Mind Your Manners! A Dataset and a Continual Learning Approach for Assessing Social Appropriateness of Robot Actions

Tjomsland, Jonas and Kalkan, Sinan and Gunes, Hatice (2022) Mind Your Manners! A Dataset and a Continual Learning Approach for Assessing Social Appropriateness of Robot Actions. Frontiers in Robotics and AI, 9. ISSN 2296-9144

[thumbnail of pubmed-zip/versions/1/package-entries/frobt-09-669420/frobt-09-669420.pdf] Text
pubmed-zip/versions/1/package-entries/frobt-09-669420/frobt-09-669420.pdf - Published Version

Download (5MB)

Abstract

To date, endowing robots with an ability to assess social appropriateness of their actions has not been possible. This has been mainly due to (i) the lack of relevant and labelled data and (ii) the lack of formulations of this as a lifelong learning problem. In this paper, we address these two issues. We first introduce the Socially Appropriate Domestic Robot Actions dataset (MANNERS-DB), which contains appropriateness labels of robot actions annotated by humans. Secondly, we train and evaluate a baseline Multi Layer Perceptron and a Bayesian Neural Network (BNN) that estimate social appropriateness of actions in MANNERS-DB. Finally, we formulate learning social appropriateness of actions as a continual learning problem using the uncertainty of Bayesian Neural Network parameters. The experimental results show that the social appropriateness of robot actions can be predicted with a satisfactory level of precision. To facilitate reproducibility and further progress in this area, MANNERS-DB, the trained models and the relevant code are made publicly available at https://github.com/jonastjoms/MANNERS-DB.

Item Type: Article
Subjects: Eprints STM archive > Mathematical Science
Depositing User: Unnamed user with email admin@eprints.stmarchive
Date Deposited: 22 Jun 2023 08:53
Last Modified: 01 Nov 2023 05:30
URI: http://public.paper4promo.com/id/eprint/738

Actions (login required)

View Item
View Item