
British Journal of Mathematics & Computer Science
2(4): 213-225, 2012

SCIENCEDOMAIN international
www.sciencedomain.org

Deformation of Surfaces in Three-Dimensional Space
Induced by Means of Integrable Systems

Paul Bracken1∗

1Department of Mathematics, University of Texas, Edinburg, TX, USA.

Research Article

Received: 08 August 2012
Accepted: 15 October 2012

Online Ready: 08 December 2012

Abstract
The correspondence between different versions of the Gauss-Weingarten equation is investigated.
The compatibility condition for one version of the Gauss-Weingarten equation gives the Gauss-
Mainardi-Codazzi system. A deformation of the surface is postulated which takes the same form
as the original system but contains an evolution parameter. The compatibility condition of this new
augmented system gives the deformed Gauss-Mainardi-Codazzi system. A Lax representation
in terms of a spectral parameter associated with the deformed system is established. Several
important examples of integrable equations based on the deformed system are then obtained. It
is shown that the Gauss-Mainardi-Codazzi system can be obtained as a type of reduction of the
self-dual Yang-Mills equations.
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1 Introduction
There are a great many phenomena in nature which make use of the concept of a surface in formulating
a realistic and useful model which accounts for the observations and properties which are of interest to
investigate (Rogers and Schief, 2002). Quite frequently, it is required by the nature of the circumstances
that these surfaces evolve over the course of time, as opposed to remaining completely static. An
example of the former would be a propagating shock front, and of the latter, a surface formed by the
surface tension at the interface between two different liquids. In the course of the development of
this kind of theory, there occurs as a consequence of the method or process used the appearance
of various kinds of nonlinear partial differential equations in a natural way. As a result, the study
of all aspects of these equations becomes an important topic in itself, and becomes linked to the
study of the evolution problem. In the larger picture, there results an interaction between the areas
which concern the differential geometry of surfaces (Spivak, 1999) and nonlinear partial differential
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equations which arise in the course of this work (Ablowitz and Clarkson, 1992; Das, 1989; Tenenblat,
1998). This kind of interaction has been of mutual benefit to the development of these subjects.

Consequently, many nonlinear phenomena in physics, which can be described by various kinds
of partial differential equation, are also closely related to the evolution of surfaces with respect to
an evolution parameter such as time (Bracken, 2010). Moreover, it has been found that these types
of nonlinear equations possess solitary wave solutions (Sasaki, 1979; Martina et al., 2001). Thus,
there are a great number of links between many diverse areas and this is largely based on the
fact that a great many of the local properties of surfaces can be expressed in the form of nonlinear
partial differential equations. For example, two equations which have played a particularly important
role in the development of the subject are the sine-Gordon and Liouville equations, respectively.
These equations, especially the former, have also played a prominent role in the development of
Bäcklund transformations. In fact, a generic method for the description of soliton interaction has
its roots in a type of transformation originally introduced by Bäcklund to generate pseudospherical
surfaces (Chern and Tenenblat, 1986; Bracken, 2009). The sine-Gordon equation was generated in
the nineteenth century from the Gauss-Mainardi-Codazzi system for pseudo-spherical surfaces. This
equation was subsequently rederived independently by both Enneper and Bonnet in a similar way.
A purely geometric construction for pseudospherical surfaces was reformulated as a transformation
by Bianchi later. The interrelationship between deformations of surfaces and integrable systems in
2 + 1 dimensions has been discussed by many researchers (Konopelchenko, 1993; Ablowitz and
Chakravarty, 1993).

The objective here is to investigate the deformation of surfaces and the relationship of this topic
to the study of various aspects of integrable systems in various dimensions. It will be seen that
many integrable (2 + 1)-dimensional nonlinear partial differential equations can be obtained from
the (2 + 1)-dimensional Gauss-Mainardi-Codazzi equation, which can be interpreted as describing
the deformation, or motion, of a surface. It is hoped that the discussion will benefit from the new
accompanying proofs.

A particularly remarkable example which is to be studied is that of the reduction of the self-dual
Yang-Mills equation to Gauss-Mainardi-Codazzi form. Yang-Mills systems have numerous applications
in particle physics. It may be said that the self-dual Yang-Mills system appears to be a universal
integrable system from which many other integrable equations can be obtained by symmetry reductions
and specification of the Lie algebra. In fact, it has been conjectured by Ward (Ward, 1973) that all
integrable (1 + 1)-dimensional nonlinear differential equations may be obtained by reduction directly
from the self-dual Yang-Mills equations. In fact, many soliton equations in (2 + 1) dimensions have
been found as reductions of the same self-dual system, and some new ones appear here. Finally, it
will be shown that the linear systems introduced here give rise to a number of integrable equations
which are well known and of interest. These equations are developed as a result of specific reductions
of the Gauss-Mainardi-Codazzi system.

2 Surface Theory and the Gauss Weingarten Equation
Let M be a smooth manifold or surface in R3 with a local coordinate system specified by (x, y). Let
r = r(x, y) denote the position vector of a generic point P on M in R3. The vectors rx and ry are
tangential to M at P , and at points where they are linearly independent

n =
rx × ry
|rx × ry|

, (2.1)

determine a unit normal to M . The first and second fundamental forms of this surface are given by

I = dr2 = E dx2 + 2F dxdy +Gdy2, (2.2)
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II = dr · n = Ldx2 + 2M dxdy +N dy2, (2.3)

where the coefficient terms are defined to be,

E = r2
x, F = rx · ry, G = r2

y, (2.4)

L = rxx · n, M = ryx · n, N = ryy · n. (2.5)

An important classical result due to Bonnet states that the sextuplet {E,F,G,L,M,N} determines
M up to its position in space. There is a third fundamental form which does not depend on the choice
of n and does not contain much beyond what is prescribed by (2.2)-(2.3) since it is expressible in
terms of I and II as

III = dn · dn = 2H · II −K · I. (2.6)

In (2.6), K, H are the gaussian and mean curvatures of M , respectively.

The Gauss equations associated with M are

rxx = Γ1
11rx + Γ2

11ry + Ln, rxy = Γ1
12rx + Γ2

12ry +Mn, ryy = Γ1
22rx + Γ2

22ry +Nn, (2.7)

while the Weingarten equations are given as

nx = P 1
1 rx + P 2

1 ry, ny = P 1
2 rx + P 2

2 ry. (2.8)

The ten coefficient functions in systems (2.7)-(2.8) are given in terms of the sixtuplet {E,F,G,L,M,N}
as follows,

Γ1
11 =

1

2g
(GEx − 2FFx + FEy), Γ2

11 =
1

2g
(2EFx − EEy − FEx),

Γ1
12 =

1

2g
(GEy − FGx), Γ2

12 =
1

2g
(EGx − FEy), (2.9)

Γ1
22 =

1

2g
(2GFy −GGx − FGy), Γ2

22 =
1

2g
(EGy − 2FFy + FGx),

P 1
1 =

MF − LG
g

, P 2
1 =

LF −ME

g
, P 1

2 =
NF −MG

g
, P 2

2 =
MF −NE

g
, (2.10)

where
g = |rx × ry|2 = EG− F 2. (2.11)

The Γijk in (2.9) are the usual Christoffel symbols given by the expression

Γijk =
1

2
gil(gjl,k + gkl,j − gjk,l), (2.12)

where, upon setting x1 = x and x2 = y, the first fundamental form (2.2) becomes

I = gjk dx
j dxk,

where
gjkgkl = δjl .

The compatibility condition applied to the linear system (2.2) produces the nonlinear Mainardi-Codazzi
system

Ly −Mx = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11, My −Nx = LΓ1
22 +M(Γ2

22 − Γ1
12)−NΓ2

12. (2.13)

An equivalent and perhaps more elegant way of representing the Gauss and Weingarten equations
is to write them as a linear system. To this end, an orthogonal basis on M can be easily established
by defining

e1 =
rx√
E
, e2 = n, e3 = e1 × e2, (2.14)
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and moreover,

ry =
F√
E
e1 −

√
g

E
e3. (2.15)

Using (2.14) and (2.15), e3 can be expressed in terms of rx and ry as

e3 =

√
E

g
(
F

E
rx − ry). (2.16)

Theorem 2.1. The Gauss-Weingarten system of equations (2.9)-(2.10) are exactly equivalent to
the linear system defined bye1

e2

e3


x

= A

e1

e2

e3

 ,

e1

e2

e3


y

= C

e1

e2

e3

 . (2.17)

The matrices A and C are defined to be

A =

 0 κ −σ
−κ 0 τ
σ −τ 0

 , C =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 (2.18)

The entries of the matrices A and C are given by the following expressions

κ =
L√
E
, τ = −

√
g

E
P 2

1 , σ =

√
g

E
Γ2

11, (2.19)

and

ω1 = −
√
g

E
P 2

2 , ω2 =

√
g

E
Γ2

12, ω3 =
M√
E
. (2.20)

Proof: The top element of the first matrix equation in (2.17) using (2.14) is given by

(
rx√
E

)x = κn− σe3.

Expanding the derivative on the left-hand side and solving for rxx, there results the expression,

rxx =
1

E
(
Ex
2
− Γ2

11F )rx + Γ2
11ry + Ln. (2.21)

Substituting Γ2
11 from (2.9) into (2.21) and then simplifying the coefficient of rx, we obtain,

rxx =
1

2g
(GEx + FEy − 2FFx)rx + Γ2

11ry + Ln = Γ1
11rx + Γ2

11ry + Ln.

This is the first equation in the set (2.7).
The second element in the first equation of (2.17) is given by

nx = −L
E
rx + τe3 = −L

E
rx − (

LF −ME

g
)
F

E
rx +

LF −ME

g
ry

= − 1

gE
(gL− LF 2 +MEF )rx + P 2

1 ry = P 1
1 rx + P 2

1 ry.

This is the first equation in (2.8).
From the second system in (2.17), the first entry is

(
rx√
E

)y = ω3n− ω2e3.
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Developing the derivative and then solving for the derivative rxy, we obtain

rxy = (
Ey
2E
− F

E
Γ2

12)rx + Γ2
12ry +Mn.

Substituting Γ2
12 from (2.9) and simplifying gives

rxy =
1

2gE
(EyEG−EyF 2 −FEGx +F 2Ey)rx + Γ2

12ry +Mn =
1

2g
(EyG−FGx)rx + Γ2

12ry +Mn

= Γ1
12rx + Γ2

12ry +Mn.

This is the second equation of (2.7).
The second element of the C system in (2.17) yields,

ny = −ω3
rx√
E

+ ω1e3 = −M
E

rx −
√
g

E
P 2

2

√
E

g
(
F

E
rx − ry) = − 1

E
(M + FP 2

2 )rx + P 2
2 ry

= − 1

gE
(MEG−MF 2 +MF 2 −NEF )rx + P 2

2 ry = P 1
2 rx + P 2

2 ry.

This is the second of the equations in (2.8). Four of the equations have been obtained, it remains to
get ryy.

The third element of the second system is e3y = ω2e1 − ω1e2. Differentiating this and solving for
ryy,

ryy = (
F

E
)yrx +

F

E
rxy − (

√
g

E
)ye3 −

g

E2
Γ2

12rx −
g

E
P 2

2 e2.

Since rxy has already been determined in this process, we substitute rxy above and e3 from (2.16)
to complete the set,

ryy = [(
F

E
)y +

F

E
Γ1

12 − (
g

E
)y(

E

g
)1/2F

E
− g

E2
Γ2

12]rx + [
F

E
Γ2

12 + (
g

E
)y(

E

g
)1/2]ry + [M

F

E
− g

E
P 2

2 ]n.

=
1

2g
(2EFy − FGy −GGx)rx +

1

2g
(EGy + FGx − 2FFy)ry +Nn = Γ1

22rx + Γ2
22ry +Nn.

This completes the proof.

Theorem 2.2. The compatibility condition for system (2.17) gives a relationship between A and
C of the form,

Ay −Cx + [A,C] = 0. (2.22)

Equation (2.22) in terms of the matrix elements (2.18) is equivalent to the system

κy − ω3x + σω1 − τω2 = 0, σy − ω2x − κω1 + τω3 = 0, τy − ω1x + κω2 − σω3 = 0. (2.23)

Proof: Differentiate the first equation of (2.17) with respect to y and the second with respect to
x. Requiring that the mixed partial derivatives be equal yields (2.22). By calculating (2.22) using the
matrices in (2.18) immediately yields (2.23).

The matrix system in Theorem 2.1 can be mapped onto a 2×2 system which gives rise to exactly
the same set (2.23).

Theorem 2.3. Linear system (2.17)-(2.18) which satisfies (2.22) or explicitly (2.23) can also be
expressed in the form of a 2× 2 matrix system given by

ψx = Uψ, ψy = Vψ. (2.24)
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If σi are the usual Pauli matrices, then U and V in (2.24) can be expressed as

U =
1

2i
(κσ1 − σσ2 + τσ3), V =

1

2i
(ω3σ1 − ω2σ2 + ω1σ3).

Explicitly, U and V take the form,

U =
1

2i

(
τ κ+ iσ

κ− iσ −τ

)
, V =

1

2i

(
ω1 ω3 + iω2

ω3 − iω2 −ω1

)
. (2.25)

Proof: Following the same procedure used in Theorem 2.2, the compatibility condition for (2.25)
is given by

Uy −Vx + [U,V] = 0. (2.26)

Explicitly, the commutator takes the form

UV −VU = −1

2

(
−i(κω2 − σω3) τ(ω3 + iω2)− ω1(κ+ iσ)

ω1(κ− iσ)− τ(ω3 − iω2) i(κω2 − σω3)

)
.

The diagonal element of (2.26) gives the third equation in (2.23) and the two off-diagonal elements
are

κy + iσy − ω3x − iω2x + iτ(ω3 + iω2)− iω1(κ+ iσ) = 0,

κy − iσy − ω3x + iω2x + iω1(κ− iσ)− iτ(ω3 − iω2) = 0.

Upon adding and subtracting these two equations, the remaining pair in (2.23) result.

3 Deformations of Surfaces

At this point, an additional parameter is introduced into the picture. This parameter can be interpreted
as an evolution or time parameter. Thus the deformation of a surface will be described with respect
to a new, additional parameter t. To carry this out, it is postulated that such a deformation or motion
of a surface is governed by the following systeme1

e2

e3


x

= A

e1

e2

e3

 ,

e1

e2

e3


t

= B

e1

e2

e3

 ,

e1

e2

e3


y

= C

e1

e2

e3

 . (3.1)

In (3.1), the matrices A and C are given by (2.18), whereas matrix B is a new matrix which has the
form,

B =

 0 γ3 −γ2

−γ3 0 γ1

γ2 −γ1 0

 . (3.2)

The γi in (3.2) are real functions of the given variables. System (3.1) will be referred to as the
deformed or (2 + 1)-dimensional Gauss-Weingarten system. Proceeding in exactly the same way as
was done in Theorem 2.2, that theorem can be extended to include deformations.

Theorem 3.1. The compatibility conditions applied to the deformed Gauss-Weingarten system
(3.1) generates the (2 + 1)-dimensional augmented Gauss-Mainardi-Codazzi equations in the form

Ay −Cx + [A,C] = 0, At −Bx + [A,B] = 0, By −Ct + [B,C] = 0. (3.3)
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Based on (2.18) and (3.2), system (3.3) is equivalent to the following set of nine equations,

κy − ω3x + σω1 − τω2 = 0, σy − ω2x + τω3 − κω1 = 0, τy − ω1x + κω2 − σω3 = 0,

κt − γ3x + σγ1 − τγ2 = 0, σt − γ2x + τγ3 − κγ1 = 0, τt − γ1x + κγ2 − σγ3 = 0,

γ3y − ω3t + γ2ω1 − γ1ω2 = 0, γ2y − ω2t + γ1ω3 − γ3ω1 = 0, γ1y − ω1t + γ3ω2 − γ2ω3 = 0.
(3.4)

It is just a direct calculation to develop (3.4) and will not be included. The first equation of (3.3) just
reproduces the result in (2.22)-(2.23).

It is remarkable to realize that there is a Lax representation or linear problem associated with
system (3.3). To be able to write it down, it is first useful to introduce some notation in which to
formulate the equations. To compress the result somewhat, introduce the complex variable z =
1
2
(x+ it) and its conjugate z̄ as well as the new matrices F± defined to be

F± = A± iB. (3.5)

With this in mind, the following important result can be given.

Theorem 3.2. There exists a Lax representation for system (3.3) of the form,

Ψz = |λ|2
1−|λ|4 (F+ − |λ|2F−)Ψ + 1

1−|λ|4 (F− − |λ|2F+)Ψ,

Ψz̄ = |λ|2
1−|λ|4 (F− − |λ|2F+)Ψ + 1

1−|λ|4 (F+ − |λ|2F−)Ψ,

Ψy = −i λ|λ|
2

1−|λ|4 (F− − |λ|2F+)Ψ− i λ
1−|λ|4 (F+ − |λ|2F−)Ψ + (C + iλF+)Ψ.

(3.6)

In (3.6), λ is a complex spectral parameter. The compatibility conditions for system (3.6) reproduce
system (3.3) exactly.

Proof: The proof is just a matter of a long calculation. In fact symbolic manipulation has been
used to do it. It suffices to say that noncommutative multiplication tables, which are defined in
terms of the noncommuting elements that appear here, can be formulated within Maple to deal with
noncommuting terms that arise. In this way, the compatibilty condition can be worked out efficiently.
One of the three compatibility conditions will be developed here, the other two are carried out in an
identical manner. Only some of the steps will be given explicitly.

Beginning with Ψz in (3.6), it is differentiated with respect to z̄ to obtain,

(1− |λ|4)Ψzz̄ = |λ|2(F+
z̄ − |λ|2F−z̄ )Ψ + |λ|2(F+ − |λ|2F−)Ψz̄ + (F−z̄ − |λ|2F+

z̄ )Ψ + (F− − |λ|2F+)Ψz̄.

At this point, the derivative Ψz̄ given in (3.6) can be substituted into this expression to produce,

(1− |λ|4)Ψzz̄ = |λ|2(F+
z̄ − |λ|2F−z̄ )Ψ + (F−z̄ − |λ|2F+

z̄ )Ψ +
|λ|4

1− |λ|4 (F+ − |λ|2F−)(F− − |λ|2F+)Ψ

+
|λ|2

1− |λ|4 (F+ − |λ|2F−)(F+ − |λ|2F−)Ψ +
|λ|2

1− |λ|4 (F− − |λ|2F+)(F− − |λ|2F+)Ψ (3.7)

+
1

1− |λ|4 (F− − |λ|2F+)(F+ − |λ|2F−)Ψ.

Similarly, by differentiating Ψz̄ in (3.6) with respect to z and replacing Ψz, we obtain

(1− |λ|4)Ψz̄z = |λ|2(F−z − |λ|2F+
z )Ψ + (F+

z − |λ|2F−z )Ψ +
|λ|4

1− |λ|4 (F− − |λ|2F+)(F+ − |λ|2F−)Ψ
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+
|λ|2

1− |λ|4 (F− − |λ|2F+)(F− − |λ|2F+)Ψ +
|λ|2

1− |λ|4 (F+ − |λ|2F−)(F+ − |λ|2F−)Ψ

+
1

1− |λ|4 (F+ − |λ|2F−)(F− − |λ|2F+)Ψ (3.8)

Using (3.7) and (3.8) in the condition Ψzz̄ − Ψz̄z = 0, then upon simplifying, it is found that the
dependence on λ and λ̄ factors and the following result must hold

F−z̄ − F+
z + [F−,F+] = 0. (3.9)

Proceeding in an exactly similar manner, the remaining two conditions Ψzy−Ψyz = 0 and Ψz̄y−Ψyz̄ =
0 give rise to the pair

Cz − F−y + [C,F−] = 0, Cz̄ − F+
y + [C,F+] = 0. (3.10)

It remains to demonstrate the correspondence between the results in (3.9) and (3.10) with those in
(3.3) explicitly. To this end, replace F± using (3.5) and transform the derivatives using ∂z = ∂x − i∂t
and its conjugate. For example, (3.9) becomes

(Ax− iBx+ iAt−Bt)−(Ax+ iBx− iAt+Bt)+(A− iB)(A+ iB)−(A+ iB)(A− iB) = 0. (3.11)

This reduces to the second equation in (3.3), and the others come out in like fashion.
Based on Theorem 3.3, an associated linear system can be written down which can be regarded

as a sequence or hierarchy of linear systems.

Theorem 3.3. An associated hierarchy of the deformed Gauss-Mainardi-Codazzi system (3.3)
can be produced by means of the compatibility condition for the following linear system,

Ψz =
λ2

1− λ4
(F+ − λ2F−)Ψ +

1

1− λ4
(F− − λ2F+)Ψ,

Ψz̄ =
λ2

1− λ4
(F− − λ2F+)Ψ +

1

1− λ4
(F+ − λ2F−)Ψ, (3.12)

Ψy = −i λn

1− λ4
[λ2(F− − λ2F+) + F+ − λ2F−]Ψ +

m∑
k=0

λkFkΨ.

In (3.12), it suffices to take λ real and determine Fk order by order.

4 Self-Dual Yang-Mills and the Gauss-Mainardi-Codazzi
Equation as an Exact Reduction

The Yang-Mills equations have a natural geometric interpretation (Bracken, 1999). The covariant
derivatives can be used to obtain a local representation of a connection on a principle fibre bundle
over a manifold M . Let G be the Lie gauge group, LG the Lie algebra, and {xµ}0,··· ,3 coordinates
on M , which may be R4,R1,3,R2,2. For a potential Aµ(x) ∈ LG, the covariant derivative is given by
Dµ = ∂µ −Aµ. The curvature two-form F can be expressed as

F = DA = dA−A ∧A. (4.1)

Given the curvature two-form F , the Yang-Mills equations14 can be written in the form D ∗ F =
0 and there is the associated Bianchi identity DF = 0. Under gauge transformations, Aµ →
g−1Aµg + g−1∂µg, g ∈ G, the components of the curvature two-form transform as Fµνg

−1Fµνg.
This corresponds to the transformation of the fibres by the right action of the structure group G on
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the principle bundle. This procedure will yield the Yang-Mills equations which are a set of coupled
second-order partial differential equations in four dimensions for the LG-valued gauge potentials Aµ.
However, any F that satisfies the condition

∗F = λF (4.2)

for some constant λ also satisfies the Yang-Mills equation when F satisfies DF = 0. Applying the
Hodge operator to both sides of (4.2), there obtains

∗ ∗ F = λ ∗ F = λ2F. (4.3)

However, ∗ ∗ F = gF where g is the determinant of the metric on the manifold. This establishes the
value of λ to be λ = ±1 for R4,R2,2 and λ = ±i for R3,1. All solutions to the system of equations
∗F = ±iF are trivial. In R4 with standard metric, it is straightforward to work out ∗F from the definition.

Let us introduce a new system of coordinates which will match what we seek upon reduction

σ = x1 + ix2 = w + iy, τ = x0 − ix3 = x+ it,

σ̄ = x1 − ix2 = w − iy, τ̄ = x0 + ix3 = x− it.
(4.4)

Theorem 4.1. The self-dual Yang-Mills equations take the form

Fστ = 0, Fσ̄τ̄ = 0, Fσσ̄ + Fττ̄ = 0. (4.5)

in coordinates (4.4). Self-dual system (4.2) results directly from the compatibility conditions of the
isospectral linear problem given in the following form,

(∂σ + λ∂τ̄ )Ψ = (Aσ + λAτ̄ )Ψ, (∂τ − λ∂σ̄)Ψ = (Aτ − λAσ̄)Ψ. (4.6)

In (4.6) λ is the spectral parameter and Ψ is a local section of the Yang-Mills fibre bundle (Bracken,
2005; Chakravarty and Kent, 1995; Ablowitz et al., 2003).

Theorem 4.2. The deformed Gauss-Mainardi-Codazzi system (3.3) can be obtained as a direct
result of a particular reduction of the self-dual Yang-Mills system (4.5).

Proof: It is simply required to transform the derivatives between relevant coordinates so that the
required correspondence with (3.3) can be recognized, and to state the specific reduction. Thus, the
derivatives are related as ∂σ = ∂w − i∂y, ∂σ̄ = ∂w + i∂y, ∂τ = ∂x − i∂t, ∂τ̄ = ∂x + i∂t.

The reduction of (4.5) for the components of the gauge potential which will produce the required
reduction is given explicitly as

Aσ = −iC, Aσ̄ = iC, Aτ = A− iB, Aτ̄ = A + iB. (4.7)

The quantities A, B and C on the right-hand side of (4.7) are taken to be independent of the w
variable and, for example, may be selected as elements of so(3).

The first equation in (4.5) then takes the form,

−i∂y(A−iB)−(∂x−i∂t)(−iC)−[−iC,A−iB] = −i(∂yA−∂xC−[C,A])−(∂yB−∂tC−[C,B]) = 0.

The second in (4.5) gives a similar result and addition and subtraction of these generates the two
equations with C in (3.3).

The third equation of (4.5) assuming independence of w gives

−i∂y(iC)− i∂y(−iC)− [−iC, iC] + (∂x− i∂t)(A+ iB)− (∂x + i∂t)(A− iB)− [A− iB,A+ iB] = 0.

This simplifies to the third equation Bx −At + [B,A] = 0.
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5 Some Integrable Systems as Reductions
It is useful at this point to have an idea as to which types of equations can be accounted for as specific
reductions of (3.3) or (3.4). It will be shown that some very well-known integrable systems such as
the sine-Gordon equation and a generalized Korteweg-de Vries equation can be obtained from what
has been developed here.

(i) Let σj be the Pauli matrices in standard form with σ± = σ1± iσ2. Let the quantities A, B and
C be the 2× 2 matrices defined to be

A =
√

2iλσ3 +
1√
2
q̄σ+ +

1√
2
qσ−,

B = − i
2
fσ3 − 3λq̄σ+ − 3λqσ−, (5.1)

C = − i√
2
λσ3 +

1√
2
q̄σ+ +

1√
2
qσ−.

In (4.1), λ is a real parameter, q a complex-valued function and to begin with f is an arbitrary function
f = f(q, q̄, ϕ). Substituting matrices (4.1) into system (3.3), the following results appear as matrix
elements of the resulting matrices,

fx = 0, fy = 0, (5.2)
√

2qt + 6λqx + 12
√

2iλ2q −
√

2iqf = 0, (5.3)
√

2qt + 6λqy − 6
√

2iλ2q −
√

2iqf = 0, (5.4)
√

2(qy − qx) = 6iλq, (5.5)

as well as the conjugates of (5.3)-(5.5). Adding (5.3) and (5.4), we obtain

qt +
3√
2
λ(qx + qy) + 3iλ2q − iqf = 0. (5.6)

Differentiating (5.4) with respect to x and y then adding the results, this gives

i

2
(qyy − qxx) =

3√
2
λ(qx + qy). (5.7)

Substituting (5.7) into (5.6) produces the result

qt +
i

2
(qxx − qyy) + i(3λ2 − f)q = 0. (5.8)

A Davey-Stewartson type system results from this by selecting f to have the form,

f = |q|2 + ϕx − ϕy + 3λ2,

and this system is given by

iqt + 1
2
(qyy − qxx) + (|q|2 + ϕx − ϕy)q = 0,

ϕyy − ϕxx = |q|2x + |q|2y.
(5.9)

(ii) Suppose the last row and column matrix elements of (3.4) are equal to zero, that is take
τ = σ = ω1 = ω2 = γ1 = γ2 = 0. The matrices collapse to 2×2 form which commute so (3.4) reduce
to

κy = ω3x, κt = γ3x, γ3y = ω3t. (5.10)

Specific integrable equations can be obtained out of these by choosing the remaining functions in
(5.10) in specific ways. Some examples are given.
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(a) Define

∂−1
x κ(x, y) =

∫ x

−∞
ds κ(s, y).

Let γ3 = ∂−1
x sin(u(x, t)) and κ = ux, all quantities independent of y and ω3 = 0. Then the second

equation in (5.10) implies that u satisfies

uxt = sin(u). (5.11)

(b) Suppose γ3 is chosen to have the form

γ3 = −κxx − ακm,

where α is a real constant. Then (5.10) implies that κ satisfies the following generalized Korteweg-de
Vries equation (Bracken, 2007)

κt + κxxx + α(κm)x = 0. (5.12)

(iii) Define γ3 to have the form,

γ3 = −κxx − 3κ2 − 3α2∂−1
x ωy.

Thus by (5.10), κ satisfies
κt + κxxx + 3(κ2)x + 3α2ω3y = 0. (5.13)

By the first equation in (5.10), κy = ω3x so

κyy = ω3xy. (5.14)

Differentiating both sides of (5.13) with respect to x and substituting (5.14) into the result, we get

(κt + κxxx + 6κκx)x + 3α2κyy = 0. (5.15)

This is called the Kadomtsev-Petriashvili equation.
(iv) The Lame system can be developed by taking the matrices in (3.3) to have the form

A =

 0 −β21 −β31

β21 0 0
β31 0 0

 , B =

 0 0 β13

0 0 β23

−β13 −β23 0

 , C =

 0 β12 0
−β12 0 −β32

0 β32 0

 . (5.16)

Substituting the matrices in (5.16) into (3.3), the Lame system of equations is obtained,

β21,t + β12,x + β31β32 = 0, β31,t − β21β32 = 0, β32,x − β31β12 = 0,

β21,y − β31β23 = 0, β31,y + β13,x + β21β23 = 0 β23,x − β21β13 = 0,

β12,y − β32β13 = 0, β13,t − β12β23 = 0, β32,y − β23,t + β12β13 = 0.

(5.17)

This system has been studied previously (Zakharov, 1998).

6 Conclusions
A remarkable relationship between the Gauss-Weingarten system and a linear system has been
presented and clarified. It has been shown how this linear system can be deformed to describe
deformations of surfaces by introducing an evolution parameter. This has made possible a unified
and consistent picture which consists of integrable systems described as certain types of reductions
of (3.4) and associated surfaces. Many important systems fall under this category. Thus of special
importance is to state the deformed Gauss-Mainardi-Codazzi system (3.3) has been obtained as a
particular reduction of a self-dual Yang-Mills system.
.
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