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Abstract
A mathematical model for coral growth in a well stirred tank is proposed based on nutrient
availability. The proposed model is a system of ODEs. Stability analysis of the solutions of the
system of ODEs is done for various acceptable parameter regions. Growth forms of corals in
different parameter regions are observed based on the solution of the model equations. Numerical
calculations and qualitative analysis reveal some interesting global behaviors such as limit cycles,
homoclinic connections and heterioclinic connections of the solution trajectories. Unstable growing
limit cycles are observed for some parameter values where the corresponding largest limit cycle
approaches a homoclinic connection. These behaviors of the solutions of the system closely have
biological consequences on coral growth.

Keywords: Coral models, Systems of differential equations, Phase plane analysis, Limit cycles, Local
and global stability
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1 Introduction
Coral reefs are made up of a vast amount of calcium carbonate, deposited by colonies of many polyps.
Colonies are started when a planktonic coral larva, called a planula, settles on a hard surface. Larva
transforms itself into a polyps just after settling [Castro (1997)]. Polyps’ maximum diameter is a
species specific characteristic. Once they reach this maximum diameter they divide [Merks (2003b)].
In this way, if survive, they divide over and over and form a colony. If the coral colony does not break
off it grows as its individual polyps divide to form new polyps [Castro (1997)]. Polyps reside in cups
like skeletal structures on stony corals called calices [Merks (2003b)]. As new polyps are formed they
build new calices to reside. This cause to growth of the solid matrix of stony corals.
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1.1 Coral Nutrition

Microalgae living inside the coral tissues, zooxanthellae, provides vital nourishment to the coral.
Also, small floating animals, zooplankton, and dissolved organic matters are nutritions of corals.
Zooxanthellae produce (C6H12O6) by using sunlight and CO2 in the sea water and shared it with
coral polyps. On the other hand, coral polyps provide shelter to plant tissue. That is there exists
a symbiosis relationship between coral polyps and zooxanthellae [Castro (1997); Marineeducation
(2012)].

1.2 Growth factors

Structures of the coral colonies of same species can vary with environmental conditions. Growth
and morphogenesis of coral depends not only on the type of the coral but also on the environmental
conditions: temperature, nutrient availability, calcium carbonate saturation, depth to the reef, light
intensity,turbidity, sedimentation,pH and salinity [Mistr (2003); Encyclopedia (2012); Osinga (2011)].
Also same species can exhibit different growth forms under different flow regimes [Mistr (2003)].
Different aspects of coral morphogenesis have been studied using various modelling and computational
approaches [Kaandorp (1996, 2005, 2008); Merks (2003a,b,c); Mistr (2003); Maxim (2010)]. Merks
has used Diffusion-Limited Aggregation (DLA) approach based on physical mechanisms, diffusion
driven instability and Laplacian growth [Merks (2003a)]. Fascinating stony corals like simulations have
been reported in [Merks (2003a,b,c); Kaandorp (2005, 2008); Maxim (2010)]. A Reaction-Diffusion-
Advection type model for growth of corals has been proposed in [Mistr (2003)].

The aim of this article is to present a hypothetical model for the growth of coral in a tank,
considering the interaction between nutrient availability and formation of solid matrix of corals. We
proceed to study the stability behavior of the steady states and the global behavior of the solution
trajectories of the model equation (system of ODEs). Based on the behavior of solutions of the model
some temporal growth forms of the solid are discussed.

The remainder of this article is organized as follows: In section (2), a mathematical model for
formation of corals is derived. In sections (3) and (4), the local behavior of the equilibria and global
behavior of the solution trajectories in different parameter regions of the model (system of ordinary
differential equations) are discussed respectively. Also, the possible growth forms of solid matrix
(corals) corresponding to different stability regions are explained.

2 Derivation of the mathematical model

Consider a water filled tank with some coral polyps (coral particles) settled on the bottom of the tank.
Assume that nutrients are supplied to the tank in the rate k(us − ū); k > 0. That is nutrients are
supplied to the system if ū drops below a preassigned value us. Since the vessel is well stirred,
we can neglect the diffusion of reactants. It is assumed that growth factors except the availability of
nutrients are controlled.

Assume that dissolved nutrients react with solid material and produce additional solid material.
Let A and B denote the dissolved nutrients and solid material respectively, and ū and v̄ denote
their respective concentrations. We simplify the growth process to a hypothetical chemical reaction
between A and B of the form:

lA+mB
k1−→ nB.

Where k1 is a positive rate constant (reaction rate). l, m and n are the respective stoichiometric
constants such that n = m+ l. Units of k1 depend on the stoichiometric constants l, m and n.

Consider the case l = 1, m = 2 and n = l + m = 3 as in [Mistr (2003)]. Assume that the solid
materials produced by the reaction process deposited by existing coral polyps in the rate k2(> 0). Let
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Figure 1: Sketch of the reaction process of the model system

C denotes the solid material concentration deposited by coral polyps. This process can be symbolized
as follows:

B
k2−→ C. (2.1)

Let ū = ū(τ) and v̄ = v̄(τ) be the overall concentrations of reactants (dissolved nutrients and
calcium carbonate ions) at time τ . We can immediately write the rate equation for this reaction
process as follows:(

Time rate change of dissolved
nutrient concentration ū

)
=

(
supplying rate
of ū

)
−

(
Reactive
loss of ū

)
(2.2)

(
Time rate change of
solid concentration v̄

)
= −

(
loss of of v̄
due to deposition

)
+

(
Reactive production
of v̄

)
(2.3)

(
Time rate change of aggregating
solid concentration

)
=

(
depositing solid
concentration

)
(2.4)

Where w̄ denote the concentration of aggregating solid materials concentration.
By applying the law of mass action [Murray (2003)], these processes can be represented mathematically

as follows :
dū

dτ
= k(us − ū)− k1ūv̄

2

dv̄

dτ
= −k2v̄ + k1ūv̄

2

dw̄

dτ
= k2v̄

 . (2.5)

The first, second and third equations of the system (2.5) represent the rate equations (2.2), (2.3) and
(2.4) respectively.
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Figure 2: Sketch of the variation of the steady states with respect to α: (a) us; (b)
vs.

2.1 Nondimensionalization

The system (2.5) can be nondimensionalized by the substitution u =

(
ū

us

)
, v =

(
v̄

us

)
, w =

(
w̄

us

)
,

t = kτ . By these substitutions the system is reduced to the form:

du

dt
= 1− u− α2uv2

dv

dt
= −λv + α2uv2

dw

dt
= λv

 , (2.6)

where α =
k1u

2
s

k
and λ =

k2
k

.

3 Local stability of the steady states

Consider the system consisting of first two equations of the model (2.6):

du

dt
= 1− u− α2uv2

dv

dt
= −λv + α2uv2

 (3.1)

There are three steady states: S1 ≡ (us1, vs1), S2 ≡ (us2, vs2) and S3 ≡ (us3, vs3), where us1 =

1, vs1 = 0, us2 =
α−

√
α2 − 4λ2

2α
, vs2 =

α+
√
α2 − 4λ2

2αλ
, us3 =

α+
√
α2 − 4λ2

2α
and vs3 =

α−
√
α2 − 4λ2

2αλ
for α > 2λ. For α = 2λ, S2 and S3 coincide each other and for α < 2λ, only

one real steady state, S1 exists. Let us = {us1, us2, us3} and vs = {vs1, vs2, vs3} be the steady states
of u and v respectively. Then the variation of us and vs with respect to α is shown in Figure (2). In the
following sections, the linear stability at the steady states in the cases, α > 2λ, α = 2λ and α < 2λ
are analyzed separately.

258



British Journal of Mathematics and Computer Science 2(4), 255-280, 2012

Figure 3: Nullclines and steady states of
(3.1) for α = 10, λ = 4 (α and λ lie in
parameter region α > 2λ).

3.1 Case I (α > 2λ):

The nullclines for particular parameter values in this case are shown in Figure (3). At the trivial steady
state S1 is a nutrient only state. The nontrivial steady states S2 and S3 characterize the high and low
solid densities (or low and high nutrient concentrations) respectively. In other words, S2 is “solid
dominated” and S3 is “nutrient dominated” steady states. When there is not enough solid to react, the
system reaches S3 and it reaches S2 when there is not enough nutrient to react.

The plots of us and vs with respect to α for different values of λ are shown in Figures (4)(a) and
(4)(b). As α tends to infinity us2 and us3 reaches 0 and 1 respectively. Similarly, as α tends to infinity
vs2 and vs3 reaches 1/λ and 0 respectively. In other words, as α tends to infinity S3 −→ S1 and
S2 −→ (0, 1/λ) when λ is fixed.

3.1.1 The local stability of equilibrium points via linearizion

We shall now present an overview of the stability of the steady states of the system (3.1). Near the
uniform steady state (usi, vsi), put u = ui + usi, v = vi + vsi for i = 1, 2, 3. Then the linearized
systems about (usi, vsi), i = 1, 2, 3 can be expressed in terms of ui and vi of the form:

dui

dt
= Aiui, i = 1, 2, 3. (3.2)

where ui = (ui, vi)
T ,

Ai =

(
a11 a12

a21 a22

)∣∣∣∣
(usi,vsi)

=

 ∂f

∂u

∂f

∂v
∂g

∂u

∂g

∂v


∣∣∣∣∣∣∣
(usi, vsi)

=

(
−1− α2v2si −2λ
α2v2si λ

)
; i=1,2,3.

Let pi = tr(Ai), qi = det(Ai); (i = 1, 2, 3). Then p1 = −1− λ, p2 = λ − α(α +
√
α2 − 4λ2)/(2λ2),

p3 = λ − α(α −
√
α2 − 4λ2)/2λ2, q1 = λ, q2 = (α2 − 4λ2 + α

√
α2 − 4λ2)/2λ and q3 = (α2 − 4λ2 −

α
√
α2 − 4λ2)/2λ. Also let ∆i = p2i − 4qi; i = 1, 2, 3. Next the linear stability of the equilibrium points

Si, (i = 1, 2, 3) in the case α > 2λ are investigated separately using eigenvalue techniques [Murray
(2003); Jordan (1987)].
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Figure 4: Plots of us and vs for different values of λ (for the left to right curves,
values of λ are 1, 3, 5, 7 and 9 respectively). (a) Solid and dotted curve represent
us2 and us3 respectively; horizontal solid line through the point (0, 1) is us1, (b) Solid
and dotted curve represent vs2 and vs3 respectively; Horizontal solid line (along α
axis) is vs1
.

3.1.2 The linear stability of the steady state S1

The behavior of the steady states are determined by the behavior of the eigenvalues of Ai. Since
p1 < 0, q1 > 0 and ∆1 = p21 − 4q1 = (λ − 1)2 > 0, we have both eigenvalues of A1 negative which
result a stable node at S1. That is “nutrient only“ steady state is always stable.

3.1.3 The linear stability of the steady state S2

Solving p2 = 0 for α (i.e. Hopf-bifurcation) we get the solutions: (p2)α1 =
λ2

√
λ− 1

and (p2)α2 =
−λ2

√
λ− 1

.

Similarly solving ∆2 = 0 for α we get four solutions two of which are

(∆2)α1 =

√
λ3(3λ2 + 7λ+ 8) + 2

√
2
√

λ7(λ3 + 3λ2 − 4)

(1 + λ)
and

(∆2)α2 =

√
λ3(3λ2 + 7λ+ 8)− 2

√
2
√

λ7(λ3 + 3λ2 − 4)

(1 + λ)
both are positive and the other two are −(∆2)α1

and −(∆2)α2. Since α > 2λ putting α = 2λ+ ϵ, where ϵ > 0 we have

p2 = − (2λ+ ϵ)2 − 2λ3 + (positive term)

2λ2

= −2λ2(2− λ) + (positive term)

2λ2

< 0; if λ < 2.

(3.3)

Therefore p2 is negative for λ < 2. The region determined by α > 2λ of the positive quadrant of the
(α, λ) parameter space can be divided in to four subregions(See Figure (5)) :

Region I : 2λ < α < (∆2)α1, λ > 2;

Region II: (∆2)α1 < α < (p2)α1, λ > 2;

Region III: (p2)α1 < α < (∆2)α2, λ > 1 and
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Figure 5: Parameter regions depending on the type of equilibria of S2.

Region IV : (∆2)α2 < α, λ > 0.

Now using the Eigenvalues interpretation of the classification of equilibrium points, the behavior
of S2 in regions I, II, III and IV can be classified as in the Table 1.

Region p2 q2 ∆2 Type of the equalibria
I positive positive positive Unstable nodes
II positive positive negative Unstable spirals
III negative positive negative Stable spirals
IV negative positive positive Stable nodes

Table 1: Classification of the equilibria S2 in different parameter regions

The behavior of the steady state S2 depends on the parameters λ and α. The curve α = (p2)α2

bifurcates the steady state S2 into unstable-stable spirals. The curve α = (∆2)α1 bifurcates S2 into
unstable node-spirals and α = (∆2)(α2) bifurcate S2 into stable spiral-node.

Also, on the curve (p2)α = λ2
√
λ−1

, p2 is zero and ∆2 < 0 and hence the steady state S2 is a
center. On the line α = 2λ the local behavior of the steady state S2 (In this case S2 and S3 are
coincide) is indeterminate.

3.1.4 The linear stability of the steady state S3

It is not difficult to see that q3 < 0, in the region α > 2λ. Therefore, this steady state is a saddle for
all the parameter values in the region α > 2λ. That is ’nutrient dominated” steady state is always a
saddle.
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Figure 6: Nullclines on parameter line
α = 2λ (for α = 10, λ = 5)

3.2 Case II: α = 2λ

On the line α = 2λ, the number of equilibrium points reduce to two and these points are S1 ≡ (1, 0)
and S2 ≡ ( 1

2
, 1
2λ

). The nullclines for particular parameter values in this case are shown in Figure
(6). In this case, at the point S2, p2 = λ − 2, and q2 = 0. Therefore, the type of the stability is
indeterminate. In this case all the trajectories except the stable trajectories at S2 reach S1.

3.3 Case III: α < 2λ

In this case only one steady state, S1 ≡ (0, 1), exists. The nullclines and phase plane diagram for this
case are shown in Figures (7)(a) and (7)(b) respectively. The steady state S1 is a stable node. There
are no other steady states and so, S1 is globally stable. All the trajectories in phase plane tend to this
nutrient only steady state S1. That is, if the system starts at any state (that is whatever the starting
state) solid particles condensate more rapidly than that produce by the reaction. Therefore, the solid,
that remain to the reaction process get vanished. Therefore, growth of solid can be expected until the
system stabilize at S1. After that the growth ceases.

4 The structure of the trajectories in a region containing
all the steady states(Global behavior)

In this section, the global behavior of the trajectories are discussed in each parameter region separately.
Furthermore, some behavioral structures of the solutions in different parameter regions are presented.

Corollary 4.0.1. When α > 2λ, the steady states S1, S2 and S3 lie on the line

l ≡ v − 1

λ
(1− u) = 0. (4.1)

Proof. It can easily be shown that the coordinates of the points S1, S2 and S3 satisfy the equation of
the given line by direct substitution.

Theorem 4.1. There exist confined sets containing S1, S2 and S3 when λ > 1.
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(a) (b)

Figure 7: (a) nullclines and (b) phase plane diagram in parameter region α < 2λ
(for α = 8, λ = 5)

Proof. Consider the region R shown in Figure (8)(a). Where l2 ≡ v−m(1−u) = 0. Now we check the
existence of positive values of m such that all the trajectories passing through l2 directed inwards to

the region R. That is, we have to check the existence of positive values for m such that
dv

du

∣∣∣∣
l2

< −m.

dv

du

∣∣∣∣
l2

< −m ⇒ −λm(1− u) + α2m2u(1− u)2

1− u− α2m2u(1− u)2
< −m

⇒ α2mu(1− u)2(m− 1) + (1− u)(λ− 1) > 0

(4.2)

The inequality (4.2) holds for all m > 1 when 0 < u < 1. As we have shown in Corollary (4.0.1); S1,

S2 and S3 lies on the line l1 ≡ λv− (1−u). Also the gradient of l1 is − 1

λ
and it satisfies the inequality

− 1

λ
> −1 > −m for λ > 1. These facts confirm that S1, S2 and S3 lie in the chosen area R. Now,

consider the behavior of the trajectories on the each side of the region R.
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Figure 8: (a)The region R; (b) A confined set containing S1, S2 and S3
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On AB: On the section AA′, f > 0 and g > 0. Therefore, on this section trajectories are
pointed inwards the region R. Also on A′B, f < 0 and g > 0 and trajectories are pointed
inwards the domain as shown in the Figure (8)(b).

On BC: On BB′, f < 0 and g > 0 and on B′C, f < 0 and g < 0. Therefore, on both of the
section trajectories are pointed inwards the region R.

On CD: On this line, f < 0 and g < 0 and hence trajectories are pointed inwards the region.

On DE: On this section, trajectories are pointed inwards of the region since we have chosen
m satisfying this condition.

On EA: On the line EE′, f > 0 and g < 0 as well as on section E′A, f > 0 and g > 0.
Therefore, on both of these line segments trajectories are pointed inwards the domain as
shown in the figure.

Therefore trajectories at each point on the boundary of the region R, are pointed inwards of the region
R. Therefore the region R is a confined set.

Now we investigate the behavior of the trajectories in the confined set R when parameters α and
λ are in parameter regions I, II, III and IV respectively. The interpretations of the behaviors of
the trajectories are based on the Poincarè-Bendixson theorem [Jordan (1987)], which says that any
trajectory entering into the confined set R, approaches to a stable point or to a limit cycle.

4.1 Heterioclinic connections and phase diagram in parameter regions
I and II

Any trajectory entering into the region R approaches to S1, S3 (only through the two stable trajectories)
or a limit cycle.

Theorem 4.2. For α and λ in regions I and II(sufficiently away from the Hopf bifurcation line), there
are three heterioclinic connections, two of which are between S3 and S1, and the other one between
S2 and S3.

Proof. Consider the two unstable trajectories emerging from the saddle point S3. These two trajectories
do not leave the confined set R and do not reach S2 because S2 is unstable (unstable node or
unstable spiral). Also these two trajectories do not reach a limit cycle because there is no limit cycle
sufficiently away from the Hopf-bifurcation line. Therefore, these unstable trajectories should reach
the stable steady state S1.

Now consider the two stable trajectories at S3. One of them emerges from (∞, 0) and the other
trajectory should start from S2. That is there is a heteroclinic connection between S2 and S3.

The behaviors of these heterioclinic connections are shown in Figure (9). The phase diagrams
for particular parameter values in region I and II are shown in Figure (10). The phase diagrams
(Figures (10)(a) and (10)(b)) show that all the trajectories, except the two stable trajectories at S3,
reach the trivial steady state S1. This suggests that small perturbations of steady state S2 may cause
the system to reach S1 and there is only one path available for the system to reach S3.

Physical interpretation: In these regions, condensation speed of solid material is higher than
the reactive production speed. Hence as time passes the amount of solid material which left to react
with nutrient reaches vs3 or vs1.

The condensing solid concentration w and v satisfy the differential equation
dw

dt
= k1v. Therefore,

if the system comes to stabilization (us, vs) at time t = ts, then w = k1vsτ + C at t = ts + τ , where
C is a constant. Therefore, if the system comes to stabilization (us, vs) and if vs ̸= 0, then the
condensed solid (coral) concentration grows uniformly. That is if the system comes to stabilization S3
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(a) (b)

Figure 9: Stable and unstable trajectories starting at S3: (a) in parameter region I
for α = 25, λ = 12, (b) in parameter region II for α = 24, λ = 10.

(a) (b)

Figure 10: A phase plane diagram (a) in parameter region I for λ = 12, α = 25; (b)
in parameter region II for λ = 10, α = 24.
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Figure 11: (a): some initial states in parameter region I which lie on stable
and unstable trajectories at S3 and some other initial states. Growth forms
corresponding to initial states (b) A1, A2, A3, A4 and (c) B1, B2, B3 and B4.

via stable trajectories of S3 we can expect a uniform growth of coral. However, if the system comes
to stabilization S1 we can’t expect a growth of the solid after stabilization. Different initial states
and corresponding growth forms of solid material are shown in Figure (11). Each growth forms are
labled by the corresponding initial state. Some initial states (A1, A2, A3, A4, B1, B2, B3 and B4) in
parameter region I and corresponding growth forms are shown in Figure (11). Continuous growth of
corals can be occurred only if the initial state lies on the stable trajectories at S3 (After the trajectory
reach S3 a uniform growth of coral can be expected). In all other cases corals grow until the trajectory
reaches to S1 and after that no growth occurs.

The qualitative growth forms in parameter regions I and II are same (may be different in
quantitatively) except the cases that the initial state very close to S2. If the initial states lie near
to S2 in parameter region I and II, the growth forms of solid are shown in Figure (12).
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w

t

C1

C2

Figure 12: Growth forms when the initial state lies near S2. C1 and C2 denote the
growth forms when the initial state lies near S2 in region I and II respectively

4.2 Heterioclinic connections and phase diagrams in parameter region
III and IV

Since S1, S2 and S3 are stable node, stable spiral and saddle respectively in parameter region
III, a trajectory entering into the region R, approaches to S1 , S2, S3(only through the two stable
trajectories) or a limit cycle. Similarly, Since S3 is a saddle and S2 and S1 are stable nodes in region
IV , a trajectory entering in to the region R approaches to S1, S2, S3(only through the two stable
trajectories) or a limit cycle.

Theorem 4.3. For α and λ in regions III(sufficiently away from Hopf bifurcation) and in region IV
there are two heterioclinic connections between S3 and S1.

Proof. Since, in this case the steady state S2 is stable(stable spirals in region III, stable nodes in
region IV) the unstable trajectories emerging from S3 should reach to S2 or S1.

The behaviors of the heteroclinic connections for particular parameter values in regions III and
IV are shown in Figure (13). The behaviors of the trajectories in parameter region III and IV for
particular parameter values are shown in Figure (14).

4.3 Seperatrixes
The phase diagrams in Figures (14) show that all the trajectories above the stable trajectories of S3

reach the steady state S2 and all the trajectories below the stable trajectories of S3 reach the steady
state S1. That is, the stable trajectories of S3 act as seperatrix. Since any trajectory starting at a point
above the seperatrix reaches S2, a uniform growth of solid can be expected after the system reaches
S2. Also, any trajectory starting at a point on the seperatrix reaches S3. Hence a uniform growth
of solid can be expected after the system comes to stabilization. Since vs2 > vs3 the growth rate
of condensing solid materials in latter case is lower than that of previous case. On the other hand,
any trajectory starting at a point below to the seperatrix reaches S1, and hence there is no growth
of the solid after the system comes to stabilization. In brief there are two uniformly growing states
of condensed solid if the system comes to the steady states S2 or S3 and no growth of condensed
solid if the system comes to steady state S1. Different initial states and corresponding growth forms
of solid material (coral) are shown in Figure (15). The growth forms in region IV is almost similar
(may be different quantitatively) to the growth forms in region III except the growth forms near S2.
By these observations, it can be concluded that if someone expect a continuous growth of corals in a
tank, the system should be adjusted such that the initial state lies above the seperatrix.
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(a) (b)

(c)

Figure 13: Stable and unstable trajectories starting at S3 in parameter region: (a)
III for α = 20, λ = 6; (b) IV for α = 12.5, λ = 2.0, and (c) IV for α = 2.4, λ = 0.5.
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(a) (b)

(c) (d)

Figure 14: Phase plane diagrams in: (a) region III for λ = 6, α = 20 ;(b)region IV
for λ = 2, α = 12.5. Domain of attraction (Shaded areas) of S1 in regions: (c) III for
λ = 6, α = 20 and (d) IV for λ = 2, α = 12.5.
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Figure 15: (a) Some initial states in the parameter region III which are lying on
the stable and unstable trajectories at S3 and on some other initial states. Growth
forms corresponding to initial states: (b) A1, A2, A3, A4 and (c) B1, B2, B3 and B4.
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α=2λ

1(0,0)

Figure 16: Three points in a neighborhood of
Hopf-bifurcation line

4.4 Existence of oscillatory solutions

It is observed that ∆2 is negative in regions II and III. That is there exist imaginary parts in the
corresponding eigenvalues. Therefore there exist local oscillatory solutions for the system of ordinary
differential equations (3.1), about S2.

4.4.1 Stable and unstable trajectories and phase diagrams about a neighborhood
of Hopf bifurcation line

The three different points P0, P1 and P2 that we have considered (see Figure (16)) in the parameter

space lie in a neighborhood of the Hopf bifurcation line. Let P0 =

(
λ0,

λ2
0√

λ0 − 1

)
, be a point on

the Hopf-bifurcation line. Let P1 =

(
λ0,

λ2
0√

λ0 − 1
− δ

)
and P2 =

(
λ0,

λ2
0√

λ0 − 1
+ δ

)
be two points

which lie in regions II and III respectively. Here, λ0 > 1 and δ << 1. Now we consider the behavior
of the trajectories and hence growth forms of solid correspond to the parameter points P0, P1 and P2

respectively:

At parameter point P0: The stable and unstable trajectories at S3 that correspond to λ0 = 3.5,
are shown in Figure (17)(a). One of the unstable trajectories reaches S1 and other one spirally
reaches a point on a closed curve, which is one of the centers about S2(see Figure (17)(a)). Phase
plane diagram corresponding to parameter point P0 is shown in Figure (17)(b).

In this case, stable trajectories of S3 act as seperatrix. All the trajectories lying above the
seperatrix reach S2 and all the trajectories lying on seperatrix reach S1. So we can expect a damping
periodical growth of the solid until the system comes to stabilization. After that, the growth is uniform
corresponding to any initial state which lie above the seperatrix. Also, if the initial state lies on the
seperatrix, one can expect uniform growth of coral after stabilizing at S3. If the initial state lies at a
point below the seperatrix, there is no growth after the stabilization of the system at S1(see Figure
(18)).
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(a) (b)

Figure 17: (a) Stable and unstable trajectories starting at S3 and (b) phase plane
diagram corresponding to parameter point P0 for λ0 = 3.5
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Figure 18: Growth forms at parameter point P0 when the initial state lies: (a) above
the seperatrix (b) on the seperatrix (c) below the seperatrix.
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(a) (b)

Figure 19: (a) stable and unstable trajectories starting at S3 and (b) phase plane
diagram; corresponding to parameter point P1, for λ0 = 3.5, δ = 0.009
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Figure 20: Growth forms at P1 when initial state lies: (a) on the stable trajectory of
S3, which starts at S2 (b) near the S2 which doesn’t lie on stable trajectory of S3 (c)
sufficiently away from S2

At parameter point P1: The stable and unstable trajectories at S3 corresponding to the parameter
points P1, for λ0 = 3.5, δ = 0.009 are shown in Figure (19)(a).

At the parameter point P1, unstable trajectories of S3 reach S1 in two different paths (two heteroclinic
connections between S3 and S1). One of the stable trajectories at S3 emerges from S2. That is there is
a heteroclinic connection between S2 and S3. The phase plane diagram corresponding to parameter
point P1 is shown in Figure (19)(b).

In this case, S2 is a spiral source and all the trajectories, except the stable trajectories of S3

reach S1. Therefore, uniform growth state of condensed solid can be expected only through stable
trajectories of S3. See Figure (20) for different growth forms for different initial states.

At parameter point P2: The stable and unstable trajectories at S3 corresponding to the parameter
points P2, for λ0 = 3.5, δ = 0.009 are shown in Figures (21). According to this figure, at the parameter
point P2, stable trajectories of S3 reaches S1 in two different paths (Two heteroclinic connections
between S3 and S1) as at point P1. On the other hand, in this case, one of the stable trajectories is
originating from a point on a closed curve about S2. In other words, there is an unstable limit cycle
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Figure 21: Stable and unstable trajectories of S3

corresponding to parameter point P2, for λ0 = 3.5,
δ = 0.009

about S2.
Phase plane diagram corresponding to parameter point P2 is shown in Figure (22)(a). In this

case, S2 is a spiral sink and all the trajectories on the phase plane, except the stable trajectories of
S3 and the trajectories inside of the limit cycle, tend to S1. Since S2 is a spiral sink all the trajectories
inside the limit cycle, reach to S2 itself (See Figure (22)(b)). In other words, if the initial state lies
inside the limit cycle, there are damping oscillatory solutions for u and v that are stabilizing at S2. In
this case, a damping oscillatory growth of condensed solid (coral) can be expected at the beginning
and as time passes (after stabilizing), a uniform growth of condensed solid (coral) can be expected.
See Figure (23) for different growth forms for different initial states.

4.5 Existence of limit cycles

Let µ = Reµ± Imµ be eigenvalues of the linearized system about the equilibrium point (us2, vs2). On
the line α = (p2)α1 = λ2

√
λ−1

, Re(µ(α, λ)) = 0 and Im(µ(α, λ)) ̸= 0. In region II, Re(µ(α, λ)) > 0 and
in Region III, Reµ(α, λ) < 0. Then according to [Murray (2003)](p. 221) in a small neighborhood of
α = (p2)α1 = λ2

√
λ−1

, which lies in region II, the steady state is unstable due to growing oscillations
and at least, small amplitude limit cycle periodic solution should exist about S2. The period of this
limit cycle solution is given by 2π/ω where ω = Im(µ((p2)α1, λ)).

4.5.1 Limit cycles in the Region III

The conditions of the eigenvalue method for the limit cycles hold at the points near the curve α =
(p2)α1 which lie in the region III. Stable and unstable trajectories at S3 at the parameter point ((p2)α1+
δ, λ) for λ = 3.5 and for different values of δ are shown in Figure (24). A growth of unstable limit cycles
can be observed as δ increases up to some critical value (say δc(λ)) and also limit cycles vanish when
δ > δc(λ). Also, one can guess that, when δ = δc(λ) the unstable limit cycle at S3 reaches S3 itself.
That is, one of the heteroclinic connection between S3 and S1 becomes a homoclinic connection at
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(a) (b)

Figure 22: (a) Phase plane diagram corresponding to parameter point P2 for λ0 =
3.5, δ = 0.009 (b) Phase plane diagram in a small neighborhood of S2 correspond
to same parameter values

S3 when δ increases to δc. This homoclinic connection is shown in Figure (25). It is observed (by
numerical experiments) that δc(3.5) ≈ 0.098.

4.5.2 Growth forms corresponding to initial state lie inside and out sides of
the limit cycle

Now consider a point A which lie inside of the limit cycle and two points B and C which lie outside
of the limit cycle (see Figure (26)). Here B is a point on a stable trajectory of S3 and C does not lie
on that stable trajectory. Growth forms of the solid when initial state lies at A, B and C are shown in
Figure (27). If the initial state lies inside the limit cycle, we can expect a damping oscillatory growth
until the system stabilize at S2. After that we can expect a uniform growth. If the initial state lies
outside the limit cycle, continuous growth of solid cannot be expected. In this case, it grows until the
system stabilize at S1 and after that cease the growth. Also, continuous growth can be expected if
the initial state lies on the stable trajectories of S3.

5 Discussion

Throughout this article it has been reasonably assumed that the parameters (α and λ) of the model
are non-negative real constants. The phase plane diagrams used in this article are obtained by using
the MATLAB program pplane [John (2011)]. According to the existing number of real steady states of
the system, the parameter space can mainly be divided into three regions (see Table 2).
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Figure 23: Growth forms at P2 when the initial state lies (a) on a point of the stable
trajectory of S3 which starts at S2 (b) at a point inside the limit cycle (c) at a point
near the S2 (Outside the limit cycle) which doesn’t lie on stable trajectory of S3 (d)
at a point sufficiently away from S2
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(a)

(b)

(c)

(d)

Figure 24: Stable and unstable trajectories at S3 at parameter point ((p2)α1 + δ, λ)
when λ = 3.5 for: (a) δ = 0.001 (b) δ = 0.01 (c) δ = 0.05 and (d) δ = 0.095

Figure 25: Homoclinic connection at S3

for λ = 3.5, δ = δc(3.5) = 0.098
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Figure 26: Three initial states inside
and out side of the limit cycle.

t

w
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C

Figure 27: Growth forms
corresponding to initial states A,
B and C.

Region No. of equalibria
Region A: α > 2λ 3 (denoted S1, S2, S3)
Region B: α = 2λ 2 (denoted S1, S2 ≡ S3)
Region C: α < 2λ 1 (denoted S1)

Table 2:

In this article, our main concern has been on the behavior of the solution of the system at
parameter region A. In region A, S1 is a stable node, S3 is a saddle point and again the behavior of
S2 depends on the parameter values. According to the behavior of S2, the region A can be divided
into four subregions region I, region II, region III and region IV. In each subregion the behavior of S2

is classified as shown in Table 3.

Subregion Type of the equalibria S2

I Unstable nodes
II Unstable spirals
III Stable spirals
IV Stable nodes

Table 3: Stability of S2 in different parameter regions

It has been observed that, there is a confined set containing S1, S2 and S3 in parameter region A.
That is, all the trajectories converge to some point in this confined set. Also, it has been observed that
there are three heteroclinic connections in subregions I and II, while two heteroclinic connections
are in subregions III (sufficiently away from Hopf bifurcation) and IV . Growth forms of the solid are
identified when the parameters lie in each parameter region for different initial states. Some of the
identified growth forms are:

• Grow with decreasing rate up to some time (say τ1) and no growth after that. In this case the
system stabilizes at S1 at time τ1.
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• Grow with increasing rate up to some time (say τ2) and after that growth become uniform. In
this case the system stabilizes at S2 or S3 at time τ2.

• grow with oscillatory rate up to some time (say τ3) and after that growth become uniform. In
this case the system stabilizes at S2 or S3 at time τ3.

• grow with oscillatory rate up to some time (say τ4) and after that no growth occurs. In this case
the system stabilizes at S1.

Unstable limit cycles were observed when the parameters lie in region III very close to the Hopf
bifurcation curve. Also, the growth forms of the coral are identified corresponding to different initial
states when parameters lie in different parameter regions. Also, homoclinic connections at S3 are
observed for particular parameter values which lie in region III very close to the Hopf Bifurcation
curve. Finally, continuous growth forms of the solid could be happened when parameters lie only in
regions III and IV . Therefore, parameter regions III and IV are practically important.

The amount of the solid deposited within a particular time period depends on the parameter
values, initial state and the v component of the steady state, (us, vs). For example, consider the
growth forms corresponding to α > 2λ. Suppose that a trajectory in (u, v) plane starts from the initial
state u0 ≡ (u0, v0) at t = 0 and that trajectory reaches the steady state (us, vs) at t = ts. Then the
stabilizing period ts, shall depend on u0. Let ws denote the deposit amount of solid material within
the time period ts. Then ws depends on vs as well as u0. If vs ̸= 0 then the growth of solid depends
on vs.

Suppose that the system reaches a steady state S2 or S3. Then the solid material deposit
uniformly in a rate proportional to vs after t = ts. For given λ, vs increases from 1/(2λ) to 1/λ
as α increases (see Figure (4)(b)). Therefore, for fixed λ the minimum and maximum values of the
possible uniform growth rates of solid are proportional to 1/(2λ) and 1/λ respectively. This minimum

and maximum growth rates are occurred at α = 2λ and α → ∞ respectively. Since α =
k1u

2
s

k
and

λ =
k2
k

, the minimum growth rate occur when
k1
k2

=
2

u2
s

. For fixed k, k2 and us the maximum growth

rates occur when k1 → ∞. That is higher reaction rates of u and v cause to higher growth rates of
corals when k and us are fixed.
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