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ABSTRACT 
 

This paper investigates the pinning control strategy of BA scale-free network through numerical 
analysis. A new cost function is defined to measure the cost of pinning control. Compared with the 
control gain and the cost of pinning nodes with smallest degrees or biggest degrees, an interesting 
result is that a smaller control gain and a lower cost are achieved by using the control scheme of 
pinning nodes with smallest degrees. Moreover, there is a minimal control cost by pinning nodes 
with smallest degrees and biggest degrees, respectively. The number of controllers by pinning 
nodes with smallest degrees is considered finally. 
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1. INTRODUCTION 
 

There are many large-scale systems in nature 
and human societies which can be described by 
networks where nodes represent individuals in 
the system and edges represent the connection 

or interplay among the nodes [1-5]. More 
researchers crossing many fields of science, 
including physics, chemistry, biology, and 
mathematics are engaged in complex networks 
in recent years. There are more researches on 
controlling the dynamics of a network to a 
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desired state such as an equilibrium state or a 
periodic orbit of the network.An efficient method 
for control, stabilization and synchronization of 
complex networks is pinning control [6-24], by 
which only a fraction of nodes or even a single 
node is controlled to steer the whole network. 
With feedback controller, the only problem is 
which nodes should be controlled. It has many 
studies focused on this problem [6-11] and the 
nodes with high degrees are usually selected to 
be controlled with larger control gain. This 
method has extended to directed networks or 
digraph [12-17] and it has been encouraged in 
recent years [18-21]. When considering the 
control cost [22-24], however, the nodes with 
smaller degrees should be pinned, in which the 
control cost is defined as sum of feedback gain 
times coupling strength of the network [22].  
 

In this paper, the control strategy of pinning the 
nodes with smallest degrees and biggest 
degrees is analyzed with the eigenvalue of 
controlled network, respectively. From this 
analysis, for a fixed network, the nodes with 
smallest degrees should be chose to be 
controlled in the pinning control strategy. 
Furthermore, a new control cost function is 
defined to measure the cost of pinning control. 
Comparing with the control cost between pinning 
nodes with smallest degrees and biggest 
degrees, it shows pinning nodes with smallest 
degrees are more effective than pinning nodes 
with biggest degrees. Moreover, there is a 
minimal control cost under pinning nodes with 
smallest degrees and biggest degrees, 
respectively. That is, there is an optimal control 
gain when pinning “smallest” nodes or “biggest” 
nodes. Finally, we investigate the number of 
controllers by pinning nodes with smallest 
degrees by numerical simulation. 
 
2. PINNING CONTROL 
 
Suppose that an undirected and unweighted 

complex network consists of N identical linearly 
and diffusively coupled nodes with each node 
being an n -dimensional dynamical system. The 
state equations of this dynamical network are 
given by 
 

1

( ) , 1,2, , ,
N

i i ij j
j

x f x c a x i N


    
      

(1) 

 

where 1 2( , , , )T n
i i i inx x x x R   are the state 

variables of node i , ( )f   is the dynamical 

function of an isolated node, c  is the positive 
constant representing the coupling strength, 

1 2( , , , )ndiag r r r    is the inner coupling 

matrix, if 1ir  means that two coupled nodes 

are linked through their i th state variables, 

otherwise 0ir  . 

 

The coupling matrix ( ) N N
ijA a R    represents 

the coupling configuration of the network. If there 

is a connection between node i  and node j , 

then 1ij jia a  ; Otherwise, 0ij jia a  ; And 

the diagonal elements of matrix A  are defined 
by  
 

1

, 1, 2, , ,
N

ii ij
j
j i

a a i N


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which ensures the diffusion that
1

0
N

ij
j

a


  for all 

rows. For connected networks, matrix A  is semi-
negative definite with zero eigenvalue of 
multiplicity one. 
 
Suppose that we want to stabilize network (1) 
onto an equilibrium state defined by  
 

1 2 , ( ) 0.Nx x x x f x    
       

(3) 

 
To achieve the goal (3), we apply the pinning 
control strategy on a small fraction of the nodes 
in network (1). Without loss of generality, we 
rearrange the order of the nodes in the network, 

and let the first l  nodes be controlled. Thus, the 
pinning controlled network can be described as 
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(4) 

 
where 
 

( ), 1, 2, , ,i i iu cd x x i l     
          

(5)        

 
are n -dimensional linear feedback controllers 

with all the control gains 0id  . For steering the 

controlled network (4) with (5) to its equilibrium 
state, we need the following lemma [7]: 
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Lemma: Consider the controlled network (4) with 

(5). Suppose that there exists a constant 0   

such that [ ( ) ]Df x    is a Hurwitz matrix. If  

 

| |

min ( )
c

A D






 
,                                  (6) 

 

then the equilibrium state x  of the controlled 
network (4) is locally stable, where  

1( , , ,0, ,0) N N
lD diag d d R     and 

( )A D    represents the eigenvalue of matrix 

A D  . 
 
Remark1: As shown in [7], if   is a positive 

definite matrix, then | | fL   represents the 

globally stable about the equilibrium state x  and 

max| | h   represents the locally stable, where 

0fL   is the Lipchitz constant of ( )f  , 

max 0h   is the maximum positive Lyapunov 

Exponent of chaotic system ( )x f x . 

 
Remark2: As shown in [8], a single controller can 
pin a coupled complex network to an equilibrium 
state if the coupling strength c  is large enough. 
 
3. PINNING STRATEGY 

 
Two well-known strategy of pinning control 
schemes are randomly and specifically pinning. 
As discussed in [6-11], controllers are generally 
preferred to be added to nodes with larger 
degrees. However, it is also known that under 

such pinning schemes, the feedback gains id  

usually have to be relatively large. From the 
viewpoint of realistic applications, using large 
control gains is not expected and sometimes 
cannot be realized. Practically, a designed 
control strategy should be effective and also 
easily implementable. Inspired by [22] and 
[25,26], we introduce a new concept of cost 
function to evaluate the efficiency of our 
designed control scheme. 
 
Definition (Control Cost): If under the controller 
(5), network (4) is stable. The Control Cost is 
defined as  
 

0
1

|| ( ) ||
l

i i
i

CC c d x x dt




    ,               (7) 

where || ||  represents the Euclid norm. 

 
According to the Lemma, for a fixed network or a 
fixed coupling strength c , our aim is to select 
controlled nodes and make 
 

| |
min ( )A D

c


    ,      (8) 

 

for proper control gains id . 

 
In the following simulations, we consider a 50-
nodes BA scale-free network composed of Chen 
oscillators with 
 

max(1,1,1),| | 2.0184, idiag h d d     . 

 
There is only one node with biggest degree 22 
and 19 nodes with smallest degree 3. 
 

Figs. 1 and 2 showmin ( )A D    versus the 

control gain when pinning the “biggest” node and 
all of the “smallest” nodes, respectively. We can 

see that for the same control gain d , 

min ( )A D    of controlling smallest degrees 

nodes is bigger than that of controlling the 
biggest degrees nodes. That is, for a fixed 
coupling strength, we should control the smallest 
degrees nodes with small control gain. 

Furthermore, we can see min ( )A D    has 

limitation for control gain d  . It is means that 
we not need relatively large control gain to 
control the whole network. 
 
 
Figs. 3 and 4 show the process of controlling 

“biggest” node of degree 22 with 30, 20d c   

and all “smallest” nodes of 3 with 1, 20d c  , 

respectively. The control cost are 4.8079*10^6 
and 1.5577*10^6, respectively. It can be seen 
controlling nodes with smaller degrees is more 
efficiency than controlling nodes with larger 
degrees even though we control 19 nodes with 
degree 3. 
 
Remark 3: When controlling the “biggest” nodes 

with 20c  , the control gain 7d  satisfies Eq. 
(8), which means we can control the whole 

networks for all 7d  . But for steering the 
network to its equilibrium state apparently in 10 

time steps, we set 30d   in Fig. 3. 
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4. CONTROL COST AND CONTROLLER 
NUMBER 

 
The control cost versus control gain is simulated 
in Figs. 5 and 6 with controlling the “biggest” 
node and all “smallest” nodes, respectively. 
According to the two figures, it shows that the 
control cost decreases rapidly at first, then 
reaches a minimal value and increases slowly 
with the increase of control gains at last. The 
critical control gain corresponding to the minimal 
control cost can be chosen as the optimal control 
gain in the sense of consumed energy. The 
optimal control gain and minimal control cost are 
240 and 1.5385*10^6 in Fig. 5, 11 and 
0.6414*10^6 in Fig. 6, respectively. 
 
As shown above, the control scheme of pinning 
nodes with smallest degrees can be much more 
effective than that of pinning nodes with biggest 
degrees. However, because the number of 
nodes with smallest degrees in a network is often 
large, the number of controllers to be applied 
should also be large if all these nodes are 

controlled. Thus, when pinning a complex 
networks with fixed coupling strength and control 
gain, research on the number of controllers by 
pinning smallest nodes is interesting and 
valuable. 
 

Fig. 7 shows min ( )A D    versus the 

number of controllers by pinning nodes with 

smallest degrees when 5, 20d c  . We can 

see that min ( )A D    increases rapidly with 

the increase of controller number. It is shown 
when pinning 5 “smallest” nodes, Eq. (8) is 
satisfied, which means we can steer the whole 
network to its equilibrium state by only pinning 5 
nodes with smallest degrees. In Fig. 8, we show 
the process of controlling 5 “smallest” nodes of 
degree 3 based on controlled network system (4) 
of Chen oscillators with controller (5) 

when 5, 20d c  . It is shown that the network 

is quickly steered to its equilibrium state just in 1 
time step. 

  

Fig. 1. min ( )A D    versus the control 

gains when pinning the “biggest” node 

Fig. 2. min ( )A D    versus the control 

gains when pinning the “smallest” nodes 

 
 

Fig. 3. Convergence of the network when 
controlling  “biggest” with 

Fig. 4. Convergence of the network when 
controlling  “smallest” nodes with 
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Fig. 5. Control cost of pinning the “biggest” 
nodes 

 

Fig. 6. Control cost of pinning the “smallest” 
nodes 

Fig. 7. min ( )A D    versus the number of 

controllers 

Fig. 8. Convergence of pinning 5 “smallest” 
nodes 

 

5. CONCLUSION 
 

In this paper, pinning control for BA scale-free 
networks has been further investigated. 
According to the eigenvalue analysis, an 
interesting result is that controlling the nodes with 
smallest degrees is more effective than 
controlling the biggest ones. Furthermore, we 
define a new control cost function to evaluate the 
effectiveness of each control scheme. According 
to the simulation of control cost function, we also 
see pinning nodes with smallest degrees is more 
effective than pinning biggest ones. Moreover, 
the control cost function has minimum value not 
only by pinning nodes with smallest degrees but 
also by pinning nodes with biggest degrees. In 
the end, the number of controllers by pinning 
nodes with smallest degrees is investigated, 
which shows we should not pin every node with 
smallest degrees in practice. 

 

In the future study, we attempt to give theoretical 
analysis of our results, especially about the 
relationship between control cost and controller 
number. Moreover, we will investigate the control 
cost of pinning control on directed networks. 
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