e British Journal of Applied Science & Technology /:a»
4(12): 1841-1857, 2014 (‘;

o SCIENCEDOMAIN international SC'E”CEDOMA'N
= www.sciencedomain.org

ef”

Analysis of Mobile Agent Optimization Patterns

Faiz Al Shrouf", Aiman Turani?, Ayman Abu Baker? and Ahmad Al Omri®

"Amman Arab Un/verSIty, Faculty of Computer Science and Informatics, Amman, Jordan.
Appl/ed Science University, Faculty of Engineering, Amman, Jordan.
3Applied Science University, Faculty of Information Technology, Amman, Jordan.

Authors’ contributions

This work was carried out in collaboration between all authors. Author FAS designed the
study, performed the statistical analysis, wrote the protocol and wrote the first draft of the
manuscript and managed literature searches. Authors AT, AAB and AAO managed the
analyses of the study and literature searches. All authors read and approved the final
manuscript.

Received 24" September 2013
Original Research Article Accepted 3 February 2014
Published 3° March 2014

ABSTRACT

Aims: This study extends classification of mobile agent design patterns to involve
optimization patterns. We propose two optimization design patterns for mobile agents
namely: V-Agent Optimization Pattern and P-Agent Optimization Pattern. The purpose of
this paper is to report agents' performance based on mathematical computing model and
to support reusability of designs in mobile computing area.

Study Design: This study was developed in collaboration between researchers from
computer science department of Amman Arab University, department of computer
engineering, department of Network of Applied Science University.

Place and Duration of Study: Samples were implemented in the Department of
Computing and Mathematics (Computer Science) and Department of Information System
of Amman Arab University for Higher Studies between October 2012 and July 2013.
Methodology: Sample of four master mobile agents that create three slave mobile
agents. Master agents are working on set of clients using Aglet alpha release 2.0.5, Tahiti
working server and Java Execution Environment (JEE) platform. Slave agents are
created by master agents that receive multiple messages from master agents. Master
agents send 4000 messages. Consequently, slave agents record message response time
in milliseconds. Finally, optimized computed time is computed using the two optimizers:
V-Agent Optimizer Design Pattern and P-Agent Optimizer Design Pattern.

*Corresponding author: E-mail: faiz_alshrouf@aau.edu.jo;

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

Results: Different sample sizes of two data sets are analyzed: seven master mobile
agents vs. four slave mobile agents (number of master agents is larger than slave mobile
agents, five master mobile agents vs. five slave mobile agents (number of master mobile
agents equal to number of slave mobile agents), and four master mobile agents vs. seven
slave mobile agents, (number of master mobile agents is less than number of slave
mobile agents). Results are based on two main factors: first, disparity of mobile agents in

the first data set is computed with variance o is less than 6 and the second data set,
variance is larger than 6 between master mobile agents and slave mobile agents, second,
number of messages was still fixed in the two data sets of 4000 messages.

Conclusion: finally, it was reported that the optimized computed time for both data sets
using P-Agent Optimizer Pattern is less than V-Agent Optimizer Pattern in all cases of
different master mobile agents vs. slave mobile agents. It was concluded in this study that
P-Agent Optimizer Design Pattern is more efficient, reusable and scalable than V-Agent
Optimizer Design Pattern.

Keywords: Mobile agents; agent design patterns; optimization patterns; V-agent optimizer
pattern; P-agent optimizer pattern.

1. INTRODUCTION

Mobile agents are autonomous active objects or software entities, migrating between
different network locations, executing tasks locally and continuing their execution at the point
where they stopped before migration [1,2]. Mobile agents can also have features like
intelligence, pro-activeness, and responsiveness.

Mobile agents can migrate across the network connections representing users in different
tasks. They facilitate user's tasks in distributed systems and improve applications such as
Internet, Mobile Data Computing, E-Commerce, and many mobile computing areas

The use of design patterns is an approach to improve the development process of
applications [3,4] and to identify the elements of good and reusable designs for mobile agent
applications. Several design patterns were developed for mobile agent systems such as
representative patterns [1], behavioral patterns [5], architectural patterns [6,7],
communication patterns [8], coordination patterns [9] and data migration patterns [10].

The focus of this paper is to develop a new set of agent design patterns for mobile agent
message collaboration between set of master agents and slave agents. These set of
patterns belongs to a new development class called optimization patterns. In this class, we
have proposed two design patterns, V-agent optimizer and P-agent optimizer pattern. Our
patterns have an object-oriented flavor; that is we describe them using object and class
notations and implemented them in object-oriented languages such as Java.

This paper is structured as follows: in Section 2 presents an overview of patterns; Section 3
describes agent design patterns; Section 4 describes a new performance model in agent —
oriented development engineering; Section 5 proposes a mathematical model based on the
performance model. Section 6 and section 7 report the new mobile agent optimization
patterns; Section 8 presents a discussion and analysis while Section 9 concludes the paper.

1842

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

2. OVERVIEW OF PATTERNS

Experienced software developers and architects have addressed software problems by
creating a body of literature that documents the following types of reusable pattern
structures:

o Design patterns: provide a scheme for refining the elements of software system and
the relationships between them [11] and describe a common structure of
communicating elements that solves a general design problem within a particular
context.

e Architectural patterns: express the fundamental overall structural organization of
software systems and provide set of predefined subsystems, specify their
responsibilities and include guidelines for organizing the relationships between
them.

e Pattern language: define a vocabulary for talking about software development
problems [12,13] and provide a process for the orderly resolution of these problems.

However, design patterns enhance reuse by capturing and reusing static and dynamic
structure and collaboration of components in software designs. They are particularly useful
for documenting recurring software architectures, which are abstractions of software
components that experienced developers apply to resolve common design and
implementation problems. Design patterns also raise the level of discourse in project design
and programming activities, which helps improve team productivity and software quality.

Much of research work in agent community [14] has primarily focused on discovering and
documenting patterns, to reap the benefits of deploying these proven design solutions,
patterns should be used as a first class modeling blocks in designing agent applications.

3. AGENT DESIGN PATTERNS

Design patterns have been very successful in object-oriented system development [15]. As
agents provide better abstraction, they allow easier identification of reusable parts in Multi-
Agent Systems (MAS) development [16].

Several proposals on design patterns for mobile agent systems have been found in
literature, for example [1] discovered useful patterns for mobile agent systems and divided
into three classes: Traveling patterns, such as ltinerary, Forwarding and Ticket, patterns are
concerned with mobility management of an agent for one or more destinations, Task
patterns such as Master-Slave and Plan patterns, are concerned how these tasks are
delegated to one or more agents. Interaction patterns, such as Meeting, Locker, Messenger,
and Organized group patterns, are concerned with locating agents and facilitating their
interactions.

To improve understanding and usage of agent oriented design patterns, it is necessary to
classify patterns [17-19] attempts have been made to classify agent patterns and to integrate
these patterns in agent-oriented methodologies and development frameworks.

Our work establishes useful patterns for newly developed class called optimization patterns

for mobile agent systems. In this paper, we proposed two design patterns called V-agent
optimizer pattern and P-agent optimizer pattern. A comparison has been made between

1843

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

these patterns to force like efficient mobility and message coordination between set of
master mobile agents and slave mobile agents in distributed and open Multi-Agent System
(MAS).

4. PERFORMANCE MODEL

The main benefit of mobile agents in the development of distributed systems is to reduce the
network load compared to other paradigms. This is done by moving the mobile agent code to
data instead of moving data to the code as it is done by client-server architecture.

Several studies were used in the development of mobile agents performance based on
mathematical analysis; for example Petri net models [20] are performance models that
produce design patterns in Aglet mobile agent libraries, which are described to support
automated software engineering of mobile agent systems. The master-slave design pattern
is described for modeling concurrent behavior and verified with Aglet implementation.

In our system master mobile agents are working on clients create slave mobile agents which
dispatch to set of servers that perform required task. Master mobile agents have message
passing performance model called Message Broadcast Model (MBM) [21], which is
described in Fig. 1.

2
Client Master
agent
Slave 2
agent ‘&
@ o ‘+—
g Message
- Handler Message Delivery
o E
wrFE

Fig. 1. Message Broadcast Model (MBM)

5. MATHEMATICAL MODEL

Message communication model is the base concept between master mobile agents and
slave mobile agents. Message communication model has been described by [22], the
principle of this model is used to identify the mathematical model in such each master mobile
agent works on client has to deliver set of simple messages to slave mobile agents work on
server side, and each slave mobile agent carries out messages based on its response time,
for example, a master mobile agent deliver a specific set of equal messages (Message
Delivery from master mobile agent1, MD,1) to all slave mobile agents, the first slave mobile
agent carries out each message in time given in millisecond (t,1s1), Note that each slave
mobile agent carries out a simple message delivered from a master mobile agent according
to synchronous communication time. Each slave mobile agent can determine total messages
response from all master mobile agents (Message Response from slave Mobile Agent1 is

1844

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

MRg¢). Based on MBM, we proposed a mathematical model called Message Delivery
Response Matrix (MDRM), which involves the following components:

5.1 Master Agents

Master agents are created on set of clients, we use Java Execution Environment (JEE)
platform consisting of Tahiti server and Java runtime of Aglet development Kit. After the
user instantiates interface, it creates slave agents, reads the database for the list of servers,
and checks the availability of servers it sends the slave agents to those servers.

5.2 Slave Agents

Slave agents migrate and functioning on servers. They respond to master mobile agents
messages, at remote site slave agents mobile receives multiple messages for given tasks
and sends results to master agents by embedding it into message handler. Each message
registered with the handler which is responsible to record its response time received by the
slave agent, and the corresponding slave agent, which sends the message and forward
results to the master agent.

5.3 Message Response (MR)

Message response represents total messages that each slave responds in broadcast
messaging queue in the message handler.

5.4 Message Delivery (MD)

Message delivery represents total messages that each master agent should deliver in
broadcast messaging queue in the message handler.

5.5 Slave Response Time

Slave response time is the estimated time of slave agents carry out a task from a master
agent. This time is calculated directly when the slave instantiate the message from the
message manager class of the Aglet API. It is necessary here to mention that all messages
are carried out in synchronous fashion and the delay time during processing is not
encountered. In this paper, this is considered the cornerstone of designing optimization
patterns in MAS. Slave agents response time can easily calculated using synchronization
scheme.

Based on these assumptions, we consider set of clients Ci, which involves set of master
agents My, where C={C1m1,Comz,-+-vevvn.. , ckmk), furthermore, consider a set of servers S, are
distributed across network involves a set of created slave agents, S,, ={S1s1, Sos2, -...... Shsn}-
Suppose MD,, is the total number of messages to be delivered from the master agent (m;) to
slave agents carrying out tasks on server side, and suppose messages MRy is the total
number of response messages that a slave agent (s;) responds from all master agents in the
message handler in the broadcast queue.

Furthermore, we propose that total messages that to be delivered by all master agents are

equal to total response messages in broadcast messaging queue by slave agents as in
equation (1), in other words:

1845

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

k n
Z:MDM :ZMRSJ (1)
i= j=

Now, suppose that tn is the estimated response time of a slave agent (s;) performing a
task on the behalf of a master agent (m;) and Aysj are number of messages delivered by a
master agent (m;) to a slave agent (s;). Based on these assumptions, we proposed the
Message Delivery/Response Matrix (MDRM). MDRM involves: master agents, slave agents,
message delivered by master agents, message response by slave agents, and response
time of each slave agent. MDRM is shown in Table 1.

Table 1. Message delivery response matrix (MDRM)

s1s1 sZsZ . . . snsn MD
tm1s1 tm1s2 tmisn
C s m . MD
m1)\m1s1)\m152)\m1sn m
tm251 tm252 thSn
c2m2 . MDmZ
)\m251)\st2)\mZSn
tmks1 tmksZ tmksn
ckmk . MDmk
)\mks1)\mk52)\mksn
MR MR, MR,, MR,

Assumptions stated above conclude that MDRM follows a linear programming model leading
to set of rules:

e Determine the objective function.
e Determine model constraints.
e Determine and validate model non negative values.

The objective function is given by equation (2), constraints given by equation (3) and (4)
respectively, and non negativity condition is given by equation (4) as follows:

min(z) = Zk:i}tmmt” 2)

i=l j=1

D Ay =MD, i=12,...k (3)
Jj=1

k
D Ay =MR, j=12,.....n 4)

i=1

A

‘misj

>0 Foralliand j

1846

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

6. INFORMATION GENERATION

Both design patterns requires set of functional requirements for running, in this example we
developed four master mobile agents, three slave mobile agents, and two stationary
developed agents called V-agent and P-agent. All master agents require Tahiti server
running on port 4434 which create slave agents running on port 6000; while both V-agent
and P-agent process computed slave time response and total time response on different port
server 7000. Total number of Messages (4000) is generated arbitrary by master agents.
Contents of messages involve: displaying a word, search for a name in database, opening a
server port number, closing a file, correcting a mistake, connecting to network, etc. Slave
agent response time of each slave agent from a given master agent is processed by V-agent
and P-agent. Thus both design patterns based on V-agent and P-agent focus on different
approaches discussed in the proceedings sections.

7. V-AGENT OPTIMIZER DESIGN PATTERN

Mobile Agent Optimization Patterns are derived from MDRM where both two design patterns
are extracted. MDRM supports a flexible mathematical generic model for representing,
optimizing, and evaluating mobile agent optimization pattern. We are starting to build the first
optimization pattern called V-Agent Optimizer design pattern. The name of the pattern is
given according to a stationary master agent, we call it V-agent, and we follow the
methodology of analysis given in [1]. This methodology uses the Unified Modeling Language
(UML).

7.1 Approach

V-agent approach as given by [21] for mobile agent performance optimization utilizes
Vogel's Approximation Method, which gives an initial solution. V-agent follows the following
steps:

* Find Penalty Time (PT) between two successive time values in each row and
column.

* Choose the larges PT among rows and columns.

* Fill the cell with master message delivery and slave message response.

* Repeat the process to fill all cells.

* Calculate the initial solution using equation (2)

7.2 Intent

V-agent optimizer design pattern defines a scheme whereby a stationary V-master agent
distributes messages to slave agents, calculate the penalty time response from slave agents
and calculates the optimum performance time in milliseconds (ms) for all scheme
representing master mobile agents and slave mobile agents.

7.3 Applicability

This pattern is used in the following cases:

. When master mobile agents require slave agents to carry out tasks in synchronous
fashion based on slave response time.

1847

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

When slave agents needs to collaborate and coordinate messages.
When the user needs to differentiate between methods for optimization techniques
and study the behavior of mobile agents in MAS.

7.4 Forces

The following are the domain forces that V-agent optimizer design pattern needs to consider:

Openness: This design has to consider the openness of distributed application in
multi-agent systems where master mobile agents coordinate and delegate
messages to slave agents based on slave agents response time for carrying out
their tasks.

Mobility: Efficient mobility of agents is a key in this design.

7.5 Motivation

Several key factors are considered as objectives given below:

Communication: Is the base mechanism for agent's messages collaboration in multi-
agent systems. However, current mobile agent systems focus on content of
messages, delivery and response time to carry out tasks.

Performance: Is a main issue in mobile agent systems. The need is to discover
several mathematical approaches that explore performance optimization issues.
Reliability: Is another issue that measure agent's capabilities and their achievement
in distributed systems applications. The design is reliable and implemented in
network environment.

7.6 Participants

Agents in this design are participating in the pattern by means of object flavor analysis and
design. These are described as follows:

Master mobile agents that create slave mobile agents and specify number of
messages to be delivered to slave agents.

Slave agents that specify two main objectives; the first objective is each slave agent
should specify message response time and the second objective specifies the total
number of response messages.

Concrete slave which initializes the process for each slave running and created by
each master agent.

V-agent the main agent in the design that implements two main methods:
Doiteration (); which calculates Penalty Time (PT) between two successive slave
response times and calculatePerformanceTime(), which computes the total initial
time in millisecond. This time represents the optimum time calculated by V-agent
using this design.

A class diagram representing the structural relationship of participants in v-agent optimizer is
given in Fig. 2.

1848

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

7.7 Collaborations

Collaboration among agents is shown in agent interaction diagram Fig. 3. This diagram
depicts sequences of messages used by agents for sending and receiving agent's behavior.

* Master agent creates slave agents and V-agent.

+ Slave agents dispatch to remote host, carry out tasks and receive messages from
their master agents.

* V-agent resides on the local host.

+ Each slave agent sets out its response time and number of response messages.

+ Each master agent sets out messages to be delivered to each slave agent.

+ V-agent calculates Penalty Time based on each slave message response time.

+ V-agent distributes messages to slave agents based on the least Penalty Time.

+ V-agent finalizes the process and computes the optimum performance time.

Master

+setDeliveredMessages()
+deliverMessage()

Slave

K 0
V-agent

+setResponseMessages() 1
+setResponseTime() !

+dolteration()
+calculatePerformanceTime()

ConcreteSlave

+initilize()

Fig. 2. V-agent design pattern class diagram

Master Agent Veagent Stave Agent|
create() i
create()

setDeliveredMessages|()

setResponseTime()

calculatePenalty Time()

distributeMessages|()

> calculatePerformanceTime()

Fig. 3. Collaborations in V-agent optimizer design pattern

1849

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

7.8 Consequences
V-agent optimizer design pattern provides the following consequences:

* The pattern decouples agents and reuses code amongst agent classes, thus making
mobile agent lightweight. This ensures the efficient mobility in case of network
latency and network bandwidth and traffic.

« The pattern provides a communication technique amongst agents. This is achieved
through synchronous communication messages between different agents based on
a response time fashion.

* The pattern enables mathematical approaches to explore agent capabilities which
may be specific to agent interaction.

7.9 Implementation

Suppose we define set of four master agents {m1, m2, m3, m4} with set of total message to
deliver 4000 messages as {1000, 1000, 1000, 1000} to set of three slave agents {s1, s2, s3}
with total message response {1000, 1200, 1800} respectively. The allocated slave message
response time of one message in milliseconds is given in Table 2. Note that number of
delivered messages by master agents and number of response messages by slave agents is
allocated by V-agent, while response message time is allocated by each slave agent in the
message handler.

Table 2. V-Agent implementation scenario

S, S S; MD
10 9 8
m; \— \— \— 1000
)\m1s1)\m152)\m153
8 6 1
m, \— \— \— 1000
)\m2$1)\m2$2)\m2$3
10 3 5
m; 1000
)\m3$1)\m3$2)\m3$3
7 9 8
m, 1000
)\m4s1)\m452)\m453
MR 1000 1200 1800 4000

V-agents starts processing by assigning number of messages by calculating values of
{Ami1s1, Amos2, €1C, , } amongst rows and columns leading to choose the largest PT (the
difference between two successive response time in rows and columns), if more than one
PT values are equal, then V-agent choose any PT. Therefore, the first calculated PT is 3
and the second column is selected; hence, V-agent assigns messages between the third
master agent and the second slave agent (m3, s2). V-agent allocates 1000 messages from
m3 to s2. Now, s2 has 200 messages are waiting in the message handler. Therefore, V-
agent completes the first process by assigning 1000 messages from the third master agent
to the second slave agent.

1850

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

V-agent computes the second PT amongst rows and columns. Now, it picks the second
column with PT value (3). V-agent chooses the larges time in that column 2, and it optimizes
the total messages between (m2, s2). Therefore, V-agent assigns the remaining messages
to s2 and has 800 remaining messages in the message handler. V-agent iterates the
remaining PT values using the same way until all master messages deliver to all slave
agents. Table 3, concludes the final results by V-agent.

Table 3. Performance optimization analysis using V-agent

S1 Sz Ss MD
) | 10 9 s 8 | 000
s 8 | 6 | LM oo
800 200
s SEETEE I R
- 7| 9 | 8 | 000
200 800
MR 1000 1200 1800 4000

Finally, V-agent computes the performance optimum response time using according to
equation (1) t= 26,400 milliseconds (ms). The performance optimization screenshot is given

in Fig. 4.

e e ———— T |

Tt A gent Interface

[+

[3

|C:‘-.Us ers\SamiriDesktopihh 2 =t

R

0]
]

Bl

o
o

&
[=]{=]

L]

o
Qa=e
fill=1}m

[=]
o

{

Total Time

[26400. 0

Fig. 4. V-agent design pattern performance optimization

1851

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

8. P-AGENT OPTIMIZER DESIGN PATTERN

This pattern shares V-agent optimizer pattern in intent, applicability, forces and motivation.
In this section we demonstrate the P-agent pattern approach and implementation scenario.

8.1 Approach and Collaborations

This pattern introduces an agent called P-agent, which uses an approach called closed path.
P-agent starts the process as given in Table 3, the final distribution of messages given by V-
agent. P-agent follows the following steps:

« Compute number of occupied cells in message distribution pattern given by V-agent.
We define occupied cells as messages covered from master agents to
corresponding slave agents in the final V-agent optimization design pattern of Table
3. Non occupied cells are cells which are not covered in the pattern of Table 3.
From master agents to their corresponding slave agents.

* Apply the formula: Occupied-cells=number of master agents in the design plus slave
agents minus 1.

* P-agent processes a closed path starting from non occupied cell, gives a positive
sign at slave message response time in that cell, follows closed path to the next
occupied cell, and gives a negative sign at the occupied cell filled with slave agent
message response time.

* Repeat the process up or down to the next occupied slave message response time
with positive and negative signs successively. All occupied cells representing slave
agent message response time are tracked with successive and negative signs.

* Follow a closed path to return to the initial starting non occupied cell of the non
occupied cell of the slave agent message response time.

+ Calculate the P-agent value (p-value) by adding slave message response time
successively representing positive and negative signs in the closed path.

» P-agent chooses the largest negative p-value to start iterative process and specifies
number of messages to be delivered from the corresponding master agent to slave
agent.

+ P-agent iterates above steps to find the next p-value. The process is repeated until
all (p-values) computed by P-agent are positive.

Collaborations between different classes are given in Fig. 5, which represents four main
classes: Master Agent, Slave Agent, V-Agent, and P-agent. P-agent has five functions in
design pattern: utilizes V-agent results, find closed path, compute (p-values) representing
positive and negative slave message response time, distribute master agents messages to
their slave agents based on (p-values), and finally, computes the performance optimum time.

8.2 Implementation

In this section, we present an implementation scenario for P-agent optimizer design pattern.
P-agent design optimizer pattern utilizes results of final optimization of V-agent design
pattern given in Table 3. This table shows the distribution of final number of delivered
messages from master agents to their corresponding slave agents. Number of messages is
marked as occupied cells given as (m{—s3), (My—S4), (M2—S5), (M3—S5), (My—S4), (Ms—S3).

1852

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

P-agent tracks all non occupied cells from master agents to slave agents in the final table of
performance optimization of V-agent. The tracking process checks that occupied cells in the
final optimization table should be equal to number of master agents plus slave agents minus
1, and computes p-values corresponding to each non occupied cell and follows a closed
path starting from initial non occupied cell and adding successive positive and negative signs
representing slave messages response time. For example, P-agent tracks the closed path
and computes the p-value, which is +3 (+10-8+8-7) for the non occupied cell (m;—s,) as
shown in Table 4.

[Master Aaen]

create()

creaté()

Slave Agent| [P-Agent

setDeliveredMessages()

Fig. 5. Collaborations in P-agent optimizer design pattern

setResponseTime()
—

> calculatePenalty Time()

distributeMessages()
— T

sendResults()

> calculatePerformanceTime(

VY

distributeMessages()

findClosedPath()

calculateSigns()

> calculatePerformanceTime()

Table 4. P-Agent Closed Path Tracking

S S, S, MD
m; 10 \L 8 1000
+ 1000, -
A 8 11
m T 8 | | 6 | 1000
800 200
10 3 5
m; ‘ 1000
1000
A 4
- 7 e 8 | 1000
200 « 800 \ +
MR 1000 1200 1800 4000

The remaining non occupied cells are computed as follows:

o (my—s;3) +11-8+7-8; p-value is +2
* (m3—sq) +10-3+6-8; p-value is +5
¢ (m3—s;3) +5-8+7-8+6-3; p-value is -1

1853

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

o (my—os,) +9-6+8-7; p-value is +4

Now, P-agent chooses the largest p-value with negative sign (-1) and ignores all positive p-
values and starts the distribution of messages from (ms;—s3). In case of equally p-values, P-
agent chooses any picked one. In this case, P-agent assigns 1000 messages from (ms;—s;).

Distribution of messages from master agents through P-agent is an iterative process and P-
agent repeats the process to find another p-value in the next process. The final performance

optimization scheme is given in Table 5.

Table 5. Performance Optimization Analysis Using P-Agent

S, S, S, MD
) |10 . 9 . L8 | 00
s | 8 - | 6 LM 0o
s | 10| 3 | - L5 000
e | 7| 9 | 8 | 000
MR 1000 1200 1800 4000

P-agent iterates the final performance optimization table given above and terminates the
process either all computed p-values are non negatives or number of occupied cells is not
equal to master agents plus slave agents minus 1. In this implementation scenario P-agent
terminates the process since number of occupied cells is equals 5. The final optimum
computed time given by P-agent using equation (1) is t=26,200 milliseconds (ms)

9. RESULTS AND DISCUSSION

To study the behavior of both design patterns, we have analyzed two different data sets. We
use the same environment representing (JEE) platform, Aglet Development Kit, and Tahiti
server to create master and slave mobile agents. The analysis process based mainly on
different factors including number of master agents, number of slave agents, slave response
times and their disparity, number of delivery messages of master agents, and number of
response messages of slave agents. We also recommend three cases for our study: first;
number master agents is larger than number of slave agents, second; both master agents
and slave agents are equal, and third; number of master agents is less than number of slave

agents. We compute the variance o’ for both data sets. The analysis reports that P-agent
optimizer design pattern gives better results than V-agent optimizer design pattern for both
data sets, and the performance optimization computed time is reduced in case of P-agent
optimizer design pattern.

The first data set given in Table 6 concludes that P-agent optimizer design pattern
performance optimization is quite small than V-agent design pattern performance

1854

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

optimization, when (the variance o’ between slave agents are less than 6), while the
second data set as given in Table 7, P-agent performance optimization is much better than

V-agent performance optimization, when (the variance o’ between master agents are
larger than 6).

Table 6. Performance analysis of first data set (Time. Milliseconds)

Master x Slave ol P-Agent V-Agent
t=ms t=ms
7m x 4s 4.452 86,400 87,800
5mx 5s 4.240 49,200 50,800
4dm x 7s 2.658 73,500 75,500

Table 7. Performance analysis of second data set (Time. Milliseconds)

Master x Slave o P-Agent V-Agent
t=ms t=ms
7m x 4s 6.158 59,600 66,300
5m x 5s 6.681 37,300 45,100
4m x 7s 6.811 58,900 65,500

10. CONCLUSIONS AND FUTURE WORK

The use of design patterns has generally increased due to advantages they can bring to
applications development, like reuse and better understanding of applications. These
advantages can be also obtained when developing mobile-agent based applications by
using design patterns. In this sense, several mobile agent patterns have already been
proposed. These patterns present solutions that can be reused, avoiding loss of time and
effort to investigate problems that have been solved.

In this work, we have proposed performance optimization design patterns for mobile agent
systems and we call them V-agent optimizer design pattern and P-agent optimizer design
pattern. In general, coordination mechanism is a key and it is very useful for considering
these patterns. Also, the functionality of these patterns can be added to explore agent
collaboration in multi agent systems. Another advantage of using these patterns is to study
the behavior of agents and their features, agent interaction which is supported by
mathematical approaches and models that support mobility performance optimization
analysis.

A drawback that is related to use of optimization design patterns is that; it is specific to the
Aglet development platform and it is insufficient to support intelligence for P-agent and V-
agent. These patterns should be implemented in another platform like JADE, which
combines migration and intelligence disciplines.

We hope this paper gives the outlines of considering new design patterns and will motivate

others to continue and discover more patterns that make it easier for designers of distributed
applications to gain and learn the use of agent technology in mobile computing environment.

1855

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

ACKNOWLEDGEMENTS

We owe thanks to Amman Arab University for Higher Studies (Faculty of Computer Sciences
and Informatics) and Applied Science University (Faculty of Computer Engineering and
Faculty of Information Technology for supporting this research.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

Aridor Y, Lange D. Agent design patterns: Elements of agent application design.
Proceedings of 2" International Conference on Autonomous Agents, ACM press.
USA; 1998.

Lange D, Oshima M. Programming and deploying java mobile agents with aglets.
Addison-Wesley Reading MA; 1998.

Ammar H, Yacoub S. Pattern-oriented analysis and design. Person Education Inc.;
2004.

Kendall E, Krishna P, Pathak C, Suresh C. Patterns of intelligent and mobile agents.
Proceedings of the 2" International Conference on Autonomous Agents, ACM press
New York, USA; 1998.

Ojha A, Padhan S, Patra M. Designing Mobile Agents using Helper Pattern. Research
India Laboratories; 2007.

Schmidt D, Buchman F. Patterns, Frameworks and Middleware: Their synergistic
relationships. Proceedings of 25" |EEE International Conference on Software
Engineering (ICSE'03); 2003.

Kendall E. Role Modeling for Agent System Analysis, Design and Implementation
(ASA/MA) ACM press; 1999.

Miera N, Silva I. A Set of Agent Patterns for more Expressive Approach. INESC-
ID&IST. RUA Alves. 2000;12(9):44-50.

Tolksdrof R. Coordination Patterns of Mobile Information Agents. Proceedings of
Cooperative Information Agents I, 2™ International Workshop, CIA. Springer; 1998.
Osunad S, Atanda F. Analysis of two mobile agent data migration patterns. Journal of
Mobile Communication. 2008;2(2):64-72.

Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable
Object-Oriented Software; Addison-Wesley Reading, MA; 1995.

Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl |, Angel S. A pattern
language. Oxford University Press, New York, USA; 1977.

Weiss M. A Pattern Language for Motivating the use of Agents. Giogini P, et al.: AOIS,
LNAI. 2004;142-157.

Radizah M, Safaai D, Ammar H. Pattern oriented design for multi agent system: a
conceptual model. Journal of Object Technology. 2007;6(4):55-75.

Alur D, Crupi J, Malks D. Core J2EE Design patterns: best practices and design
strategies. Person Education Inc.; 2006.

Tahara Y, Ohsuga A, Honiden S. Agent system development method based on agent
patterns. Proceedings of the 21 International Conference on Software Engineering.
IEEE Computer Society Press; 1999.

Al Shrouf F, Turani A. Agent Business Systems Engineering Development Approach.
Journal of European Scientific Research. 2009;29(4):549-556.

1856

18.

19.

20.

21.

22.

British Journal of Applied Science & Technology, 4(12): 1841-1857, 2014

Malyankar R. A pattern template for intelligent agent systems. Proceedings of the
workshop on agent based decision support for managing the internet enabled supply
chain. Seattle; 1999.

Weiss M. A pattern language for motivating the use of agents. Proceedings of the 6"
International Conference on Agent-Oriented Information Systems. Springer; 2004.
Rana O, Walker D. A Performance Model for Task and Interaction Patterns in Mobile
Agent Systems. Proceedings of IEEE International Conference on Performance
Computing and Communication; 2000.

Al Shrouf F, Eshtay M, Abuhumidan K. Performance Optimization for Mobile Agent
Message Broadcast Model using V-Agent. International Journal of Computer Science
and Network Security, IJCSNS. 2008;8(8):285-290.

Al Shrouf F, Abusaimeh H, Al Shqgeerat K, Al Omari M. Evaluating time performance
optimization analysis for mobile agent message communication using assignment
computing agent. Journal of Applied Sciences. 2012;12(12):1290-1296.

© 2014 Shrouf et al.; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history.php ?iid=445&id=5&aid=3876

1857

