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ABSTRACT  

The radial power transmission resulting from a particle beam of parabolic (quadratic) transverse charge distribution 

have been studied theoretically. The particle beam is moving at constant speed down a resistive cylindrical pipe of finite 

wall thickness. The wave equations for the electromagnetic fields induced by the beam motion inside the cylindrical pipe 

have been derived and solved. The coefficient of radial power transmission through the beam-pipe wall have been obtained 

analytically and then analyzed numerically for different beam energies, different wall conductivities and different wave 

mode frequencies. The radial power transmission is found to increase with increasing beam energy, to decrease with 

increasing wall conductivity and it is higher for the wave modes of lower frequencies.  
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I. INTRODUCTION  

Most frequently, we encounter circumstances in which good shielding against electromagnetic 

fields is highly desired [1, 2]. For shielding based on reflection losses, two or more metallic layers 

separated by dielectric fillings lead to multiple reflections and provide more effective shielding than 

the same thickness of metal in single shield [3]. Multiple shield concepts are used in environment 

which require magmatic shielding in strong electromagnetic signals. The interaction of the magmatic 

fields of currents in each conductor due the electromotive force induced by the magnetic flux linkage 

around the conductors[4–6]. Consequently, like in the case of skin effect, the apparent A.C. resistance 

of the conductors is increased and the strength of the this shape (or proximity) effect will usually 

depend on the wave frequency, the gap width between the conductors and on their arrangement. The 

current unbalance due to the proximity effect in multiple shields can be reduced by spacing the 

conductors as far apart as possible. consequently, the skin effect becomes the predominant attenuation 

effect. In the opposite limit of conductors very close to each other, the apparent  

A.C. resistance of the conductors is increased and shielding is predominantly due to the proximity 

effect[7–9]. In many cases, physical distance between the conductors will be enough to reduce their 

magnetic coupling to an acceptable levels. If two conductors are close to each other, their mutual 

inductance may perturb the current distribution and increase the effective resistance of the conductors. 

Reduction of the mutual inductance requires increasing the separation between conductors since the 

magnetic fields around the conductors are distance.  

 

II. INDUCED ELECTROMAGNETIC FIELDS IN CYLINDRICAL TUBE  

From Faradays and Amperes laws in a linear conducting medium, we have the following wave 

equations for the magnetic induction B and electric field E [10, 11]:  

2 − μ0E0 ∂

2 

− μ0 S∂ B( r, t)= −μ0 × jb( r, t) .     (1) 

∂t2 ∂t  

∂2 ∂∂ 1  

2 − μ0E0 − μ0SE( r, t)= μ0 jb( r, t)+ ρb( r, t) .    (2) 

∂t2 ∂t ∂tE0where E0 and μ0 respectively, the free space permeability and S is the conductivity of medium 

under consideration. Here ρb and jb are the beam charge and current densities, respectively. We consider a 

beam of particles of radius a with an axially symmetric transverse charge distribution  
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σ(r) which move at a constant speed along the axis of a cylindrical beam-pipe of radius b. With a 

longitudinal beam velocity such that v = βczˆalong the z axis, we have the following beam charge and 

current densities:  

ρb(r, z, t)= σ(r)δ(z − βct) , (3) jb(r, t)= βcρb (r, t)ˆz.  (4) 

Here is the relativistic factor and c is the speed of light in vacuum. For a uniformly charged disk 

of total charge Q. 
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The Fourier time-transformed beam charge and current densities are, 
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For a uniformly charged thin disk of radius charge Q, the surface charge density distribution in 

the transverse direction is  
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where kz stands for number in the direction of beam propagation and w = kzc has been introduced.  

 

For the axial symmetric beam of equations (3)and (4), only transverse magnetic (TM) modes 

couple to the propagating beam. the non-vanishing electro-magnetic field components are Ez, Er and 

B. The electromagnetic field components E and Br vanish identically because of the axial symmetry 

of the beam. Assuming a normal mode solution for electric Ez such that E  (r, z, w) = e  (r,w) eikzz, and 

by making use of  (r, z, w) and jb(r, z,w) in equations (6) and (7), we obtain the following equations 

the longitudinal electric field component in each region of Fig 1 :  
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Here 
2
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 has been introduced s follows: 
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The azimuthal magnetic field component h (r, z, w) needed for matching the solutions at the different 

interfaces involved in the problem is obtained from Maxwell’s curl equations as follows:  
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Where  in equation (14) stands for  0 in vacuum, for  c in the beam-pipe wall. The general solution 

for the z-component of the electric field is,  
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Where 0
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kind respectively. The corresponding azimuthal magnetic field is, 
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Applying the boundary conditions on the tangential field components ez and h at all interfaces at 

r = a, r = b, r = h we obtain the following closed system of algebraic equations for the integration 

constants:  
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Where the parameters c and a are defined as follows 
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III. POWER TRANSMISSION COEFFICIENT  
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We define the beam-pipe transmission coefficient of longitudinal electric field z as the ratio of 

the longitudinal electric field leaking into the outer vacuum at r = h to the field impinging on the pipe-

wall at r = b, namely,  
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Where F is given by the following expression 
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Introduce u such that: 
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We obtain 
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Substitute for u and rearrange, we get,  
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In a similar way, the transmission of the radial electric field (or azimuthal magnetic field) is found 

to be,  
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We can now obtain the coefficient of the radial power transmission p. It is defined as the ratio of time 

averaged radial power leaving the wall at r = h to the radial power entering the wall at r = b, namely  

 

 

FIG. 2: The radial power transmission for different beam speeds at the harmonic number n = 1 and the 

wall conductivity S = 1.4 × 106.  
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where 
)( p

rS  is the radial component of the time averaged Poynting’s vector  

 

IV. NUMERICAL EXAMPLE  

We obtained analytically the coefficient of the radial power transmission p. It has been defined as 

the ratio of time averaged radial power leaving the wall at h to the radial power entering the wall at r 

= b, namely,  
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Where 
)( p

rS is the radial component of the time averaged Poynting’s vector _S= 12 _E × _H_. We 

summarize our numerical results as follows,  

 

1. Figure 2 show the power transmission at the lowest harmonic numbern = 1 for the beam 

energies b = 0.7, b = 0.9 and b = 0.99. We see that the power transmission becomes an important issue 

at high energies due to increases in the power transmission with increasing beam energy.  

2. The curves of Figure 3 show that the power transmission will decrease by increase 

conductivity.  

3. In figure Figure 4 we see that the radial power transmission is higher for the lower harmonic 

numbers. Also in accelerator design, one should take care of the lower harmonics.  
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V. CONCLUSIONS  

Power radial transmission of a particle beam of parabolic (quadratic) transverse charge 

distribution has been presented in this paper, theoretically and numerically. The beam is moving at 

constant speed down a resistive cylindrical beam-pipe of finite wall thickness. The coefficient of 

radial power transmission through the beam-pipe wall have been obtained analytically and then 

analyzed numerically for different beam energies, different wall conductivities and different wave 

mode (harmonic) frequencies. The radial transmission of power is a measure of the shielding 

effectiveness of the pipe wall.  

We obtained analytically the coefficient of the radial power transmission _p. It has been defined 

as the ratio of time averaged radial power leaving the wall at h to the radial power entering the wall at 

r = b, namely,  
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where Sr is the radial component of the time averaged Poynting’s vector *
2
1 HES  . We now 

summarize the main results and conclusions of the analytical and numerical calculations as follows:  

1. the radial power transmission increases with increasing beam energy (see Fig 2),  

2. the radial power transmission decreases with increasing wall conductivity (see Fig 3),  

3. the radial power transmission is higher for lower harmonic numbers (see Fig 4),  
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