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Abstract 
 

Background: In linear time series, the in-sample model selection and the out-of-sample model selection 
are the two common approaches to model selection. However, empirical evidence based on out-of-sample 
forecast performance is generally considered more trustworthy than evidence based on in-sample 
performance, which is deficient in providing information about future observations. 
Aim: The aim of the study is to select the best linear time series model suitable to predict Nigeria 
exchange rates for the period 2002-2018. 
Materials and Methods: Data on naira to pound and naira to euro exchange rates from January 2002 to 
December 2018, comprising of 204 data points were considered. The data were divided into two portions; 
the first portion which comprises of 192 observations was used for model building while the second 
portion with 12 observations was used for out-of-sample prediction evaluation. The Box-Jenkins ARIMA 
iterative procedure was used in model building while the mean square error (MSE), root mean square 
error (RMSE), mean absolute error (MAE) and Theil’s U coefficient were the measures of accuracy 
adopted in selecting the best out-of sample model. 
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Results: Our results revealed that, based on in-sample model selection, ARIMA (0, 1, 1) and ARIMA (1, 
1, 0) were the appropriate models with minimum information criteria. However, on the basis of out-
sample forecast performance evaluation criteria, ARIMA (1, 1, 0) and ARIMA (1, 1, 2) were found to be 
appropriate out-of-sample models with minimum forecast evaluation criteria. In all, our results showed 
that, the out-of sample models performed better than their in-sample counterparts in their ability to 
forecast future values. 
Conclusion: So far, this study revealed that out-of-sample is a better model selection criterion than the 
in-sample counterpart as evident in its ability to predict future values which is the very essence for 
modelling in time series. 
 

 
Keywords: In-sample; out-of-sample; model selection; ARIMA model; time series. 
 

1 Introduction 
 
Model selection is the task of selecting a statistical model from a set of candidate models [1]. The objective 
of model selection is to discover a model that optimises a process because exact model that described a 
particular series is not known. Also, model selection is useful in comparing competing models for the 
purpose of selecting the best model that describe the series [2]. One sensitive challenge of model selection is 
that several competing models may fit a particular series appropriately [3]. According to [4] inappropriate 
model selection results in a choice of a poor model with far reaching consequences. [5] Opined that 
modelling is approximation of reality, thus model selection is to reject a model far from reality and select 
that which is close to reality. 
 
In linear time series several competing models may adequately fit a particular series and basically there are 
two approaches to model selection namely; the in-sample model selection and the out-of-sample model 
selection. The in-sample model selection criteria include AIC [6], BIC [7] and Hanna and Quinn information 
criteria [8]. Model selection based on in-sample criteria such as Akaike information criteria, Schwarz 
information criteria and Hannan Quinn information criteria may not provide more genuine forecasts because 
it is the same data used in model estimation that is also used in forecast evaluation [9]. Also, a model 
selected on the basis of in-sample criteria does not give information about the future observations. On the 
other hand, out-of-sample model selection procedure is applied to achieve best predictive performance. The 
out-of-sample model selection procedure is accomplished by withholding some of the sample data from the 
model identification and estimation process, then use the model to make predictions for the hold-out data in 
order to see how accurate they are and to determine whether the statistics of their errors are similar to those 
that the model made within the sample of data that was fitted. The data which are not held out are used to 
estimate the parameters of the model. The model is then tested on data in the validation period, and forecasts 
are generated beyond the end of the estimation and validation periods [10]. The out-of-sample forecasting is 
advantageous over the in-sample forecasting in that, the model selection is based on how best the forecasts 
perform and able to provide information about future observations. 
 
Thus, the aim of this work is to apply the out-of-sample in model selection on Nigeria exchange rate to 
improve on the work of several authors such as [11,12,13,14,15] who applied in-sample model selection on 
Nigeria exchange rate. 
 
The remaining part of this work is organized as follows; materials and methods are presented in section 2, 
results and discussion treated in section 3 while conclusion of the study is handled in section 4. 
 

2 Materials and Methods 
 
2.1 An autoregressive process AR (p) 
 
Mathematically the AR (p) model can be expressed as [16] 
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�� = � + ∑ ��
�
��� ���� + �� = � + ������ + ������ + ⋯+ ������ + ��.              (1) 

 
Here ��and ��are respectively the actual value and random error (or random shock) at time t,��(i =1, 2, p) = 
are model parameters and c is a constant. The integer constant p is known as the order of the model. 
Sometimes the constant term is omitted for simplicity. 
 
The model in back shift operator is specified as: 
 

(1 − ��� + ���
� − ⋯− ���

�)��= ��,                 (2) 

 
where the lag backshift operator B is defined as  ��� = ���� , p = 0, 1, 2,… 
 
More precisely we express the model as: �(�)�� = ��. 
 
The autoregressive operator �(�) is define as �(�) =  1 − ��� + ���

� − ⋯− ���
�. 

 

2.2 Moving average model MA (q) 
 
The notation MA (q) is the moving average model of order q [16] 
 

�� = � + �� + ∑ ��
�
��� ����= � + ������ + ������ + ⋯+ ������,              (3) 

 
where ��,…, �� are MA (q) parameters to be estimated, � is the mean of ��  and �� is the error term. 
 
The model in backshift operator is given as 
 

�� = �(�)��,                                                                                                                  (4) 
 
where,  
(i) ���� = ���� is a backward shift operator. 

(ii) �(�) = 1 − ��� −⋯− ���
�. 

(iii) ��, ��, … , �� is a finite set of weighted parameters. 

(iv) �� is a white noise process with mean zero, and constant variance ��. 
 

2.3 Autoregressive moving average 
 
Autoregressive (AR) and moving average (MA) models can be effectively combined together to form a 
general and useful class of time series models known as the ARMA models. Mathematically an ARMA (p, 
q) model is represented as [16] 
 

�� = � + ��. ∑ ��
�
��� ���� + ∑ ��

�
��� ����,                 (5) 

 
where, the model order p, q refers to p autoregressive and q moving average terms. 
 
The model in backshift operator is given as 
 

�(�)�� =  �(�)��,                                                                                               (6) 
 

�(�) = 1 − ��� − ���
�. . . −…���

�is the autoregressive coefficient polynomial, 

 
�(�) = 1 − ��� − ���

�. . . −…���
�is the moving average coefficient polynomial. 

 



 
 
 

Akpensuen et al.; AJPAS, 4(3): 1-13, 2019; Article no.AJPAS.50241 
 
 
 

4 
 
 

2.4 Autoregressive integrated moving average 
 
Autoregressive integrated moving average (ARIMA) models are specific subset of univariate modelling, in 
which a time series is expressed in terms of past values of itself (the autoregressive component) plus current 
and lagged values of a “white noise” error term (the moving average component). ARIMA models are 
univariate models that consist of an autoregressive polynomial, an order of integration (d), and a moving 
average polynomial.  
 
A process (��) is said to be an autoregressive integrated moving average process, denoted by ARIMA (p, d, 
q) if it can be written as:  
 

�(�)∇��� = �(�)�� ,                   (7)  
 

where ∇�=(1 − �)� (1−B) with ∇���and ���  consecutive differencing (Vandale, 1983)  
 
if the expectation of ∇���) = μ, we write the model as  
 

�(�)∇��� = � + �(�)��,                   (8)  
 

where: α is a parameter related to the mean of the process (��), by α = μ (��…��) and this process is called 
a white noise process, that is, a sequence of uncorrelated random variables from a fixed distribution with 
constant mean, μ ,usually assumed to be “zero” and constant variance. If d=0, it is called ARMA (p, q) 
model while when d=0 and q=0, it is referred to as autoregressive of order p model and denoted by AR (p). 
When p=0 and d=0, it is called Moving Average of order q model, and is denoted by MA (q).  
 
There are three steps we will take to achieve our aims, and these are listed as (1) model identification (2), 
model estimation and (3) model diagnostic and forecasting accuracy. 
 

2.5 Box-Jenkins modelling approach 
 
The Box-Jenkins model uses iterative three-stage modelling approach which is: 
 

1 Model identification 
2 Model estimation 
3 Model checking 

 
2.5.1 Model identification 
 
The first step in developing a Box–Jenkins model is to determine if the time series is stationary. Stationarity, 
which in time series is a stochastic process whose unconditional joint distribution does not change when 
shifted by time, consequently, parameters such as mean and variance do not change over time  can be 
assessed from time plot of the series. It can also be detected from an autocorrelation plot. Specifically, non-
stationarity is often indicated by an autocorrelation plot with very slow decay. Finally, unit root tests provide 
a formal approach to determining the degree of differencing such as Augmented Dickey Fuller test (ADF) 
[17], Rothenberg and Stock (2001) introduced efficient unit root (ERS) test statistic to test whether the series 
contains unit root or not [18] and Phillips-Perron Unit Root Tests [19]. But for the purpose of the work we 
shall consider the ADF test. Once stationarity has been addressed, the next step is to identify the order (i.e. 
the p and q) of the autoregressive and moving average terms. These are determined by examining the values 
of the autocorrelations and the partial autocorrelations with their corresponding plots (12). 
 
2.5.1.1 Unit root test  
 
A test of stationarity that has become widely popular over the past years is the unit root test. Consider the 
following random walk model without drift and trend 
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�� =  ����� + ��, -1≤ � ≤ 1,                  (9) 
 

where, ��  is the actual series, ����is the immediate previous observation, �� is a white noise error term and � 
is a parameter to be estimated. 
 

�� − ���� =  ����� − ���� + ��; −1 ≤ � ≤ 1.              (10) 
 

By subtracting ���� from both sides 
 

∆�� = ����� + ��, where � = (� − 1) and ∆ is the first difference operator. 
 

We test the hypothesis: ��: � = 0 vs ��: � < 0, if the null hypothesis is accepted, � = 0 and� = 1, that is 
we will have a unit root, meaning that the time series under consideration is not stationary.  
 

For the purpose of this work, we shall consider the Augmented Dickey Fuller test to test stationarity of the 
data because the ADF test is popular. Also, ADF test ensures that the null hypothesis is accepted unless there 
is strong evidence against it to reject in favour of the alternative stationarity hypothesis. 
 

2.5.2 Model estimation 
 

After an optimal model has been identified, the model estimation methods make it possible to estimate 
simultaneously all the parameters of the process, the order of integration coefficient and parameters of an 
ARMA structure. There are many methods of estimating parameters of linear time series models but for the 
purpose of this study we shall consider the maximum likelihood method. It is often convenient to work with 
the log-likelihood function, which contains an arbitrary additive constant. One reason that the likelihood 
function is of fundamental importance in estimation theory is because of the likelihood principle. This 
principle states that (given that the assumed model is correct) all that the data have to tell us about the 
parameters is contained in the likelihood function, all other aspects of the data being irrelevant. Also from a 
Bayesian point of view, the likelihood function is equally important since it is the component in the posterior 
distribution of the parameters that comes from the data [20]. 
 

Only two methods of maximum likelihood estimation considered in time series analysis are discussed. 
 

Given:� = ���, ��, … , ��� , � = �(��) , � = (��, ��, … , ��)  and ��
� = �(��

�)  from observations of the 

causal ����(�, �) process defined by 
 

�� = ������ + ������ +⋯+ ������ + �� − ������ − ⋯− ������.            (11)                    
 

(i)   Conditional Maximum Likelihood Estimation 
 
For an ����(�, �) model, the joint probability density function of [21] � = {��, ��, … , ��}

′is given by  
 

�(�|�, �, �, ��
�) = (2���

�)
�

���� �−
�

���
� ∑ ��

��
��� �.              (12) 

 

Rewriting (11) as  
 

�� = ������ + ⋯+ ������ + �� − ������ − ������ − ⋯− ������.            (13)  
 

Let � = (��, ��, … , ��)
′  and assume initial conditions �∗ = �����, … , ���, ���, ���

′
 and 

�∗ = �����, … , ���, ���, ���
′
 are known. The conditional log-likelihood function is  

 

���∗(�, �, �, ��
�) = −

�

�
(2���

�) −
�∗(�,�,�)

���
� ,                             (14)                  

 

where, �∗(�, �, �) = ∑ ��
��

��� (�, �, �|�∗, �∗, �) is the conditional sum of squares function. The quantity of  

��, �̂, and�� which maximize (15) are called the conditional estimators. Because �∗(�, �, �, ��
�) involves the 
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data only through �∗(�, �, �), these estimators are the same as the conditional least squares estimators 
obtained from minimizing the conditional sum of squares function �∗(�, �, �). The estimator ���

� of ��
� is 

obtained from 
 

���
� =

�∗(�,�,�)

�������
,                  (15)     

 

where, � − � − � − 1  (degrees of freedom) equals the number of terms used in the sum of �∗(�, �, �) 
minus the number of parameters’ estimator.  
 
(ii) Unconditional Maximum Likelihood Estimation 
 
Box, Jenkins and Reinsel (2008) suggest the following unconditional log-likelihood function; 

 

���∗(�, �, �, ��
�) = −

�

�
(2���

�) −
�∗(�,�,�)

���
� ,               (16)  

 

Where, 
 

�(�, �, �) = [�(��|�, �, �, �)]
�                (17)         

 

is the conditional sum of squares function. 
 

Where,  �(��|�, �, �, �) is the conditional expectation of �� given �, �, �, and�. 
 

The quantities, ��, �̂, and��  that minimize function (17) are called unconditional maximum likelihood 
estimators and are equivalent to the unconditional least squares estimators obtained by minimizing (18). In 
practice, the summation (14) is approximated by a finite form  
 

�(�, �, �) = ∑ [�(��|�, �, �, �)]
��

���� ,               (18)      
 

where, M is sufficiently large integer. 
 
The estimator ���

� of ��
� is obtained from 

 

���
� =

�∗(�,�,�)

�
 . 

 
2.5.3 Model verification 
 
The last step in Box-Jenkins iterative procedure is model verification or model diagnosis. The conformity of 
white noise residual of the model fit will be judged by plotting the ACF and PACF of the residual to see 
whether it does not have any pattern or we perform Ljung-Box Test on the residual. 
 

The test hypothesis: 
 

��: There is no serial correlation 
��: There is serial correlation 
 

The test statistics of the Ljung-Box (LB); 
 

�� = �(� + 2)∑
��
�

���

�
��� ,                 (19) 

 

where, � is the sample size, � = ��� �����ℎ and � is the sample autocorrelation  coefficient [21] (K = 1, 2, 
….)   LB is asymptotically a Chi-squared random variable with m-p-q degrees of freedom [22,23]. The 
decision: if LB is less than critical value of ��, then we do not reject the null hypothesis. This means that a 
small value of Ljung-Box statistic will be in support of no serial correlation or i.e. the errors are normally 
distributed. 
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2.6 Information criteria 
 
There are several information criteria available to determine the order, p, of an AR process and the order, q, 
of MA (q) process; all of them are likelihood based. For this work, we shall consider Akaike information 
criterion (AIC) and Bayesian information criterion (BIC). 
 

The idea of AIC [6] is to select the model that minimizes the negative likelihood penalised by the number of 
parameters (17). The AIC is specify in equation (12) below 
 

��� = −2����(�) + 2�,                               (20) 
 

where, L refers to the likelihood under the fitted model and p is the number of parameters in the model. 
Specifically, AIC is aimed at finding the best approximating model to the unknown true data generating 
process and its applications [6] 
 

Unlike Akaike Information Criteria, BIC is derived within a Bayesian framework as an estimate of the Bayes 
factor for two competing models [7]. BIC is defined as 
 

��� = −2����(�) + ����(�),                (21) 
 

Superficially, BIC differs from AIC only in the second term which now depends on sample size n. Models 
that minimize the Bayesian Information Criteria are selected. From a Bayesian perspective, BIC is designed 
to find the most probable model given the data [24]. 
 

2.7 Forecast performance measures 
 
The methods of forecast performance based on forecast error include Mean Squared Error (MSE) [25], Root 
Mean Squared Error (RMSE) [25], Mean Absolute Error (MAE)[25] and Theil’s U-statistics [25] These 
criteria measure forecast performance. Given that ��  is the actual value,  ���  is the forecasted value and n is 
the size of the test set, then, mathematical definitions of performance measures are given below 
 

MSE = 
�

�
∑ (��� − ��)

��
��� .                 (22) 

 

RMSE =  �
�

�
∑ (��� − ��)�
�
��� .                              (23) 

 

MAE =   
�

�
∑ |��� − ��|
�
��� .                               (24) 

 

Theil U- Statistic = 
�
�

�
∑ (������)

��
���

�
�

�
∑ (���)

��
��� �

�

�
∑ ��

��
���

.                             (25) 

 

3 Results and Discussion 
 
In this section, we shall use the monthly official exchange rate in Nigeria to identify and estimate ARIMA 
model that adequately represents the series and use some diagnostic tests to evaluate the model. The data set 
is from Nigeria official exchange rate for the Naira to British pound and Euro from January 2002 to 
December 2018. Gretl and E-views are statistical software’s used for data analysis. 
 

3.1 Stationary test 
 
Figs. 1-2 indicates that the time series data is not stationary simply because it shows an upward trend which 
implies that the mean of the exchange rate is changing over time and thus there is no stability in the variance 
of the time series data. 
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Evidence from Figs. 3-4 suggest that the two series are stationary at first difference because the series are 
found to fluctuate around a common mean. 
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Fig. 1. Time plot of naira to pound exchange rate 
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Fig. 2. Time plot of naira to euro exchange rate 
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Fig. 3. Time plot of Naira to pound exchange rate at first difference 
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Fig. 4. Time plot of Naira to Euro exchange rate at first difference 
 

To further test for stationarity of the data, we applied Augmented Dickey Fuller test as shown in Tables 1-2. 
At level form, the series were not stationary because at each assumption; intercept, intercept and trend, and 
no drift, each ADF test statistic were less than the corresponding value of level of significance. But at first 
difference the series became stationary given that the ADF statistics at various assumptions were greater 
than the corresponding level of significance.    
 

Table 1. ADF test of Naira to Pound exchange rate 
 

ADF Test 
Level First Difference 

Intercept t-statistic Prob. Intercept t-statistic Prob. 
 1% =  -3.462737 -0.690578 0.8455  1% =  -3.462737 -20.90263            0.0000 
 5% =  -2.875680  5% =  -2.875680 
 10%= -2.574385  10%= -2.574385 
Intercept and trend t-statistic Prob. Intercept and trend t-statistic Prob. 
 1% =  -4.004132 -1.627799             0.7787  1% =  -4.004132 -20.85049 0.0000 
 5% =  -3.432226  5% =  -3.432226 
 10%= -3.139858  10%= -3.139858 
No Drift t-statistic Prob. No Drift t-statistic Prob. 
 1% =  -2.576460 1.446032              

0.9632 
0.9632  1% =  -2.576460 -20.75971 0.0000 

 5% =  -1.942407  5% =  -1.942407 
 10%= -1.615654  10%= -1.615654 

 

Table 2. ADF test of Naira to Euro exchange rate 
 

ADF Test 
Level First Difference 
Intercept t-statistic Prob. Intercept t-statistic Prob. 
 1%  = -3.462737 -0.915701 0.7818  1% =  -3.462737 -10.75595             0.0000 
 5% = -2.875680  5% =  -2.875680 
 10%= -2.574385  10%= -2.574385 
Intercept and trend t-statistic Prob. Intercept and trend t-statistic Prob. 
 1% =  -4.004132 -2.275960             0.4447  1% =  -4.004132 -10.73855 0.0000 
 5% =  -3.432226  5% =  -3.432226 
 10%= -3.139858  10%= -3.139858 
No Drift t-statistic Prob. No Drift t-statistic Prob. 
 1% =  -2.576460 1.141854             0.9344  1% =  -2.576460 -10.53163 0.0000 
 5% =  -1.942407  5% =  -1.942407 
 10%= -1.615654  10%= -1.615654 
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3.2 In-Sample model selection 
 
Three models, ARIMA (1, 1, 0), ARIMA (0, 1, 1) and ARIMA (0, 1, 2) were considered and fitted 
tentatively for Naira to pound exchange rate. The models were estimated and the parameters were found to 
be significant at 5% level of significance as shown in Table 3. Based on minimum in-sample information 
criteria, ARIMA (0, 1, 1) was selected. Also from Table 3, the coefficient of ARIMA (0, 1, 1) model was 
valid and stationary condition was met and satisfied since the coefficient (−0.364266) is less than one and is 
also significant since the p- value (<0.0001) was less than the  0.05 Significance level. The adequacy 
ARIMA (0, 1, 1) was reported in Table 4, the p-value corresponding to Ljung -Box test statistic, 0.9827 was 
found to be greater than 0.05 significance level, which confirms the presence of no serial correlation. 
 

Table 3. ARIMA models for Naira to Pound exchange rate 
 

Model Parameter Estimate S.e z-ratio P-value In-sample criteria 
AIC BIC 

ARIMA(1,1,0) �� −0.354587 0.0674131 −5.260 <0.0001 1544.925 1551.430 
ARIMA(0,1,1) �� −0.364266 0.0618503 −5.889 <0.0001 1543.637 1550.142 
ARIMA(0,1,2) �� −0.400325 0.0742948 −5.388 <0.0001  

1544.543 
 
1554.300 �� 0.0787839 0.0750629 1.050 0.0046 

 
Table 4. Ljung-Box Diagnostic check for Naira to Pound Exchange Rate models 

 
Model Test Statistic p-value 
ARIMA (0,1,1) 
ARIMA (1,1,0) 
ARIMA (2,1,0) 

3.48400 
6.02421 
2.88988 

0.9827 
0.8717 
0.9839 

 
Also, for Naira to Euro exchange rate, three models, ARIMA (1, 1, 0), ARIMA (0, 1, 1) and ARIMA (1, 1, 
2) were fitted tentatively. The models were estimated and the parameters were found to be significant at 5% 
level of significance as shown in Table 5. Based on minimum in-sample information criteria, ARIMA (1, 1, 
0) was selected. Also from Table 5, the coefficient of ARIMA (1, 1, 0) model was valid and stationary 
condition was met and satisfied since the coefficient (0.391906) is less than one and is also significant since 
the p- value (<0.0001) was less than the  0.05 Significance level. The adequacy of ARIMA (1, 1, 0) was 
reported in Table 6, the p-value corresponding to Ljung -Box test statistic, 0.7756 was found to be greater 
than 0.05 significance level, which confirms the presence of no serial correlation. 
 

Table 5. ARIMA models for Naira to Euro exchange rate 
 
Model Parameter Estimate S.e z-ratio P-value In-sample criteria 

AIC BIC 
ARIMA(1,1,0) �� 0.391906 0.0605581 6.472 <0.0001 1303.534 1310.039 
ARIMA(0,1,1) �� 0.388483 0.0664185 5.849 <0.0001 1304.055 1310.560 
ARIMA(1,1,2) �� −0.661930 1.09454 −0.604 <0.0001  

1305.927 
 
1318.936 �� 0.783590 1.06604 1.016 <0.0001 

�� 0.328470 0.361495 0.9086 <0.0001 
 

Table 6. Ljung-Box Diagnostic check for Naira to Euro exchange rate models 
 

Model Test Statistic p-value 
ARIMA (1,1,0) 
ARIMA (0,1,1) 
ARIMA (1,1,2) 

7.28457 
6.39473 
4.48403 

0.7756 
0.8458 
0.8768 
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3.3 Out-of-Sample forecast model selection 
 
We applied forecast performance evaluation criteria, MSE, RMSE, MAE and Theil’s U coefficient for each 
of the models fitted for the exchange rate series. Result from Tables 7- 8 revealed that ARIMA (1, 1, 0) and 
ARIMA (1, 1, 2) models have smallest out-of-sample forecast performance evaluation criteria for naira to 
pound and naira to euro exchange rates, respectively.  
 

Table 7. Out-of-Sample forecast performance evaluation criteria for Naira to Pound exchange rate 
 

Model MSE RMSE MAE Theil’s U coefficient 
ARIMA(1, 1, 0) 0.0030 0.0545 0.02563 0.8992 
ARIMA(0, 1, 1) 0.0034 0.0585 0.02863 0.9692 
ARIMA(0, 1, 2) 0.0033 0.0583 0.02848 0.9992 

 
The MSE is a measure of the quality of an estimator, and values closer to zero are better. Our MSE for 
ARIMA (1, 1, 0) is 0.0030 is close to zero, indicating that the out-of-sample forecast is indeed good. The 
RMSE is the square root of the calculated MSE and must be as small as possible; our RMSE is 0.0545 and is 
generally acceptable. The MAE measures the average absolute deviation of forecasted values from original 
ones and for a forecast to be good, the MAE must be as small as possible. In our study the MAE is 0.02563 
and is fairly small and acceptable, giving credence to the fact that our forecast is good. The Theil’s U 
coefficient, which is a normalized measure of total forecast error must lie between 0 and 1. The theil’s u 
value in our study is 0.8992 which is between 0 and 1; we conclude that our out-of-sample forecast accuracy 
from ARIMA (1, 1, 0) is accepted. (See Table 7) 
 

Table 8. Out-of-Sample forecast performance evaluation criteria for Naira to Euro exchange rate 
 

Model MSE RMSE MAE Thiele’s U coefficient 
ARIMA(1, 1, 0) 0.0014 0.0377 0.0244 0.9928 
ARIMA(0, 1, 1) 0.0013 0.0366 0.0243 0.9971 
ARIMA(1, 1, 2) 0.0012 0.0356 0.0234 0.7891 

 
Form Table 8, the MSE, RMSE, and MAE for ARIMA (1, 1, 2) are fairly small which suggest that the 
forecast is acceptable. The value of theil’s U coefficient (0.7891) lies between 0 and 1 which also validate 
the claim that the forecast is acceptable. 
 
Moreover, the results of our work are similar to the study of [12] but different in terms of approach adopted 
in the model selection process. 
 

4 Conclusion 
 
The aim of this research is to select the best linear time series model suitable to predict Nigeria exchange 
rates for the period January 2002 to December 2018. The modelling cycle was in three stages, the first stage 
was model identification where the series was not stationary at level form based on time plot and result 
provided by the ADF test. It was found that the series became stationary at the first difference. Based on AIC 
and BIC selection criteria, ARIMA (0, 1, 1) was identified as the best model for naira to pound exchange 
rate while ARIMA (1, 1, 0) was chosen as the best model for naira to euro exchange rate. The second stage 
was model estimation through maximum likelihood estimation method and finally the third stage was model 
diagnosis where the errors from the models were normally distributed and no presence of serial correlation. 
However, on the basis of out-sample forecast performance evaluation, ARIMA (1, 1, 0) and ARIMA (1, 1, 
2) were found to be appropriate out-of-sample models with minimum forecast evaluation criteria, hence 
selected as the suitable models for predicting naira to pound and naira to euro exchange rates respectively.  
 



 
 
 

Akpensuen et al.; AJPAS, 4(3): 1-13, 2019; Article no.AJPAS.50241 
 
 
 

12 
 
 

The major strength of this work is that the models selected for the exchange rate is actually based on their 
ability to predict future values which is the essence of modelling in time series. One conspicuous weakness 
of this study is that it capitalizes on fitting the best model for forecasting which could be impaired as a result 
of over-fitting. However, this work could be improved by considering larger length of sample size for 
forecast evaluation and smaller sample size for model formulation to guarantee accurate forecasting of future 
observations. 
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