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ABSTRACT  

The longitudinal coupling impedance for particle beams of parabolic transverse charge distribution moving in a 

resistive cylindrical beam-pipe of finite wall thicken studied theoretically. The particle beam is moving at constant speed 

down a resistive cylindrical pipe of fintie wall thickness. The wave equations for the lectromagnetic fields induced by the 

beam motion inside the cylindrical pipe have been derived and solved. The space charge and the wall impedances have been 

obtained analyticaaly and then analyzed numberically for diferent beam energies, diferent wall conductivities and diferent 

wave mode frequencies. The real part for the wall impedance is found to be a positive resistance while the imaginary part is 

a positive reacetance (inductive). At low beam energies we observed no differences between the impedances of quadratic 

and uniform beams. At high beam energies and for all wave mode frequencies, differences between the two impedance are 

observed frow all thickness bellow the skin penetration depth s. The impedance converges for large wall thicknetowared a 

small value of the order of the sufface impedance of a thick conducting wall.  
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I. INTRODUCTION 

In the design phase of an accelerator it is desired to reduce the coupling impedance of the 

beam to its environment in order to prevent the beam instabilities. The longitudinal coupling 

impedance includes the space-charge and the resistive-wall parts. It is an important physical 

quantity in liner and circular accelerators as well as in storage rings for bettter understanding and 

for modeling to the longitudinal dynamics of charged particle beams and their instabilities. A 

beam of charged particles can exacite electromagnetic fields in its environment and periodice 

excitation can occur depending on the coupling of the beam to its environment at a particular 

frequency. 

II. IMPEDANCE  

The term impedance was first used by Heaviside in 19 th century to escribe the complex ratio of 

the voltage to the current Z()= V()/I() in alternating alternating current circuits (AC circuits) 

consisting of a resistor R, inductors L and capacitors C [1,2]. The impedance Z() is a complex 

quantity which can be written as Z() = R() – i() in physical conventions or as Z() = R() = 

j() in engineering conventions, where – i = j. The real part o impedance R is the resistance of 

the circuit, and its imaginary part  is the reactance of the circuit. In direct current (DC) circuits, 

the impedance corresponds to a pure resistance. 

Schelkunoff was the first one who recognized that the impedance concept could be extended to 

electromagnetic field in systematic way. He noted that impedance can be regarded as a characteristic 

of the field type as well as of the medium [3]. The concept of impedance can be regarded as an 

important link between field theory and circuit theory [2, 4]. The effects of beam interaction with a 

vacuum chamber (or a beam-pipe) are treated in the frequency domain in terms of coupling 

impedance’s: longitudinal impedance, Z|| and transverse impedance Z⊥. In accelerator physics 

applications, the concepts of longitudinal and transverse beam effects (excited fields or impedance’s) 

become of importance [5–9]. An impedance imaginary part is usually classified as inductive or 

capacitive according to its sign. In engineering conventions, a positive imaginary part is called 

inductive and a negative imaginary part is called capacitive. The longitudinal impedance Z|| and the 
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transverse impedance Z⊥ are usually introduced and are measured, respectively, in Ω and Ω/meter 

[10, 11]. The coupling impedance includes the a space-charge and a resistive-wall impedance’s it is 

written as follows [5, 10,12], 

Z(total)(ω) = ()Z(sc)(ω) + Z(rw)(ω)         (1) 

Where Z(sc)(ω) is the space charge impedance (corresponds to the case when the beam pipe wall is 

perfectly conducting), and Z(rw)(ω) is the resistive wall impedance (when the beam pipe wall is 

resistive and has a finite wall conductivity).  

 

III. SPACE-CHARGE AND RESISTIVE WALL IMPEDANCES  

Space-charge and resistive-wall impedance’s are important topics in liner and circular accelerators 

as well as in storage rings and particle beam physics. When the particles charge are accelerated, 

guided and confined by external electromagnetic fields. It is mean the not effect of the Coulomb 

interactions in a multi-particle system. Space-charge fields are the self electromagnetic fields a 

moving particle beam generates in a given beam-pipe structure. Due to the strong electromagnetic 

fields that follow the beam, it is possible for it to interact with any impedance in the walls of the beam 

pipe. This may be in the from of a resistive wall impedance or an inductive or capacitive impedance 

according to its sign.  

For a perfectly conducting wall with large S the Z(rw) → 0 . The impedance in the limit of a 

perfectly conducting wall becomes the so called the space-charge impedance Z(sc)(ω). The resistive 

wall impedance Z(rw)(ω) which accounts for the wall effects has been defined as follows:  

Z(rw)(ω)  = Z(total)(ω) − ()Z(sc)(ω)       (2)  

IV. THEORETICAL MODEL AND METHODOLOGY  

The main problem is calculate the longitudinal coupling impedance for particle beams of 

parabolic transverse charge distribution moving in a resistive cylindrical beam-pipe of finite wall 

thickens. The coupling Impedance is definition can be derived as a volume integral over the 

transverse distribution of the beam [11], 

        (3) 

where Z(ω) is impedance, and Ib(ω) is current of the beam in frequency domain. In order to 

calculate the coupling impedance we need the component of the electric field E(r, ω) and the - 

current density jb(r, ω).  

From Faradays and Amperes laws in a linear conducting medium, we have the following wave 

equations for the magnetic induction B and electric field E [11, 14]: 
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Where 0 and μ0 respectively, the free space permeability and S is the conductivity of medium under 

consideration. Here ρb and 
-

jb are the beam charge and current densities, respectively. We consider a 

beam of particles of radius a with an axially symmetric transverse charge distribution σ(r) which 

move at a constant speed along the axis of a cylindrical beam-pipe of radius b. With a longitudinal 

beam velocity such that -v = βczˆ along the z axis, we have the following beam charge and current 

densities: 

ρb(r, z, t)= σ(r)δ(z − βct) ,        (6)  
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jb(r, t)= βcρb (-r, t)ˆz.         (7) 

Here β is the relativistic factor and c is the speed of light in vacuum. For a uniformly charged disk of 

total charge Q  

                                      Q =2πσ(r)r dr .                             (8)  

The Fourier time-transformed beam charge and current densities are, 

ρb (r, z, ω)= e i kz z .          (9)  

βc jb(r, z, ω)= σ(r) eikz, ikz z .         (10)  

For a uniformly charged thin disk of radius charge Q, the surface charge density distribution in 

the transverse direction is  

 

 

FIG. 1: Pipe geometry 

 (11) 

Where kz stands for number in the direction of beam propagation and ω = kzβc has been introduced. 

For the axial symmetric beam of equations (36) and (7), only transverse magnetic (TM) modes couple 

to the propagating beam. The non-vanishing electro-magnetic field components are Ez, Er and Bθ. the 

electromagnetic field components Eθ and Br vanish identically because of the axial symmetry of the 

beam. Assuming a normal mode solution for electric Ez such that E(r, z, ω)= e (r, ω) eikz and by 

making use of ρb (r, z, ω) and jb(r, z, ω) in equations (9) and (10), we obtain the following equations 

the longitudinal electric field component in each region of Fig 1 : 
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Here 
2

0

− has been introduced as follows: 
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The azimuthal magnetic field component h(r,z,) needed for matching the solutions at the 

different interfaces involved in the problem is obtained form Maxwell's curl equations as follows: 
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Where γ in equation (17) stands for γc in vacuum, for γc in the beam-pipe wall. The general 

solution for the z-component of the electric field is,  
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Applying the boundary conditions on the tangential field components ez and hθ at all interfaces at r 

= a, r = b, r = h we obtain the following closed system of algebraic equations for the integration 

constants: 
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Where the parameters c and a are defined as follows 
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V. THE LONGITUDINAL COUPLING IMPEDANCE 
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Where gf  is an equivalent geometry factor which accounts for the beam properties and beam-

pipegennetry and conductivity. Here we have 
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VI. THE CASE OF A GOOD CONDUCTING WALL 

For a good conductors wall with large S or c, we have large values c. The argument cb or ch 

of Bessel function is also large. For large argument, we have,  
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The parameter F becomes, 
 










−

+
=

)()(

)()(

)(

)(

0100

0100

1

0

hKhK

hKhK

hK

hI
F

c

c

c

c








      (38) 

We also have, 
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The parameter G can be written as follows, 
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For a perfectly conducting wall we have c → 0 and G → –1 , therefore that parameter R 

becomes R  → – I0(0b)/K0(0b). The impedance in the limit of a perfectly conducting wall (sc) (rw) 

becomes the so called the space-charge impedance Z(). The resistive wall impedance Z (w) which 

accounts for the wall effects has been defined as follows: 
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WII. NUMERICAL EXAMPLE 

We summarize our numerical results as follows,  

1. Figure 2 shows the real part of the impedance normalized to the harmonic number in  versus 

wall thickness normalized to the skin depth δs. For n = 1 and β =0.7 we observe no difference 

between the impedance of parabolic and uniform beams.  
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Fig. 5: Comparison between the real parts of the resistive wall impedance for the parabolic beam for the 

harmonic number n = 1 at different beam speeds. 

 

2. Figure 3 shows the real part of the impedance normalized to the harmonic number in Ω versus 

wall thickness normalized to the skin depth δs. For n = 1 and β =0.9 we observe a difference between 

the impedance of parabolic and uniform beams for a wall thickness approximately bellow 0.05 δs. But 

Fig. 4 we observe a big difference between the curves of the impedances for parabolic and uniform 

beams in the high energy limit  

3. Figure 5 and Figure 6 shows a real part of impedance normalized to the harmonic number in Ω 

versus wall thickness normalized to the skin depth δs. All figures have the same harmonic number n = 

1 but different resolutions along the x axis. We observe from Figure 5 that the value of the impedance 

will not go zero for large wall thicknesses d, as can be seen from and Figures 6.  

For large values of wall thicknesses d, the impedance converges toward a small value of the order 

of the surface impedance of a thick conducting wall. The surface impedance is the impedance of a 

conducting medium of conductivity σw to the propagation of a plane electromagnetic wave. The 

following expression for the surface impedance of a thick wall in engineering conventions is found in 

many textbooks [2, 4, 10],  

 

 

 

FIG 6: Comparison between the real parts of the resistive wall impedance for the parabolic beam for the 

harmonic number n = 1 at different beam speeds. 
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4. The curves of Figure 7 shows the negative imaginary part of the resistive wall impedance versus 

normalized wall thickness for three different energies. In engineering conventions such that −i = j, the 

imaginary part is positive and therefore, it is inductive in nature. For large wall thicknesses d, it 

converges asymptotically toward the surface impedance of the wall and will not go to zero.  

 

VIII. CONCLUSIONS  

The longitudinal coupling impedance of a particle beam of parabolic (quadratic) transverse charge 

distribution has been presented in this thesis work, theoretically and numerically. The beam is moving 

at constant speed down a resistive cylindrical beam-pipe of finite wall thickness. The space-charge 

and resistive-wall impedance’s have been obtained analytically and then analyzed numerically for 

different beam energies, different wall conductivities and different wave mode (harmonic) 

frequencies. The coupling impedance is used in beam dynamics and in the analysis of beam 

instabilities. We now summarize the main results and conclusions of the analytical and numerical 

calculations as follows:  

  

FIG. 7: Comparison between the imaginary parts of the resistive wall impedance at different beam speeds 

for the harmonic number n = 5. 

at low beam energies, no obvious difference is observed between the impedance of parabolic and 

uniform beams (see Fig. 2), by raising the beam energy, we observe a difference between the 

impedance of parabolic and uniform beams for thickness much bellow the skin penetration depth, 

namely, for d ≤ 0.05 δs (see Fig4), for the harmonic number n = 1, for example, we observe that the 

impedance of the parabolic beam for different beam energies converges toward a small value for large 

wall thicknesses (see Fig 6 . This small value is of the order of magnitude of the surface impedance of 

the wall Zs, in engineering convention −i = j, the imaginary part of the resistive wall is positive which 

means that it is inductive in nurture (see Fig 7).  
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