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Abstract
In this paper, we determine coefficients bounds for functions in certain subclasses of analytic
functions of complex order, which are introduced here by means of the nonhomogeneous Cauchy-
Euler differential equation of order m. Our main result contain some corollaries as special cases.
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1 Introduction and Definitions
Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k (1.1)

which are analytic and univalent in the open disk U = {z : |z| < 1}. A function f(z) ∈ A is said to be

starlike of complex order γ(γ ∈ C∗ := C�{0}) and type β(0 ≤ β < 1), that is f(z) ∈ S∗γ (β), if and
only if

Re
{
1 +

1

γ

(
zf ′(z)

f(z)
− 1

)}
> β (z ∈ U ; γ ∈ C∗), (1.2)
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and is said to be convex of complex order γ(γ ∈ C∗) and type β(0 ≤ β < 1), denoted by Cγ(β) if and
only if

Re
{
1 +

1

γ

zf ′′(z)

f ′(z)

}
> β (z ∈ U ; γ ∈ C∗). (1.3)

The classes S∗γ (β) and Cγ(β) were introduced by the first author in [1]. Note that S∗γ (0) = S∗γ and
Cγ(0) = Cγ the classes considered earlier by Nasr and Aouf [2] and Wiatrowski [3]. Also, S∗1 (β) =
S∗(β) and C1(β) = C(β) which are, respectively, the familiar classes of starlike functions of order
β(0 ≤ β < 1) and convex functions of order β(0 ≤ β < 1).

Let Q(γ, λ, µ, β) denote the subclass of A consisting of functions f(z) which satisfy the following
condition

Re
[
1 +

1

γ

(
z[λµz2f ′′(z) + (λ− µ)zf ′(z) + (1− λ+ µ)f(z)]′

λµz2f ′′(z) + (λ− µ)zf ′(z) + (1− λ+ µ)f(z)
− 1

)]
> β (1.4)

where 0 ≤ µ ≤ λ ≤ 1; 0 ≤ β < 1; γ ∈ C∗ and z ∈ U .
For µ = 0, the classQ(γ, λ, µ, β) reduces to the class SC(γ, λ, β) introduced by Altintaş et al. [4].

Clearly, we have Q(γ, 0, 0, β) = S∗γ (β) and Q(γ, 1, 0, β) = Cγ(β).
In the present paper, we propose to derive some coefficient bounds for the class Q(γ, λ, µ, β)

and also for functions in the subclass H(γ, λ, µ, β,m; ζ) of A, which consists of functions f(z) ∈ A
satisfying the following nonhomogeneous Cauchy-Euler differential equation of order m :

zm
dmw

dzm
+

(
m

1

)
(ζ +m− 1)zm−1 d

m−1w

dzm−1
+ · · ·+

(
m

m

)
w

m−1∏
j=0

(ζ + j) = g(z)

m−1∏
j=0

(ζ + j + 1) (1.5)

(w = f(z); g(z) ∈ Q(γ, λ, µ, β), ζ ∈ R\(−∞,−1];m ∈ N∗ := N\{1} = {2, 3, ...}).

2 Coefficient Estimates
We begin by obtaining coefficient bounds for functions in the class Q(γ, λ, µ, β).

Theorem 2.1. Let the function f(z) ∈ A be given by (1.1). If f(z) ∈ Q(γ, λ, µ, β), then

|an| ≤

n−2∏
j=0

[j + 2 |γ| (1− β)]

(n− 1)![1 + (λµn+ λ− µ)(n− 1)]
(n ∈ N∗), (2.1)

where 0 ≤ µ ≤ λ ≤ 1; 0 ≤ β < 1, and γ ∈ C∗.

Proof. Let the function F (z) be defined by

F (z) = λµz2f ′′(z) + (λ− µ)zf ′(z) + (1− λ+ µ)f(z) (f ∈ A; z ∈ U). (2.2)

Then F (z) is analytic in U with F (0) = F ′(0)− 1 = 0. From (1.1) and (2.2) it is easily seen that

F (z) = z +

∞∑
k=2

Akz
k (z ∈ U).

where
Ak := [1 + (λµk + λ− µ)(k − 1)]ak (k ∈ N∗). (2.3)
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Define the function p(z) by

p(z) =
1 + 1

γ

(
zF ′(z)
F (z)

− 1
)
− β

1− β

or, equivalently,
zF ′(z)− F (z) = γ(1− β)(p(z)− 1)F (z) (2.4)

then p(z) = 1+c1z+c2z
2+ · · · is analytic in U and Re{p(z)} > 0. Therefore, we have |cn| ≤ 2 (n ∈

N). From (2.4), it follows that

(n− 1)An = γ(1− β)(cn−1 + cn−2A2 + · · ·+ c1An−1).

In particular, for n = 2, 3, 4, we have

|A2| ≤ 2 |γ| (1− β),

|A3| ≤
2 |γ| (1− β)[1 + 2 |γ| (1− β)]

2!
,

and
|A4| ≤

2 |γ| (1− β)[1 + 2 |γ| (1− β)][2 + 2 |γ| (1− β)]
3!

,

respectively. Thus, by using the principle of mathematical induction, we obtain

|An| ≤

n−2∏
j=0

[j + 2 |γ| (1− β)]

(n− 1)!
(n ∈ N∗). (2.5)

From (2.3) it is clear that

An = [1 + (λµn+ λ− µ)(n− 1)]an (n ∈ N∗). (2.6)

Now the inequality (2.1) follows immediately from (2.5) and (2.6). This completes the proof of
Theorem 2.1.

Putting µ = λ = 1 in Theorem 2.1, we get the following corollary.

Corollary 2.2. Let the function f(z) ∈ A be given by (1.1)and satisfies the condition

Re
[
1 +

1

γ

(
z[z2f ′′(z) + f(z)]′

z2f ′′(z) + f(z)
− 1

)]
> β (2.7)

then

|an| ≤

n−2∏
j=0

[j + 2 |γ| (1− β)]

(n2 − n+ 1)(n− 1)!
(n ∈ N∗), (2.8)

where 0 ≤ β < 1, and γ ∈ C∗.
Putting µ = 0 in Theorem 2.1, we get the following result obtained by Altintaş et al. [5].

Corollary 2.3. Let the function f(z) ∈ A be given by (1.1). If f(z) ∈ SC(γ, λ, β), then

|an| ≤

n−2∏
j=0

[j + 2 |γ| (1− β)]

(n− 1)![1 + λ(n− 1)]
(n ∈ N∗), (2.9)
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where 0 ≤ λ ≤ 1; 0 ≤ β < 1, and γ ∈ C∗.
Finally, we prove the following theorem.

Theorem 2.4. Let the function f(z) ∈ A be given by (1.1). If f(z) ∈ H(γ, λ, µ, β,m; ζ), then

|an| ≤

n−2∏
j=0

[j + 2 |γ| (1− β)]
m−1∏
j=0

(ζ + j + 1)

(n− 1)![1 + (λµn+ λ− µ)(n− 1)]
m−1∏
j=0

(ζ + j + n)

(m,n ∈ N∗), (2.10)

where 0 ≤ µ ≤ λ ≤ 1; 0 ≤ β < 1; γ ∈ C∗ and ζ ∈ R\(−∞,−1].

Proof. Let the function f(z) ∈ A be given by (1.1). Also let

g(z) = z +

∞∑
k=2

bkz
k ∈ Q(γ, λ, µ, β).

Then from (1.5), we get

an =


m−1∏
j=0

(ζ + j + 1)

m−1∏
j=0

(ζ + j + n)

 bn (n ∈ N∗; ζ ∈ R\(−∞,−1]).

Thus, by using Theorem 2.1 , we readily obtain the inequality (2.10) .

Putting µ = λ = 1 in Theorem 2.4, we get the following corollary.

Corollary 2.5. Let the function f(z) ∈ A be given by (1.1). If f(z) satisfies the equation (1.5) and

g(z) = z +
∞∑
k=2

bkz
k satisfies the condition (2.7), then

|an| ≤

n−2∏
j=0

[j + 2 |γ| (1− β)]
m−1∏
j=0

(ζ + j + 1)

(n2 − n+ 1)(n− 1)!
m−1∏
j=0

(ζ + j + n)

(m,n ∈ N∗), (2.11)

where 0 ≤ β < 1; γ ∈ C∗ and ζ ∈ R\(−∞,−1].
Putting µ = 0 and m = 2 in Theorem 2.4, we get the following result obtained by Altintaş et al.

[5].

Corollary 2.6. Let the function f(z) ∈ A be given by (1.1). If f(z) satisfies the nonhomogeneous

Cauchy-Euler differential equation of order 2, given by (1.5) and g(z) = z +
∞∑
k=2

bkz
k satisfies the

condition (2.7), then

|an| ≤
(ζ + 1)(ζ + 2)

n−2∏
j=0

[j + 2 |γ| (1− β)]

(n− 1)![1 + (λµn+ λ− µ)(n− 1)](ζ + n)(ζ + n+ 1)
(n ∈ N∗), (2.12)
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where 0 ≤ λ ≤ 1; 0 ≤ β < 1; γ ∈ C∗ and ζ ∈ R\(−∞,−1].

A similar work can also be referred to Eker et al. [6]. In this article they studied the Dziok-Srivastava
operator.

Open problem: Is it possible to solve problems related to the Fekete-Szegö theorem as given in [7]?
It is yet to be solved.
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