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Abstract
The aim of this paper is to analyze the effect of magnetic field on a boundary layer flow and heat
transfer of a dusty fluid over an exponentially stretching surface with an exponential temperature
distribution. The governing boundary layer equations are reduced into system of coupled non-linear
ordinary differential equations with the help of similarity transformation. The transformed equations
are then solved numerically using RKF-45 method. The effects of various physical parameters
such as local fluid-particle interaction parameter, Prandtl Number, Eckert Number and Magnetic
parameter on velocity and temperature profiles are discussed in detail.
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1 Introduction
The interest in boundary layer flow and heat transfer over a stretching sheet has gained considerable
attention because of its wide range of application in industry and manufacturing processes. Such
applications include polymer extrusion, drawing of copper wires, continuous stretching of plastic films
and artificial fibers, hot rolling, wire drawing, glass fiber and in metallurgy for the metal processing like
metal extrusion and metal spinning. Few examples of such technological processes are the cooling
of an infinite metallic plate in a cooling bath, the boundary layer along material handling conveyers,
the boundary layer along a liquid film in condensation processes. So the study of two-dimensional
boundary layer flow and heat transfer of a dusty fluid over a stretching sheet has gained much interest.
A large number of researchers are engaged with this rich area. There are few attempts in which
nonstandard stretching is used, known as exponential stretching.

Starting from the work of Sakiadis (Sakiadis, 1961a; Sakiadis, 1961b) who studied the stretching
flow problem, encourages many authors to investigate the various aspects of this problem. Magyari

*Corresponding author: Tel:+91-9741148002, E-mail: bjgireesu@rediffmail.com

file:www.sciencedomain.org


British Journal of Mathematics & Computer Science 2(4), 187–197, 2012

et al (Magyari and Keller, 1999) was the first to consider the boundary layers on an exponentially
stretching continuous surface with an exponential temperature distribution and are examined both
analytically and numerically. Partha et al (2005) studied the effect of viscous dissipation on the
mixed convection heat transfer from an exponentially stretching surface. Khan and Sanjayanand
(2005) also discussed the viscoelastic boundary layer flow and heat transfer over an exponential
stretching sheet. The numerical analysis was investigated by Al-odat et al (2006) for the effect of
magnetic field in the thermal boundary layer on an exponentially stretching continuous surface with
an exponential temperature distribution. After them the effect of a transverse magnetic field on the
flow and heat transfer characteristics over a stretching surface was given by Devi and Thiyagarajan
(2006) by assuming that the magnetic strength is non-linear.

The extension of this problem was recently investigated by Sajid and Hayat (2008) for the radiation
effects on the flow over an exponentially stretching sheet and this problem was solved analytically
using the homotopy analysis method. On the other hand, the numerical solution for the same
problem was given by Bidin and Nazar (2009). Aziz (2009) discussed the similarity solution for
laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Pal
(2010) studied on the mixed convection heat transfer in the boundary layers on an exponentially
stretching continuous surface with magnetic field and verified the results those obtained by Magyari
and Keller (1999) and Al-Odat et al (2006). Ishak (2011) investigated the MHD boundary layer flow
due to an exponentially stretching sheet with radiation effect. Soret and Dufour Effects on Mixed
Convection from an Exponentially Stretching Surface is studied by Srinivasacharya and RamReddy
(2011) recently. They solved for numerical solution by using kellar-box method. Very recently Singh
and Agarwal (2012) have been studied the heat transfer in a second grade fluid over an exponentially
stretching sheet through porous medium with thermal radiation and elastic deformation under the
effect of magnetic field for both PEST and PEHF cases.

These investigations deals with the flow and heat transfer only for fluids induced by stretching
sheet. Important applications of dust particles in a boundary layer include wide range of real world
applications. The study of heat transfer in the boundary layer induced by continuous stretching
surface with a given temperature distribution in a conducting dusty fluid is important in several manuf-
acturing process in industries like extrusion of plastic sheets, glass fibre and paper production, metal
spinning and the cooling of metallic plate in a cooling bath. Initially Saffman (1962) worked on the
stability of laminar flow of a dusty gas which describes the fluid-particle system and derived the motion
of a gas equations carrying the dust particles. Datta and Mishra (1982) have discussed the dusty fluid
in boundary layer flow over a semi-infinite flat plate.

Vajravelu and Nayfeh (1992) analyzed the hydromagnetic flow of a dusty fluid over a stretching
sheet on the effects of fluid-particle interaction, particle loading and suction on the flow characteristics
and compared their analytical solution with numerical ones. Recently, Gireesha et al (2011a; 2011b)
have studied on the unsteady hydromagnetics boundary layer flow and heat transfer of dusty fluid over
a stretching sheet with variable wall temperature (VWT) and variable heat flux (VHF). In these papers
the effect of magnetic field on an unsteady boundary layer flow and heat transfer of a dusty fluid
over an unsteady stretching surface in the presence of non uniform heat source/sink are discussed.
Further Gireesha et al (2011c) have discussed the steady boundary layer flow and heat transfer of a
dusty fluid flow over a stretching sheet with non-uniform heat source/sink. Here they have considered
two types of heating processes namely (i) prescribed surface temperature and (ii) prescribed surface
heat flux.

In all the above works on dusty fluid, the authors considered linearly stretching sheet, so only on
basis of these we have considered an exponentially stretching sheet. The objective of the present
investigation is to study the effect of magnetic field on flow and heat transfer of a dusty fluid over
an exponentially stretching sheet. The governing boundary layer equations have been simplified
using suitable similarity transformations and then have been solved numerically using Runge-Kutta-
Fehlberg-45 method with the help of Maple. The convergence of the solutions have been discussed
by plotting graphs.
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2 Mathematical Formulation And Solution of The Problem
Consider a steady two-dimensional laminar boundary layer flow and heat transfer of an incompressible
viscous dusty fluid near an impermeable plane wall stretching with velocity Uw and a given temperature
distribution Tw. It is assumed that the impermeable surface is stretched with exponential velocity
Uw = U0e

x/L in quiescent fluid and the surface is maintained at a temperature Tw = T∞ + (T0 −
T∞)ex/2L. The x-axis is chosen along the sheet and y-axis normal to it. Two equal and opposite
forces are applied along the sheet so that the wall is stretched exponentially. A uniform magnetic field
B is assumed to be applied in the y-direction.

Figure 1: Schematic representation of boundary layer flow.

Under these assumptions, the two dimensional boundary layer equations can be written as,

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u

∂x
+ v

∂u

∂y
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∂up
∂y

=
K

m
(u− up), (2.4)

where x and y represents coordinate axes along the continuous surface in the direction of motion and
perpendicular to it, respectively. (u, v) and (up, vp) denotes the velocity components of the fluid and
particle phase along the x and y directions respectively, ν is the coefficient of viscosity of fluid, ρ is
the density of the fluid phase, K is the Stoke’s resistance, N is the number density of dust particles,
m is the mass concentration of dust particles, τv = m/K is the relaxation time of particle phase and
σ is the electrical conductivity.
In order to solve the governing boundary layer equations consider the following appropriate boundary
conditions on velocity:

u = Uw(x), v = 0 at y = 0,

u −→ 0, up −→ 0, vp −→ v, as y −→∞, (2.5)
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where Uw(x) = U0 e
x
L is the sheet velocity, U0 is reference velocity and L is the reference length.

Equations (2.1) to (2.4) are subjected to boundary condition (2.5), admits self-similar solutions in
terms of the similarity function f and the similarity variable η as

u = U0 e
x
L f ′(η), v = −

√
U0ν

2L
e

x
2L [f(η) + ηf ′(η)],

up = U0 e
x
LF ′(η), vp = −

√
U0ν

2L
e

x
2L [F (η) + ηF ′(η)],

η =

√
U0

2νL
e

x
2L y, B = B0 e

x
2L , (2.6)

where B0 is the magnetic field flux density.
These equations identically satisfies the governing equation (2.1) and (2.3). Substitute (2.6) into (2.2)
and (2.4), then one can get

f ′′′(η) + f(η)f ′′(η)− 2f ′(η)
2
+ 2lβ

[
F ′(η)− f ′(η)

]
−Mf ′(η) = 0, (2.7)

F (η)F ′′(η)− 2F ′(η)2 + 2β
[
f ′(η)− F ′(η)

]
= 0, (2.8)

where a prime denotes the differentiation with respect to η and l = mN
ρ

is the mass concentration,

β = L
τvU0

e
−x
L is the local fluid-particle interaction parameter, M =

2σB2
0L

ρU0
is the magnetic parameter.

Similarity boundary conditions (2.5) will become,

f ′(η) = 1, f(η) = 0 at η = 0,

f ′(η) = 0, F ′(η) = 0, F (η) = f(η) + ηf ′(η)− ηF ′(η) as η −→∞. (2.9)

2.1 Heat Transfer Analysis

The governing steady, dusty boundary layer heat transport equations are given by

ρcp

[
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∂T
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+ v
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]
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+
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[
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]
= −Ncp

τT
(Tp − T ), (2.11)

where T and Tp are the temperatures of the fluid and dust particle inside the boundary layer, cp and
cm are the specific heat of fluid and dust particles, τT is the thermal equilibrium time i.e., it is time
required by a dust cloud to adjust its temperature to the fluid, k is the thermal conductivity and τv is
the relaxation time of the of dust particle i.e., the time required by a dust particle to adjust its velocity
relative to the fluid.
To solve the temperature equations (2.10) and (2.11), we employ the following temperature boundary
conditions:

T = Tw(x) at y = 0,

T −→ T∞, Tp −→ T∞ as y −→∞. (2.12)

where Tw = T∞ + T0 e
x
2L is the temperature distribution in the stretching surface, T0 is a reference

temperature.
Introduce the dimensionless variables for the temperatures θ(η) and θp(η) as follows:

θ(η) =
T − T∞

Tw − T∞
, θp(η) =

Tp − T∞

Tw − T∞
, (2.13)
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where T − T∞ = T0 e
x
2L θ(η).

Using the similarity variable η and (2.13) into (2.10) to (2.11), one can arrive the following system of
equations:

θ′′(η) + Pr
[
f(η)θ′(η)− f ′(η)θ(η)

]
+ 2a1NPr [θp(η)− θ(η)]

+2a2NPrEc
[
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]2
= 0, (2.14)

F ′(η)θp(η)− F (η)θ′p(η) + 2b1 [θp(η)− θ(η)] = 0, (2.15)

where Pr = µCp

k
Prandtl number, Ec = U2

0
CpT0
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τT ρU0

e
−x
L and b1 =

CpL

τTCmU0
e

−x
L

are local fluid particle interaction parameter for heat transfer and a2 = L
τvρU0

e
x
2L is the local fluid

particle interaction parameter for velocity.
Corresponding thermal boundary conditions becomes,

θ(η) = 1 at η = 0,

θ(η) −→ 0, θp(η) −→ 0 as η −→∞, (2.16)

2.2 Numerical Solution
Consider two-dimensional, boundary layer flow and heat transfer of a dusty fluid over an exponential
stretching sheet. The exact solutions do not seem feasible for a complete set of the equations (2.1)
to (2.4) and (2.10) to (2.11) because of the nonlinearity and couplings between the momentum
and thermal boundary layer equations. Therefore, the solutions are obtained numerically. The
system of nonlinear equations (2.1) to (2.4), (2.10) to (2.11) subject to the boundary conditions (2.5)
and (2.12) are converted into a system of non-linear ordinary differential equations using similarity
transformations. These non-linear ordinary differential equations are then solved numerically using
Runge-Kutta-Fehlberg 45 scheme with the help of Maple software. In this method, we choose suitable
finite values of η −→∞ say η = 5. Comparison of our results of−θ′(0) with those obtained by Magyari
and Keller (1999), El-Aziz (2007), Pal (2010) and Srinivasacharya and RamReddy (2011) in absence
of fluid-interaction parameter, Number of dust particles and magnetic field. From the Table 1, one can
notice that there is a close agreement with these approaches and thus verifies the accuracy of the
method used.

Table 1: Comparison of the results for the dimensionless temperature gradient −θ′(0) for various
values of Pr with β = N =M = 0.

Pr Magyari - Keller El-Aziz Pal Srinivasacharya - RamReddy Present Study
0.5 -0.59434 - -0.59434 -0.59438 -0.59447
1.0 -0.95478 -0.95478 -0.95478 -0.95478 -0.95481
3.0 -1.86908 -1.86907 -1.86907 -1.86908 -1.86907
5.0 -2.50014 -2.50013 -2.50013 -2.50015 -2.49992
8.0 -3.24213 - -3.00587 -3.24218 -3.24177
10.0 -3.66038 -3.66037 -3.66037 -3.66043 -3.66037

Further, we study the effect of magnetic field on velocity and temperature profiles and are depicted
graphically for different values of local fluid-particle interaction parameter (β), Magnetic parameter
(M), Prandtl number (Pr) and Eckert number (Ec).

3 Results and Discussion
A steady dusty boundary layer problem for momentum and heat transfer over an exponentially stretch-
ing continuous surface with an exponential temperature distribution in presence of magnetic field
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effect is examined. The boundary layer equations are then solved numerically. The velocity and
temperature profiles are depicted graphically for different physical flow parameters such as fluid
particle interaction parameter β, Prandtl number Pr, Eckert number Ec, and Magnetic parameter
M (from figure 2 to figure 7). A comparison between wall-temperature gradient values computed by
the present method for M = 0, β = 0 and N = 0 are made with that of Magyari and Keller (1999),
El-Aziz (2007), Pal (2010) and Srinivasacharya and RamReddy (2011) as in Table 1.

From figure 2, the observation shows that increase of local fluid-particle interaction parameter β
decreases the fluid velocity f ′(η) and increases the particle velocity F ′(η) for Pr = 1, M = 2 and
Ec = 2. From this one can noticed that at a certain point as β increases velocity of both fluid and dust
will be same. Figure 3 depicts the temperature profiles θ(η) and θp(η) versus η for different values of
fluid particle interaction parameter β with Pr = 1, M = 2 and Ec = 2. We infer from this figure that
temperature decreases with increases in fluid particle interaction parameter β and also it indicates
that both the fluid and dust particle temperature are parallel to each other.

The velocity profiles f ′(η) and F ′(η) versus η for different values of the magnetic parameter M
by taking β = 0.5, Ec = 2 and Pr = 1 presented in figure 4. It shows that the rate of transport is
considerably reduced with the increase of M . Further it clearly indicates that the transverse magnetic
field opposes the transport phenomena. This is because the variation of M leads to the variation of
the Lorentz force due to the magnetic field and the Lorentz force produces more resistance to the
transport phenomena. The figure 5 shows the temperature distributions θ(η) and θp(η) versus η for
different values of magnetic parameter M when Pr = 1, Ec = 2 and β = 0.5. We infer from this
figure that temperature increases with increases in M .

Figure 2: Effect of local fluid-particle interaction parameter β on velocity profiles.
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Figure 3: Effect of local fluid-particle interaction parameter β on temperature profiles.

Figure 4: Effect of magnetic parameter M on velocity profiles.
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Figure 5: Effect of magnetic parameter M on temperature profiles.

Figure 6: Effect of Prandtl number Pr on temperature profiles.
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Figure 7: Effect of Eckert number Ec on temperature profiles.

Figure 6 illustrates the effect of Prandtl number Pr on velocity profiles with η for Ec = 2, β = 0.5
and M = 1. It is actually the ratio of velocity boundary layer to thermal boundary layer. When Pr=1,
the boundary layers coincide and Pr is small, it means that heat diffuses very quickly compared to
the velocity. This means the thickness of the thermal boundary layer is much bigger than the velocity
boundary layer for fluid (liquid metals). From this figure, it reveals that the temperature decreases with
increase in the value of Pr. Figure 7 explains the effect of Eckert number Ec on temperature profiles
with η for Pr = 1, β = 0.5 and M = 1. From this one can see that the temperature increases with
increase in the value of Ec. This is due to the heat energy is stored in the liquid due to the frictional
heating. We have used throughout our thermal analysis the values of a1 = a2 = 2, b1 = 1, N = 1,
and l = 0.1.

4 CONCLUSIONS
The two-dimensional boundary layer flow and heat transfer of a steady dusty fluid over an exponential
stretching sheet with magnetic field is considered. The governing partial differential equations are
reduced into set of non-linear ordinary differential equations using the suitable similarity transformations.
The obtained coupled non-linear ordinary differential equations are solved numerically by applying
RKF-45 order method using the software Maple. The velocity and temperature profiles are obtained
for various values of physical parameters like fluid particle interaction parameter β, Magnetic parameter
M , Prandtl number Pr and Eckert number Ec. The present numerical solutions have been compared
with previously reported results from Magyari and Keller (1999), El-Aziz (2007), Pal (2010) and
Srinivasacharya and RamReddy (2011) and found them in good agreement. The major findings
from the present study can be summarized as follows:
a The fluid particle interaction parameter decreases the velocity components in the fluid phase and

increases in the dust phase.
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b As fluid particle interaction parameter increases, temperature distribution decreases both in the
fluid and dust phase.

c Velocity distribution decreases as magnetic parameter increases in both the fluid and dust phase.

d The effect of increasing the value of magnetic parameter is to increase the temperature distribution.

e The prandtl number decreases the temperature profile where as Eckert number increases the
temperature profile.

f If β −→ 0, M −→ 0, N −→ 0 then our results coincide with the results of Magyari and Keller (1999),
El-Aziz (2007), Pal (2010) and Srinivasacharya and RamReddy (2011) for different values of
Prandtl number.

.
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