roads and various land 
uses. Region 3 is the south cabbage town of Toronto 
with many low-rise residential buildings aggregated 
(e.g. semi-detached house, town house). Some vacant 
land parcels were developed into functional buildings 

Figure 4. The normalized zonal accessibility for the nine land use subtypes in the study area.

448 X. XU ET AL.



like G/IC and mixed uses (residential and commercial). 
Our model generated a good result to show the details 
of land use changes in these three regions.

4.3. Assessments of the urban land use simulation

To quantitatively evaluate the performance of the simu-
lation, we first summarized the proportions of actual 
and simulated areas of land use changes for each land 
use type and examined their agreement (Table 5). We 
found that the average bias of all land use types is 
+0.56% for the entire City of Toronto, and the largest 
bias of the simulation is the vacant type (−2.52%). As to 
the downtown Toronto, relatively higher average bias 
was observed for all land use types (+1.37%), and the 
largest bias was found in the commercial land type 
(−3.84%). This might be due to the fact that there are 
much more fragmented land parcels in the downtown 
Toronto than in the entire city. Nevertheless, the small 
biases of the simulated land use pattern in Table 5 
suggest that the proposed A-VCA model is capable of 
simulating the changes of multiple urban land use types 
at least from the quantity perspective.

In order to quantify spatial agreement of the simu-
lation against actual land use pattern, we constructed 
the confusion matrix of the simulation result and 
estimated three indicators described in Section 3, 
that is, the kappa, FoM, and CPA indicators. The 
results of these three indicators are summarized in 

Table 6. From the assessment results shown in the 
table, the proposed A-VCA model yields satisfactory 
pattern agreement when applied in the City of 
Toronto with both values of kappa and overall accu-
racy higher than 0.90. Moreover, the FoM indicator, 
which focuses on the change simulation and can avoid 
bias introduced by persistent unchanged land parcels, 
yields a value of 0.283 for the study area. According to 
the recent studies on traditional urban development 
simulations (from nonurban to urban), a range of 
FoM values from 0.10 to 0.30 have been reported at 
various spatial scales (Chen et al. 2014; Thapa and 
Murayama 2011; Xu, Zhang, and Chen 2020). Thus, 
our simulation result achieves similar and even slightly 
better than the results reported previously, consider-
ing the simulation was conducted among different 
subtypes of urban land use changes. Moreover, we 
conducted multiple repeating simulations to estimate 
the CPA and its standard deviation that take the tran-
sition area into consideration. A CPA value of 
72.83% ± 1.535% was derived after 10 times repeating 
simulations, indicating that the proposed A-VCA 
model is capable of describing the urban land use 
change with satisfactory accuracy and stability.

To demonstrate the outperformance of our pro-
posed A-VCA model, we compared the A-VCA 
model with three existing models that are capable of 
simulating multitype land use changes. These com-
parative models include the original VCA model 

Figure 5. The normalized local accessibility in the study area.
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(Yao et al. 2017) without the accessibility component 
and two grid-based CA models, that is, the ANN-CA 
model (Li and Yeh 2002) and the future land use 
simulation (FLUS) model (Liu et al. 2017). The pur-
pose of the comparison with the VCA model is to test 

the effectiveness of the accessibility-interactive 
mechanism in the vector-based simulation strategy; 
and the comparisons with the two grid-based CA 
models are to examine the superiority of the vector- 
based strategy in simulating fragmented land use 

Figure 7. The simulated and actual land use patterns in this study.

Figure 6. Spatial patterns of land use suitability for the nine urban land use subtypes.
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changes at a fine scale. All these comparative models 
were calibrated with the same geospatial variables 
listed in Table 2, and the transition probabilities 
were estimated without the accessibility variables. 
As to the grid-based ANN-CA and FLUS models, 
the urban land use change was calibrated and simu-
lated at spatial resolution of 30 m, which is 
a commonly used resolution in many previous grid- 
based CA studies. The comparison results are sum-
marized in Table 6. We can observe from the table 
that the simulated result from the VCA model is 
apparently not as good as the result simulated from 
the A-VCA model. All three assessment indicators 
show decline in varying degree (the second row in 
Table 6) compared with those of the A-VCA model. 
This confirms the importanct role of accessibility in 

driving the urban land use dynamics, and the coop-
eration of accessibility in the CA model can better 
simulate the subtle land use changes in urban area. 
The comparisons against the two grid-based CA 
models also show lower kappa, FoM, and cumulative 
PA values of the ANN-CA and FLUS models (the last 
two rows in Table 6). Note that the cumulative PA 
values for these two grid-based CA models were 
estimated based on grid unit and thus may not be 
comparable to the value of the A-VCA model. It is 
worth mentioning that the assessment indicators for 
the two grid-based CA models are even lower than 
that of the VCA model, which suggests the effective-
ness of the vector-based strategy in the simulation of 
fractal land use changes among multiple urban sub-
types at a finer spatial scale.

Table 5. The actual and simulated proportions of land use changes in the City of Toronto and downtown Toronto.

Land use type

City of Toronto Downtown Toronto

Actual 
(%)

Simulated 
(%)

Bias 
(%)

Actual 
(%)

Simulated 
(%)

Bias 
(%)

Vacant 3.34 0.82 −2.52 0.38 0.80 +0.42
High-rise residential 3.67 3.83 +0.16 12.41 11.66 −0.75
Low-rise residential 31.95 32.65 +0.70 9.43 8.50 −0.93
Commercial 4.11 4.26 +0.15 12.23 8.39 −3.84
Industrial 9.20 9.52 +0.32 3.82 4.16 +0.34
G/IC 5.71 5.92 +0.21 14.91 14.28 −0.63
Open space 18.83 19.42 +0.59 10.60 12.20 +1.60
Mixed 0.47 0.48 +0.01 3.12 6.91 −3.79
Utilities 22.73 23.10 +0.37 33.11 33.11 +0.00
Average bias - - +0.56 - - +1.37

Table 6. Accuracy assessment and model comparisons for urban land use simulation.

Model Basic modeling unit

Kappa indicator Figure of merit Producer’saccuracy

Kappa value OA (%) FoM value CPA (%) SD (%)

A-VCA Vector 0.907 92.37 0.283 72.83 1.535
VCA Vector 0.832 84.47 0.211 66.54 1.733
ANN-CA Grid 0.784 80.02 0.158 64.91a 1.933a

FLUS Grid 0.805 81.44 0.196 67.37a 1.821a

aThe CPA for the ANN-CA and FLUS models was estimated based on grid and may not be comparable to the vector-based A-VCA and VCA models.

Figure 8. Enlargement of simulated and actual land use patterns in downtown Toronto.
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The size of land parcel is the key variable for deter-
mining the details of urban land use from both per-
spectives of spatial detail and urban functional types. 
Thus, the sensitivity of the simulation performance to 
the size of land parcel needs to be examined. In order to 
conduct the simulation on different sizes of land parcel, 
we manually broke down each of the original land 
parcel into two (1/2), three (1/3), and four (1/4) sub-
parcels, and maintained the land use types of the sub-
parcel consistent to the original ones. Within each 
original land parcel, the areas of the broken subparcel 
were kept as equal as possible. Then we conducted the 
simulations on the broken subparcels to test the sensi-
tivity of the model performance to the land parcel size. 
The quantitative comparison among different land par-
cel sizes is summarized in Table 7. From the table, we 
can observe that all the assessment indicators show 
a slight decrease as the size of parcel becomes smaller. 
Such a minor performance degradation might probably 
be due to the reason that the increased number of land 
parcels introduces much more complex conflicts 
among different urban functional types. As expected, 
the computational cost increased dramatically (from 
37.32 to 202.57 s) as the size of land parcel became 
smaller since the total number of land parcels was 
greatly multiplied in each iteration and the neighbor-
hood effect involved much more land parcels within the 
buffer range.

4.4. Morphological pattern of Toronto urban land 
use changes

The visualization of simulation results shows that 
most of the urban land use changes were mainly 
taking place in downtown area during the study per-
iod. Most of the high-rise residential land uses are 
located in the downtown area, which possesses the 
highest land price in Toronto and is intensively built. 
The extent of high-rise residential land parcels was 
spreading because of higher housing demands in the 
urban center. The newly converted high-rise residen-
tial land parcels are found around the existing ones 
and scattered alongside main road networks, which is 
mainly driven by the convenient transportation facil-
ities and high accessibility around this area. Both 
Figures 4 and 5 give evidence that the downtown 
Toronto has superior local and zonal accessibilities 
toward most of the land uses and better access to 
various facilities, motivating tenants to live in down-
town and inspiring investors and government to 

develop more high-rise residential land uses in this 
area. On the contrary, most of the transitions into 
low-rise residential land use were simulated outside 
downtown Toronto, most of which were formed with 
old communities and rowed by townhouses or semi- 
detached houses.

The G/IC and open space land uses were simulated 
closed with residential (both high-rise and row-rise) 
land parcels since the deployments of public facility 
have to take the range of geographic service areas into 
consideration (Donnelly 2013). This can be partially 
supported by the zonal accessibility maps in Figure 4 
that high zonal accessibility of G/IC, open space, and 
residential land uses share a large overlapping area. The 
transition to mixed land use (commercial and high-rise 
residential) was mainly simulated to be near to the main 
road in the downtown area (e.g. Yonge Street of 
Toronto, Figure 8) because of the demand for both 
commercial and residential land use types in the den-
sely built downtown area. The industrial land use was 
simulated around the original industrial estates along 
expressways (404 and 401) and in the southeast lake 
shore area of Toronto near to the harbor where many 
traditional factories are located. Both of those industrial 
estates have superior accessibility for promoting pro-
ductive elements and reducing transportation costs.

4.5. The integration of accessibility and 
vector-based land use simulation

As previous studies suggest, the transport system is one of 
the crucial drivers for urban growth and urban land 
changes by providing accessibility and economic oppor-
tunity to the surrounding lands and social activities 
(Iacono, Levinson, and El-Geneidy 2008; Wee 2004). 
Accessibility is the typical indicator for describing travel 
behavior in urban area (Luna, J, and Shoshanna 2018). 
Thus, in this study, we introduced the accessibility 
derived from actual travel time data rather than simpli-
fied Euclidean distances to simulate fine-scale urban land 
use changes driven by transportation facilities. The acces-
sibility at both scales, that is, the zonal accessibility calcu-
lated at TAZ scale and the local describing proximity of 
land parcel to the multilevel road network, was consid-
ered in this study and was numerically combined into one 
through the Cobb–Douglas function. In most previous 
CA simulation studies (Chen et al. 2014; Yao et al. 2017), 
the accessibility described as simplified proximity usually 
has a relatively lower priority and is only applied for 
estimating the basic land use suitability. In this study, 

Table 7. Sensitivity of land parcel size to the model performance.
Models at various parcel sizes Kappa value FoM value Cumulative PA (%) Computational cost (s)

Original parcel size 0.907 0.283 72.83 37.32
1/2 of original parcel size 0.895 0.280 72.18 89.71
1/3 of original parcel size 0.887 0.278 71.92 130.41
1/4 of original parcel size 0.871 0.273 70.41 202.57
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the coupling mechanism of accessibility and CA simula-
tion considers the accessibility as a coequal component 
with the land use suitability for the estimation of the final 
transition probability. The comparison results listed in 
Table 6 clearly show the outperformance of this proposed 
coupling mechanism in the simulation of subtle urban 
land use changes among different functional types. Note 
that, apart from the travel time, the information of road 
width is supposed to be another key variable of the 
transportation system that contributes to driving the 
urban land use changes. Incorporation of the road 
width variable into the A-VCA model is potentially help-
ful for better simulation of urban land use changes. This 
hypothesis will be tested in future studies as long as 
accuracy measurements of road width are available.

The vector-based land use simulation strategy was 
adopted to establish the A-VCA model and applied for 
the simulation of urban land use changes in the City of 
Toronto. Compared with traditional grid-based repre-
sentation, previous studies suggested that the vector- 
based strategy was more suitable for fine-scale land use 
simulations (Abolhasani et al. 2016; Dahal and Chow 
2015; Barreira-González, Gómez-Delgado, and Aguilera- 
Benavente 2015; Chen et al. 2014; Lu, Cao, and Zhang 
2015). When introducing the accessibility to CA simula-
tion, the fine-scale shape of land parcel is more suitable 
for describing subtle land use changes driven by accessi-
bility (e.g. actual travel cost in the transportation net-
work). The vector format data is capable of capturing 
the changes of fine-scale land parcels with irregular poly-
gons and avoid the bias caused by regular grid cells (Yao 
et al. 2017; Chen et al. 2019; Barreira-González, Gómez- 
Delgado, and Aguilera-Benavente 2015). The application 
of the proposed A-VCA model in urban land use simula-
tion of the City of Toronto shows satisfied accuracies and 
good morphological patterns. The superiority of vector- 
based strategy in such fine-scale simulation was also 
confirmed in this study (Table 6) by the comparison of 
the proposed A-VCA and the popular grid-based FLUS 
model.

5. Conclusions

This study proposed an accessibility-interacted vector- 
based land use simulation model, namely, A-VCA 
model, to investigate the urban land use changes driven 
by transportation facilities. The accessibility at both local 
and zonal scales derived from auto-in-vehicle travel time 
data was considered as a key driver of fine-scale urban 
land use changes among different urban subtypes. The 
proposed A-VCA model was applied and tested in the 
City of Toronto, Canada, to simulate the fine-scale urban 
land use changes during 2012–2016. The results show 
that our model is capable of accurately simulating the 
subtle urban land use changes driven by the accessibility 
with good morphological features. The satisfactory per-
formance of the A-VCA model was testified by the 

quantitative assessment with both values of kappa and 
overall accuracy higher than 0.90 and FoM larger than 
0.28. The effectiveness of the accessibility-interactive 
mechanism was confirmed by the comparison with the 
original VCA model. Besides, the superiority of the vec-
tor-based strategy in the simulation of subtle urban land 
use change among different functional types has been 
demonstrated through the comparisons with the two 
popular grid-based CA models.

However, due to the unavailability of detailed urban 
functional land use data, we only calibrated and evalu-
ated the proposed model in the same period (2012– 
2016). In fact, calibrating the model in one period, and 
then applying the calibrated model for the simulation 
and evaluating it in another period can better justify the 
performance of the proposed model. Besides, whether 
or not the proposed A-VCA model can be generalized 
and directly applied for other cities has not been tested 
and still needs further investigations. Nevertheless, the 
proposed model provides new tools for fine-scale simu-
lation of subtle land use change among different func-
tional types in urban area, which are rather useful for 
many urban-related studies such as job–housing match-
ing and urban facility layout optimization. Additionally, 
the results and findings can deepen our understanding 
of the interaction between land use changes and trans-
portation, and provide knowledge for urban growth 
management and transportation planning.
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