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ABSTRACT 
 

Rice is a unique crop which is generally grown in submerged soil. However, not all rice varieties 
according to its genotype can tolerate to complete flooding. The selection using DNA markers is 
now frequently used in real breeding programs, including for the development of submergence-
tolerant rice. This review summarizes the researches devoted the problem of breeding of 
submergence tolerant rice. Data on mechanisms, adaptation strategies, loci associated with 
tolerance to this stress are given. We had placed great emphasis on investigations aimed at 
application of molecular-genetic markers in the breeding of complete flooding tolerant varieties. 
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1. INTRODUCTION 
 

Flooding disturbs the basic physiological 
processes of plants such as water absorption, 
respiration, photosynthetic activity. Even a short 

period of plant waterlogging significantly reduces 
crop productivity [1,2,3,4]. Rice (Oryza sativa L.) 
is generally grown in flooded anaerobic soil. 
However, not all rice varieties according to its 
genotype can tolerate to complete flooding 
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[1,4,5]. In the world, development of the 
submergence tolerant versions of rice cultivars 
linked to the fact that large growing areas are 
prone floods. Flooding is one of the main abiotic 
stresses in South and South-East Asia. More 
than 16 million hectares of rice crops in this 
region are exposed to annual flooding and due to 
ongoing climate change, this figure will grow [6, 
7]. Indeed, in recent times, the areas  affected by 
floods due to sea level rise and extreme weather 
events have continued to expand. The most 
vulnerable in this respect are the coastal areas in 
South and South-East Asia [8]. For example, in 
Myanmar in 2008, more than 1.7 million hectares 
of cropland were affected by the devastating 
cyclone [9]. A year earlier, in Bangladesh, the 
cyclone destroyed more than 640,000 ha of rice 
crops. In India more than 5 million hectares of 
rice field are flooded during of planting season 
[10]. On the other hand, the major component of 
social and economic sustainability in these 
regions is the rice production. So, in Vietnam the 
coastal areas provide more than 75% of the total 
rice production in Vietnam, in Myanmar provides 
about 70%, and in Bangladesh produces about 
35% of the national rice production [11]. In total, 
the annual economic loss due to flooded rice 
fields is more than US $ 600 million [9]. 
 
Flooding tolerance during seed germination 
allows the transition from transplanting to direct 
sowing of seeds [12,13]. Direct-seedling is 
becoming a popular way, because of its 
cheapness and convenience. However, not all 
rice varieties can germinate under submergence 
conditions, preventing the extensive introduction 
of direct sowing seeds methods [13]. Russia is 
the most northerly rice growing area. Here, a 
complete flooding is also applied for weed control 
because they cannot overcome deep layer of 
water [14]. Despite the high toxicity, the use of 
herbicides is an indispensable part of modern 
technology for growing the vast majority of crops. 
However, practice shows that the chemical plant 
protection in some cases is either inefficient or 
unprofitable [14]. Proceeding from the aforesaid 
obtaining rice cultivars which would combine high 
productivity and tolerance to submergence is an 
extremely important objective. 
 

2.  MECHANISMS OF SUBMERGENCE 
TOLERANCE IN RICE 

 
Unlike other crops, rice has several mechanisms 
of submergence tolerance, which were formed in 
the process of evolution. One of them is the 
organization of longitudinal interconnected air 

cavities or aerenchyma, which allows for 
transport of oxygen from well-aerated shoots to 
submerged roots [15,16]. Oxygen diffusing 
through the aerenchyma to the apical meristem 
of the root can be used both in the process of 
respiration and disperse radially into the 
rhizosphere [17]. To prevent radial diffusion of 
oxygen into the rhizosphere, under flooding 
conditions a dense barrier is formed by the 
suberization and lignification of the peripheral cell 
layers in root outside to the aerenchyma. It is 
also believed that this barrier prevents the 
penetration into the root of toxic substances 
formed in the soil as a result of anaerobiosis 
[17,18]. Another mechanism is the formation of a 
gas films on the surface of submerged leaves 
[19]. It is shown that the removal of the gas film 
reduces the partial pressure of oxygen in the 
roots, and also decreases the efficiency of 
photosynthesis [19,20]. Despite the above 
adaptive mechanisms to the low oxygen 
conditions, many rice varieties are sensitive to 
complete submergence. Under complete flooding 
their leaves and stems are moderately 
elongated, reaching the surface of water, but this 
elongation depletes the energy reserves, which 
leads to a decrease in yields and even plant 
death [21]. Nevertheless, some rice varieties 
have a high tolerance to this stress factor. As a 
ruler, such tolerance to complete submergence is 
realized through two different growth control 
strategies. One of them is the so-called 
quiescence strategy, in which the elongation of 
the roots and shoots of plants is restricted, and 
thus the necessary energy is preserved to 
resume growth after lowering the water level [22]. 
Such rice varieties are resistant to flash-flood for 
10 to14 days [23]. In this case, a negative 
correlation between the elongation of plant 
vegetative organs and survival under complete 
flooding conditions can be observed.  
 
Another strategy is the rapid elongation of leaves 
and internodes under flooding condition [24]. So 
some varieties can increase the length of the 
shoot by more than 25 cm per day [25]. This 
rapid elongation allows the leaf tips to reach the 
water surface in a short time, which makes it 
possible for efficient photosynthesis and gas 
exchange [24]. Both strategies are caused by 
ethylene response factors [5,26]. 
 
Also to mechanisms that impart a high tolerance 
to flooding, one can include the accumulation of 
non-structural carbohydrate, a higher level of 
antioxidant protection, maintaining a high 
chlorophyll content in the leaves, the ability to 
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maintain an active fermentative metabolism and 
etc [27]. It has been shown that tolerant rice 
plants accumulate 30-40% more non-structural 
carbohydrates compared to the submergence-
susceptible varieties [28]. A greater activity of 
ADP glucose pyrophosphorylase along with 
lower activity of fructose 1,6-diphosphatase 
provides a significant accumulation of non-
structural carbohydrates in submergence tolerant 
rice varieties [29]. These non-structural 
carbohydrates are utilized during submergence 
to maintenance the required energy rate [27].          
A study of the activity of superoxide       
dismutase, ascorbate peroxidase, catalase, 
dehydroascorbate reductase, glutathione 
reductase demonstrates the best antioxidant 
protection against oxidative damage in 
submergence tolerant rice plants [30]. In this 
case, the protection and activity of the 
photosynthetic system are associated with the 
high activity of the antioxidant system [31]. For 
more details on the mechanisms of plant 
tolerance to flooding are available in the following 
reviews [21,23,24,32,33,34,35,36]. 
 

3.  QTLs ASSOCIATED WITH SUB-
MERGENCE TOLERANCE 

 
As described above, some rice varieties can limit 
own growth during the complete flooding and 
resume it after lowering the water level. One of 
the most famous donors of this submergence 
tolerance is the traditional Indian rice FR13A. 
This cultivar was actively used by breeders 
around the world, since the 70s of last century. 
However, the genetic basis of FR13A tolerance 
to water stress has long remained unexplored. In 
the second half of the 90s, two independent 
research groups using recombinant inbred lines 
derived from FR13A described a major QTL 
(later named SUBMERGENCE 1 or SUB1), and 
several minor QTLs of submergence tolerance 
[37]. It was later established that the SUB1 locus 
consists of three genes (Sub1A, Sub1B and 
Sub1C), which encodes ethylene-response 
factors and are activated under flooding 
conditions [26]. Sub1B and Sub1C are present in 
all cultural forms of O. sativa, which have been 
investigated so far, while Sub1A are found only 
in submergence tolerance rice variety [26,38]. In 
this case, the accumulation of ethylene in water-
covered seedlings of rice is as the initial signal 
for expression of Sub1A, which subsequently 
leads to a restriction of growth. To conserve 
energy and carbohydrates, the expression of 
genes encoding a-amylase and sucrose 
synthase, involved in the metabolism of starch 

and sucrose, are suppressed under flooding in 
rice plants carrying Sub1A [22]. Also, Sub1A 
increases the expression of the SLR1 and 
SLRL1 genes (the key repressors of gibberellin 
signaling in rice), which negatively regulates the 
elongation of the shoot during flooding [5]. It was 
shown by Septiningsih et al. [39], that the level 
expression of Sub1A determines the degree of 
tolerance to submergence. In practice, this 
means that to get the maximum tolerance effect 
in hybrid plants, both parents should carry 
Sub1A. In addition, the study of allelic variants of 
the Sub1A gene revealed the existence of a 
Sub1A-1-tolerant allele and Sub1A-2-intolerant 
allele [38,39]. The Sub1A was identified in O. 
sativa subspecies indica, as well as in O. 
rufipogon and O. nivara [40]. It is noteworthy that 
Sub1A is not represented in O. sativa subspecies 
japonica.  
 
The transition from seedlings to direct sowing 
seeds makes it necessary to develop varieties 
with tolerance of flooding during seed 
germination. Previously a few QTL of tolerance 
to anaerobic germination was found on 
chromosomes 5 and 11 [17]. In another paper, 
based on a hybrid population obtained by 
crossing IR 64 and a tolerant donor, Khao all 
hlan On (Myanmar), it was identified five QTLs 
on chromosomes 1 (qAG-1-2), 3 (qAG-3-1), 7 
(qAG-7-2), and 9 (qAG-9-1 and qAG-9-2) [41, 
42]. In this case, as noted by the authors, the 
QTL located on the long arm of chromosome 9 
(qAG-9-2 or AG1) and associated with local 
modulation of the trehalose-6-phosphate (T6P) 
level [43] is the most promising for breeding. 
Another QTL for anaerobic germination tolerance 
was found on the short arm of chromosome 7 
(qAG7.1 or AG2) in a study of the plant 
population obtained from crossing the sensitive 
line IR 42 and the tolerant Chinese variety Ma-
Zhan Red  [44]. Using the 5291 SNP markers on 
GWAS study, as well as analysis of expression 
profiles, Zhang et al. [45] revealed the 
LOC_Os06g03520 gene associated with 
tolerance of flooding during seed germination. 
The combination of genome-wide association 
analysis and biparental QTL mapping 
approaches allowed researchers to identify a 
genomic region carrying hexokinase (HXK6, 
LOC_Os01g53930) and associated with 
coleoptile elongation in submerged rice plants 
[46]. The same authors conducted RNA-seq 
analysis of six rice genotypes demonstrating 
different coleoptile elongation rates under 
anaerobic conditions [47]. Based on the results 
of this study, the genes have been identified that 
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contribute to the anaerobic rice germination, 
including carbohydrate metabolism, lipid 
metabolism, ethylene signaling pathways, cell 
wall growth and elongation. 
 
Identification of genes responsible for internodes 
elongation under flooding was done in the 
following studies [48,49,25]. Using the progeny of 
crossing Taichung65 (T65) with moderate growth 
and C9285, which is characterized by intensive 
shoot elongation under flooding, the researchers 
initially identified 3 major QTLs associated with 
the trait of deepwater. Among them, the largest 
effect was noted for the locus located on 
chromosome 12. Positional cloning and 
functional analysis using a transgenesis made it 
possible to identify the genes SNORKEL1 (SK1) 
and SNORKEL2 (SK2), which regulate the 
response to deep water flooding. In response to 
deepwater flooding, the SK-genes were 
expressed at high levels in the leaf blade, leaf 
sheath and basal part of the stem, including 
nodes and internodes. The authors also obtained 
transgenic plants in which the SK-genes were 
driven by the OsAct1 promoter. The 
overproduction of SK1 and SK2 in such plants 
resulted to internodes elongation in comparison 
with the control, even under dry conditions. It has 
also been shown that SK-genes are activated by 
ethylene and to act as transcription factors. With 
an SK-genes expression, an increase in the 
content of gibberellic acid and a decrease in 
abscisic acid are observed. Moreover, during 
internodes elongation, an increase in the 
expression level of the expansin involved in the 
cell wall softening [50,51,52] and a shift in 
cellulose microfibril orientation are registered 
[53]. The formation of internodes aerenchyma 
occurs simultaneously with its elongation and is 
enhanced by ethylene [54,55]. As in the case of 
Sub1A, SK-genes have been identified only in O. 
sativa subspecies indica. In addition to the major 
loci of submergence tolerance (described 
above), some minor QTLs were also revealed. 
So in one of the detailed studies [56], using 
FR13A and Jao Hom Nin as donors, a number of 
QTLs located on chromosomes 1, 2, 5, 7, 10 and 
11 were identified. Major QTL was identified on 
the long arm of chromosome 1 [42]. In an earlier 
study, QTLs associated with tolerance were 
shown on chromosomes 6, 7, 11 and 12 [57]. 
Additional novel QTLs originating from FR13A on 
chromosomes 1, 8, and 10 were described in 
study Gonzaga et al. [58]. It is interesting to note 
that the presence of these QTLs provides a high 
survival rate (95 %) of rice under flooding 
conditions even without Sub1A. A summary of 

QTLs associated with submergence tolerance is 
presented in Table 1. 
 

4.  MARKER-ASSISTED SELECTION FOR 
RICE SUBMERGENCE TOLERANCE 

  
Due to the rapid development of molecular 
biology, there is a real opportunity to analyze the 
inheritance of traits in their relations with specific 
DNA sequences. The term marker-assisted 
selection (MAS) was proposed for this new 
approach [59]. Currently, one of the most widely 
used MAS directions is marker-assisted 
backcrossing (MABC). The aim of MABC is the 
introgression of the target QTL from agronomic 
non-standard donors into elite varieties. MABC 
significantly exceeds to conventional 
backcrossing in accuracy and efficiency [60]. An 
important step for breeding of submergence 
tolerant rice was the identification of the locus 
Submergence 1A or Sub1A [26]. DNA sequence 
polymorphism both directly and around of the 
Sub1A QTL allowed to develop and implement in 
the breeding programs effective molecular 
markers for controlling the transfer of the Sub1A 
region [26,38,39,61]. Using the developed 
markers for Sub1A introgression into mega 
varieties, the breeders in the shortest time 
obtained submerging tolerance rice without loss 
of productivity and nutritional qualities [39,62]. So 
under the control of the SSR marker RM23805, 
the Sub1A was introduced in the susceptible 
variety OM1490. A distinctive feature of the allele 
of RM23805 locus inherited from the donor of 
tolerance (IR64-Sub1A) was the presence on the 
electropherogram a 230 bp amplification product, 
while the allele obtained from the susceptible 
OM1490 is 240 bp. All lines with introgressed 
Sub1A revealed a higher survival under flooding 
compared to the recurrent parent [63]. In another 
study, the Sub1A gene was introgressed into the 
high-yielding Indian variety, Swarna [61]. The 
crossing scheme was as follows. Initially, the 
high-yield variety Swarna was crossed with the 
Sub1A donor, IR49830-7. Next, F1s were 
backcrossed with Swarna. From BC1F1, 
individual plants were isolated which were 
analyzed for the presence of the donor allele 
using the RM219 marker distally flanking the 
Sub1 locus. 
 
In the second backcrosse generation used the 
same selection strategy for individual plants with 
the desired combination of alleles at the target 
loci, including the selection of recombinants 
between Sub1 and the nearest proximal marker 
RM316. The results of this study demonstrated 
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that a sensitive mega variety can be efficiently 
transformed to a submergence tolerant variety in 
three backcross generations without loss of yield 
potential [61]. The successful introgression 
Sub1A locus, derived from the IR64, was made 
into the popular Vietnamese rice variety - AS996. 
Herewith Sub1A inheritance was confirmed by 
using tightly linked markers ART5 and SC3 [64]. 
The IR64-Sub1 was also chosen for the 
introgression of the submerging tolerance QTL 
into another elite Vietnamese rice variety, 
Bactrim 7. However, in this case, the markers 
ART5 and RM23877 showed a higher efficiency 
in controlling the transfer of the sought locus [65]. 
To date, the Sub1A gene has been introgressed 
into mega varieties such as Samba Mahsuri and 

CR1009 (India), IR64 (Philippines, IRRI), 
Thudakkam 1 or TDK1 (Laos), BR11 
(Bangladesh). According to the results of field 
trials, these improved mega varieties showed 
higher survival rates in flood conditions than the 
recurrent parent. Herewith, under normal 
conditions, Sub1A did not affect on the other 
important agronomic traits [6,62,66]. The 
development of highly productive varieties with 
an introgressed Sub1A locus promotes the 
further incorporation of Sub1A into new elite 
varieties. This is due to the fact that donor 
parents are already well adapted to the region of 
cultivation and possess many impotent 
agronomic traits [67]. 

  
Table 1. A summary of QTL for submergence tolerance traits in rice 

 
LociA Marker interval Ch Trait Phenotypic 

variance 
explained 
(%) 

LOD Reference 
 

QTLch9, 
qSUB9.1 
(SUB1) 

RM337- RM464; 
id9001352-SC3 

9 High survival, 
lowest 
elongation 

69.00 36.9 [26,37,56] 

qSUB1.1 id1000556-id1003559 1 High survival 20.20 5.0 [58] 
qSUB4.1 id4010621-id4012434 4 High survival 12.40 3.0 [58] 
qSUB8.1 id08005815-id8007472 8 High survival 13.00 3.1 [58] 
qSUB10.1 id10005538-RM25835 10 High survival 15.80 3.9 [58] 
qAG-5 RM405–RM249 5 Anaerobic 

germination 
15.51 3.8 [41] 

qAG-7-2 RM21868-RM172, seq-
rs3583 

7 Anaerobic 
germination 

19.43 9.7 [42,45] 

qAG-7-1, AG2 RM3583–RM21427 7 Anaerobic 
germination 

30.30 14.5 [44] 

qAG-9-2, AG1 RM3769-RM105, seq-
rs4216 

9 Anaerobic 
germination 

33.49 20.3 [42,43,45] 

qAG-11 RM21–RM22, seq-rs5125 11 Anaerobic 
germination 

10.99 3.0 [41,42,45] 

qAG-1-2 RM11125-RM104; 
id29187939id32847451 

1 Anaerobic 
germination 

17.89 9.8 [42,46] 

qAG-3-1 RM7097-RM520 3 Anaerobic 
germination 

18.19 5.7 [42] 

qAG-9-1 RM8303-RM5526 9 Anaerobic 
germination 

23.58 16.4 [42] 

qTIL12 (SK1 
and SK2) 

RM6386- RM235 12 Internode 
elongation 

27.00 6.2 [25,48,49] 

qTIL1 RM6840- RM259 1 Internode 
elongation 

22.00 4.4 [48,49] 

QTLch1 A330402–RM104 1 High survival 15.80 5.4 [56] 
QTLch2 G45‐RM250 2 Total shoot 

elongation 
24.00 7.3 [56] 

QTLch5 R2289–C1018 5 High tolerance 28.30 12.3 [56] 
QTLch7 RM214–RM234 7 High tolerance 11.70 4.4 [56] 
QTLch10–1 RM222–RM216 10 High tolerance 18.00 9.5 [56] 

A=QTL names were taken from original sources and in some cases are designed with the abbreviation of the trait name 
and chromosome number, SUB=Submergence, AG=Anaerobic germination, SK=Snorkels, TIL=Total internode 

elongation length, Ch=Chromosome, LOD=Logarithm of odds score 
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Marker-assisted selection for anaerobic 
germination tolerant rice was begun with 
detection of the AG1 locus in the variety Khao 
Hlan On [43,68]. The introgression QTL AG1 was 
successfully introduced into such Asian varieties 
as IR64, IR64-Sub, PSB Rc18-Sub1 and PSB 
Rc82. There are also studies on the introgression 
of the AG2 locus. In this case, Chinese traditional 
variety Ma-Zhan Red is used as a donor [48]. 
The Toledo et al. [69] research focused on the 
transfer AG1 locus into the Ciherang variety 
carrying the Sub1A gene. Introgression of QTL 
AG1 and restoration of the Ciherang genome 
were carried out in two backcross generation 
followed by self-pollination. To control the 
inheritance of Sub1A, SSR markers RM8300 and 
ART5 were used. The AG1 transfer, depending 
on the population to which the donor belonged, 
was monitored using two to three markers. So for 
the IR64-AG1c: IR93312-30-101-20-3-66-6-14 
population, the TPP_GE5 and HPP400_410_3 
markers were used, whereas for IR64-AG1: 
IR93312-30-101-20-13-64-13, markers used 
were TPP_GE5, Drebups6bp and Drebdws4bp. 
The selection of genetic similarity to Ciherang 
from the first and second backcross generations 
was performed using 26 SSR markers uniformly 
located in polymorphic regions between IR64 
and Ciherang. It was shown that most of the 
major QTLs of anaerobic germination are 
obtained from different tolerant donors, located in 
different regions of the rice genome, and their 
contributions are additive. In this connection, it is 
suggested that, unlike the QTL Sub1A, the 
introduction of only one QTL into an elite rice 
variety will not give the desired level of tolerance 
to flooding at the germination stage [69,70]. In 
this case, the best strategy for increasing stress 
tolerance is QTL pyramiding. 
 
The cooperation of the Laboratory of Molecular 
Genetics of the Southern Federal University and 
the Laboratory of Selection, Seed and Rice 
Cultivation of the Agricultural Research Center 
[71,72,73] made it possible to validate of SSR 
markers associated with submergence tolerance 
QTLs Sub1A in rice with the aim of introgression 
of this QTL into the elite rice variety of Russia 
[14]. It was shown that only RM7481 of 7 
studded microsatellite markers (RM219, RM316, 
RM444, RM464, RM7481, RM8303, RM23877) 
is effective to control the transfer of the Sub1A 
region into the Russian rice variety. For 
validation of marker RM7481 the hybrids by 
crossing Russian variety Novator with Sub1A 
gene donors (BR-11, Inpara-3, CR-1009, TDK-1) 
were obtained. According to the results of 

molecular genetic screening with RM7481, the F2 
plants carrying different allelic variants Sub1A 
locus were identified. Investigation of the second 
generation hybrids tolerance to deepwater stress 
showed that the most viable samples under 
submergence were Sub1A locus donor lines and 
hybrid plants (F2) carrying the Sub1A locus in a 
homozygous state.   
 

5. CONCLUSION 
 

The consequence of the negative impact on 
agricultural crops is a decrease in their yield. The 
introduction of tolerance loci (QTLs) into highly 
productive variety adapted to certain agroclimatic 
conditions, as well as the pyramiding of several 
QTLs in one genotype, are considered being the 
most promising directions to abiotic and biotic 
stress tolerance breeding. The use of specific 
DNA markers associated with such tolerance 
provides a clear control the inheritance of the 
target locus, which ultimately reduces the time 
and cost of breeding. As a result, marker 
assisted selection is now increasingly used as a 
high-tech tool in real breeding programs. This 
review had placed great emphasis on researches 
aimed at application of molecular-genetic 
markers in the breeding of submergence tolerant 
rice varieties. The summarized information will 
facilitate further investigations of physiological 
and biochemical mechanisms of submergence 
tolerance and developing multiple-stress-tolerant 
rice varieties. 
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